
Elevated LiDAR based Sensing for 6G
- 3D Maps with cm Level Accuracy

Madhushanka Padmal1, Dileepa Marasinghe, Vijitha Isuru,
Nalin Jayaweera, Samad Ali, Nandana Rajatheva

Centre for Wireless Communications, University of Oulu, Oulu, Finland
{dileepa.marasinghe, vijitha.isuru, nalin.jayaweera, samad.ali, nandana.rajatheva}@oulu.fi

1blog.padmal@gmail.com

Abstract—One key vertical application that will be enabled
by 6G is the automation of the processes with the increased
use of robots. As a result, sensing and localization of the sur-
rounding environment becomes a crucial factor for these robots
to operate. Light detection and ranging (LiDAR) has emerged
as an appropriate method of sensing due to its capability of
generating detail-rich information with high accuracy. However,
LiDARs are power hungry devices that generate a lot of data,
and these characteristics limit their use as on-board sensors
in robots. In this paper, we present a novel approach on the
methodology of generating an enhanced 3D map with improved
field-of-view using multiple LiDAR sensors. We utilize an inherent
property of LiDAR point clouds; rings and data from the inertial
measurement unit (IMU) embedded in the sensor for registration
of the point clouds. The generated 3D map has an accuracy
of 10 cm when compared to the real-world measurements. We
also carry out the practical implementation of the proposed
method using two LiDAR sensors. Furthermore, we develop an
application to utilize the generated map where a robot navigates
through the mapped environment with minimal support from the
sensors on-board. The LiDARs are fixed in the infrastructure
at elevated positions. Thus this is applicable to vehicular and
factory scenarios. Our results further validate the idea of using
multiple elevated LiDARs as a part of the infrastructure for
various applications.

Keywords—6G, Infrastructure based sensing, LiDAR, Position-
ing, 3D Maps.

I. INTRODUCTION

Innovation in wireless communications lead us towards the
sixth-generation (6G) of communication networks that aim
to deliver 1 Tbps peak data rate with 100 µs latency [1].
This opens up pathways to many vertical applications that
can utilize high data rates and low latency links. Technologies
such as mmWave and THz communications, massive MIMO
along with artificial intelligence have become key enablers for
realizing such performances. One key challenge in utilizing
these is to acquire precise positioning information. Positioning
technologies such as global positioning system (GPS) are
available for outdoor scenarios while indoor positioning is still
a research challenge [2].

A promising vertical application of 6G is the factory
automation where multiple robots perform their navigation
and tasks with minimal human intervention [3]. Currently,
these mobile robots navigate utilizing on-board sensors such
as cameras, proximity sensors and LiDARs. Moreover, these
robots lack the perception of the whole environment as the

on-board sensors have a limitation in both range and field-of-
view (FoV). One solution to overcome this is to have inter-
robot communications. However, sharing sensor information
between mobile robots introduces a heavy burden on the com-
munication links as those sensing technologies produce a huge
amount of data which is in Gbps range. In our previous works,
we proposed an infrastructure based sensing architecture with
a coordinated set of elevated LiDARs (ELiDs) which develops
a digital twin of the environment [4], [5]. This architecture
has the potential of delivering a solution to the positioning
problem while overcoming the issue of limited perception of
the environment to the robot.

LiDAR sensor is an active sensor which generates a point
cloud using time of flight measurements between the emission
of light and its return to the device. In contrast to cameras,
LiDARs do not require pre-illumination of the environment
and the point clouds generated are sparse compared to images.
These features qualify LiDARs as sensors for automated
navigation tasks in automobile industry and robotics. Merging
the LiDAR streams from multiple LiDARs integrated to in-
frastructure as proposed, compensates for occlusion formed by
obstacles, reduces sparsity and provides the potential of scaling
up. Furthermore, it can be utilized to generate navigation
commands for the mobile robots which can then operate with
a minimal number of on-board sensors [6].

Contributions. In this paper we propose a novel approach
to generate an elevated LiDAR map (ELiD Map) with cm
level accuracy by merging multiple point clouds using their
features and embedded sensors in the LiDAR. Enabled by the
ELiD Map, we also present an application where navigation
of a robot is carried out along the shortest path between two
points in the mapped environment.

The rest of the paper is organized as follows. In Section
II, we describe the related work on the problem of merging
point clouds and robot path planning based on point clouds.
Next, we describe our proposed method of merging the point
clouds to generate ELiD Map in Section III. In Section IV ,
the path planning based on the ELiD Map is presented. The
results of the proposed method with comparison to real-world
measurements and the navigation of the robot are presented in
Section V. Finally Section VI concludes the paper.

II. RELATED WORK

The problem of merging two point clouds has been in
research for several years and multiple algorithms have been

ar
X

iv
:2

10
2.

10
84

9v
1

 [
ee

ss
.S

P]
 2

2
Fe

b
20

21

developed providing solutions as a result. Most of these
methods are based on iterative closet point (ICP) algorithm
to accurately register 3D point clouds. Even though ICP is
a popular algorithm, there are a few limitations. It requires
a proper initial value with accurate correspondence points
[7] and approximate registration between two point clouds to
prevent it from falling into local extremes [8]. Attempting to
estimate this registration automatically fails at instances when
there are multiple similar views in point clouds [9]. Instead,
specific features such as curvature of objects is detected prior
to estimating transformation to improve the iteration speed
and accuracy in registering points using kd-trees [8], [10].
Even with such improvements, point clouds still need to be
registered approximately.

When merging two point clouds, first step is to rotate and
translate one point cloud while the other is kept fixed. Then
both point clouds are concatenated yielding the merged point
cloud. There are two main approaches in literature to generate
merged point clouds which are as follows:

1) Reference object based transformation: While estimat-
ing the transformation matrix, restricting the view of a point
cloud to a single object improves the transformation accu-
racy. Such an object is taken as a reference by multiple
LiDAR sensors and a transformation is initially estimated.
This transformation is then directly applied to the point cloud
enclosing the object. This object should be rotation variant
unlike cylindrical objects to help capture the correct view
point [7]. Multiple reference objects are used in literature
not limited to cubes [11], tetrahedrons [12], planes and wall
boundaries [7] to generate optimum results. It would require
complete or partly manual intervention to identify where the
object is placed inside the point cloud [13]. There are instances
when cubes and tetrahedrons may fail being optimum reference
objects due to the lack of knowledge of the surrounding
environment. Figure 1(a) shows a point cloud segment captured
from a LiDAR placed in front of a cubical. Figure 1(b) is from
another LiDAR placed behind the same object and the points
look more organized. Reference objects based transformation
would disregard the 180◦ rotation of frames as they look
identical. In such scenarios, cameras are used to gain a better
insight about the surroundings.

2) Camera based point cloud transformation: Camera
based methods utilize intrinsic parameters such as aspect
ratio and extrinsic parameters such as relative position of the
camera. World frame in a point cloud is identified using these
parameters and a planar surface is estimated from LiDAR
measurements[7]. Cameras need to be calibrated to identify
surfaces and powerful methods exist in image processing do-
main for that. Such methods process and merge images to use
alongside LiDARs to estimate the transformation parameters
[11]. Rodrigues et al. have developed a manual calibration
method with a plane having circular holes. The reference sim-
plicity reduces image noise, however, it does not guarantee an
optimum estimate [14]. An automated solution was introduced
by Alismail et al. where they use a center marked black circle
and it can be used for calibrations during operation as well
[15]. Object detection problem with a planar checkerboard
pattern is used by Geiger et al. to identify extrinsic camera
parameters for faster calibration. Still, it requires multiple
references to localize in an environment [16].

(a) LiDAR 1 view (b) LiDAR 2 view

Fig. 1: Different view points from LiDAR sensors

Point cloud aided navigation has been in research for many
years. Zhang et al. have developed simultaneous localization
and mapping (SLAM) based architecture to navigate a robot
using on-board LiDAR sensors [17]. Extending the work on
SLAM, Mahmood et al. describes a method using a velocity
ramp to solve the drifting issue in robots moving in a straight
line [18]. Vandapel et al. propose a laser detection and ranging
(LADAR) based solution to navigate robots in unstructured
cluttered environments [19]. Also, path planning based on
voxelized point clouds to represent the environment in a 3D
grid can be found in literature [20].

III. PROPOSED SOLUTION

We propose a two-step solution to generate an ELiD Map.
The first step estimates rotation parameters of point clouds
and the second step estimates translation parameters. The two
parameter sets are combined to generate the transformation
matrix.The process of building the point cloud map of the
surrounding environment starts by collecting data frames from
multiple LiDAR sensors mounted at different view points. Let
the fixed point cloud chosen as reference be denoted by S .
Every other point cloud Mi ∈ RKMi

×4 for i ∈ (1, . . . , N −
1) where N is the total number of input point clouds and
KMi

is the number of points in the point cloudMi is rotated
and translated with respect to the reference point cloud S to
generate a transformed point cloud M′i. All M′i point clouds
are then concatenated with S to generate the ELiD Map Υ.

A point cloud M can be rotated and translated about the
three major axes (x,y and z) by multiplying itself with a
transformation matrix T ∈ R4×4 as MT. The T matrix is a
combination of a rotation matrix R ∈ R3×3 and a translation
vector t ∈ R3×1. They are combined with a 4 × 4 identity
matrix, leaving the fourth row intact to generate the T matrix.

A. Rotation parameters

The first step is to estimate roll (φ), pitch (θ) and yaw
(ψ) angles around x, y and z axes respectively. The roll (φ)
and pitch (θ) estimations are based on inertial measurement
unit (IMU) sensor readings embedded in the point cloud data
frames. This differs from state of the art methods where they
use a whole point cloud or a part of it to estimate rotation
parameters using ICP algorithm based implementations [9].

1) Estimating roll (φ) and pitch (θ) angles: Relative ro-
tation around x and y axes of a point cloud M with respect
to a reference point cloud S, is estimated using IMU sensor

0 100 200 300 400 500
Time (ms)

8

9

10

11
Ac

ce
le

ra
tio

n
(m
s−

2)

LiDAR 2 - Z Axis
LiDAR 1 - Z Axis

Fig. 2: Variations and offsets in IMU readings.

readings. These sensors are inbuilt with LiDAR modules and
they capture linear acceleration values along x, y and z axes
keeping the horizontal plane of LiDAR sensor as the xy plane.
Let the linear acceleration values along x, y and z axes of the
LiDAR sensor generating the point cloud be gxM , gyM and
gzM . Similarly, let the corresponding linear acceleration values
of the LiDAR sensor generating the reference point cloud be
gxS , gyS and gzS . The relative roll (φ) and pitch (θ) angles
can be derived using,

φ = tan−1

 gyM

√
g2xS

+ g2zS − gyS

√
g2xM

+ g2zM

gyMgyS +
√(

g2xM
+ g2zM

) (
g2xS

+ g2zS
)
 , (1)

and

θ = tan−1
[
gxSgzM − gxMgzS
gzMgzS + gxMgxS

]
. (2)

This method cannot be directly implemented using LiDAR
sensors out of the box. The reason is that, even when two such
sensors are placed with the same orientation, they will not
produce identical readings, as seen from Figure 2. It requires
a calibration step to nullify these offsets. In this calibration
step, six sets of readings are taken by placing a LiDAR sensor
facing towards and outwards from x, y and z axes. These
readings consist of three sets of minimum and maximum linear
acceleration values along each axis. Let the time average of
these values along an arbitrary axis ω be gω(min) and gω(max).
The corrected linear acceleration value gωc along the same axis
for a reading gωr can then be interpreted as,

gωc = 2× 9.80665×
gωr − gω(min)

gω(max) − gω(min)
− 9.80665. (3)

The factor 9.80665 in (3) which is the acceleration due
to gravity is extracted from LiDAR sensor datasheet in [21].
Instead of raw readings from IMU sensor, these calibrated
values should be used in (1) and (2). Even with the calibrated
readings, use of a single calculated value is discouraged due
to the varying nature of IMU readings following a normal
distribution. Accordingly, the time average value of multiple
readings will likely yield more accurate measurements.

2) Estimating yaw (ψ) angle: Relative rotation between
two point clouds along z-axis is estimated using a feature in
LiDAR point clouds. These point clouds consist of set of point
rings. These rings can be interpreted as slices of the point cloud
along z-axis. The first and last sets of point rings are highly
warped. The middle set of point rings are almost parallel to the
LiDAR xy-plane. This behavior of point rings prompts us to
choose the middle point ring to estimate the relative yaw angle.

Fig. 3: Selecting point segments to estimate relative yaw angle

First step in this process is to choose two point segments one
from the middle point ring in each point cloud M (red) and
the reference point cloud S (black) as shown by two arrows
in Figure 3.

When selecting these point segments, the user must con-
sider choosing segments with at least three consecutive points
such that the points approximately lie on a straight line
capturing the same region of the environment represented in
the point cloud. Colored blobs in Figure 3 satisfy these three
requirements and the two point segments are then processed
with random sample consensus (RANSAC) algorithm [22] to
estimate a first order polynomial in the form of f(x) = mx+c
where m is the gradient and which can also be represented
as tan(ϑ). Assume that for the selected set of points M =
{Mi|Mi ∈ M, i = 1, · · · , 8} the return value from RANSAC
algorithm is its gradient tan(ϑM). Similarly for a selected set
of points S = {Si|Si ∈ S, i = 1, · · · , 8} the return value is
its gradient tan(ϑS). Then the relative yaw (ψ) angle between
the two point clouds can be calculated using

ψ = tan−1 (ϑM)− tan−1 (ϑS) . (4)

Point cloud data points from a LiDAR sensor are always
embedded with a noise component in the time of flight
measurement readings. Hence the coordinate values of each
point in the point cloud always vary along all three axes. This
variance depends on few factors such as the type and material
of the reflecting surface, Angle of Attack (AoA) on the
reflective surface, distance from LiDAR sensor to the surface,
timing errors in LiDAR sensor etc. Therefore obtaining an
instantaneous value for the relative yaw angle using (4) by
considering only a single instance of points segment is not
guaranteed to produce a valid estimate for the required yaw
angle. As a result, multiple readings are recorded on the same
point segment selection to get multiple angle estimates and the
average value is considered as the correct relative yaw angle.

The relative roll, pitch and yaw angles can then be used to
populate the rotation matrix R as,[c(ψ) −s(ψ) 0

s(ψ) c(ψ) 0
0 0 1

][c(θ) 0 s(θ)
0 1 0
−s(θ) 0 c(θ)

][
1 0 0
0 c(φ) −s(φ)
0 s(φ) c(φ)

]
,

(5)
where c(.) = cos(.) and s(.) = sin(.).

B. Translation parameters

With the rotation matrix estimated, next step is to estimate
the parameters for linear translation. This starts by rotating the
point cloud using the estimated rotation matrix R in (5). Let us
denote the rotated point cloud as an intermediate point cloud

M̂. The two point clouds will now only have a linear offset
between them. Estimating the linear translation parameters
imply the same as estimating these offset values. This process
is carried out along one axis and then continued with another
axis until all three axes are covered. The implementation is
derived from ICP algorithm. User will then select two points
from a planar surface, one from the point cloud and the other
from the reference point cloud. When selecting these points,
the following requirements should be satisfied.

• Both points have to be on fairly flat surfaces facing
each other along the selected axis.

• Surfaces on which the points are preferred to be from
the same region in real environment.

• If they are not on the same region, the surfaces should
belong to a similar planar region (eg: long running
walls).

Elaborating more on these requirements, fairly flat surfaces
are required to ensure that the neighboring points surrounding
the selected point lie approximately on the same plane. The
surfaces on which the points are located, should be the same
surface. If not, they should at least belong to the same region
in the environment to ensure that the offset is estimated against
a common viewpoint. Such a scenario could occur when the
two point clouds do not have an overlapping region in the
real environment, but they capture two different segments of
a single long wall. User intervention is required at this point
to select such two points from the point clouds subject to the
given constraints.

Once the two points are selected, four neighboring points
closest to the selected point are filtered from each point cloud.
When picking these four points, two of them are selected from
the same point ring. The other two points picked from the two
rings above and below. The filtered points in reference point
cloud can be represented as Sω = {Si|Si ∈ S, i = 1, · · · , 5}.
Similarly the filtered points from intermediate point cloud M̂
can be represented as M̂ω = {M̂i|M̂i ∈ M̂, i = 1, · · · , 5}.

The two sets of points M̂ω and Sω are processed with the
ICP algorithm to estimate the translation vector component
along the axis of interest. Let this axis be ω. Usually the ICP
algorithm will return a complete transformation matrix. Disre-
garding the rotational components, the final column where the
translation vector is located is extracted. From this translation
vector, the value corresponds to the ω-axis is extracted and it
will be the offset of the intermediate point cloud M̂ relative
to the reference point cloud S along ω-axis.

A similar approach is carried out with the other two
axes which completes the estimation of all the translation
parameters to populate transformation matrix T. The same
process is independently applied to every other point cloud
Mi to get a unique transformation matrix Ti. Once all the
transformation matrices are estimated, the ELiD Map Υ can
be derived from

Υ =M1T1 + · · ·+MN−1TN−1 + S. (6)

This abstract method of generating a single point cloud
combining multiple point clouds can be integrated into a
practical implementation using robot operating system (ROS).
Figure 4 illustrates the high level view of the proposed

Fig. 4: A highlevel view of the proposed ROS based system
implementation.

system architecture to process, generate and export an ELiD
Map using three different LiDAR sensors. Most commercially
available LiDAR sensors provide an interface to integrate their
sensors into ROS. ROS also provides a platform to process and
visualize sensor data. This open source platform inherits faster
execution of programs based on C++ programming language
and support GPU based applications.

IV. ROBOT PATH PLANNING WITH ELID MAP

In this section, we consider a factory automation scenario
with the support of an ELiD Map. The map is used to plot the
path and steer a ground robot moving towards its destination
using a minimal number of on-board sensors mounted. The
process begins by voxelizing the generated ELiD Map to
reduce the resolution without losing the precision required for
robot navigation while avoiding obstacles. Then the voxelized
map is used to estimate the shortest path between given two
points on the ELiD Map using an algorithm based on breadth
first search (BFS) and Dijkstra’s algorithm.

Fig. 5: Overview of the path generation process.

The estimated path is then translated into a set of basic
navigation commands such as direction and move for a fixed
time. The offline computed commands are then uploaded to the
robot over a wireless link. Figure 5 illustrates the high level

overview of implementing the path planning and navigation
process.

V. RESULTS AND DISCUSSION

An ELiD Map of a room generated with two Ouster OS1-
16 LiDAR sensors using the proposed solution is shown in
Figure 6. The black colored point cloud is from a LiDAR
placed at location 1 while the red colored point cloud is from
a LiDAR placed at location 2. LiDARs are positioned such
that they have a linear offset along x-axis about two meters.

Fig. 6: An ELiD Map using two point clouds (red and black).

A. Comparing merged point clouds with real layouts

We are using ROS Rviz tool to visualize point clouds [23].
It allows measuring distances between points in real-time. A
set of such measurements are tabulated in Table I. The actual
length was measured using a measuring tape and the point
length was measured in Rviz. The error column shows the
difference between the two measurements and the error ranges
between 4 to 10 cm regardless of the distance from the LiDAR
sensors. Notice that this is a sufficient accuracy to utilize the
ELiD Map for identifying the position of an object in the
mapped environment which can be utilized in algorithms to
improve wireless connectivity in mmwave/sub THz region.

B. Time consumption

Timing analysis was carried out combining two real-time
LiDAR data streams and playback of recorded streams to
resemble a multi-LiDAR setup to investigate the effect of
increasing LiDARs to the computation time which is de-
picted in Figure 7. The red curve shows time consumption
for calculating transformation matrix and the black curve
shows the time consumption for concatenating multiple point
clouds. Timing values were calculated on a laptop running
Ubuntu 18.04 LTS 64-bit operating system, with 2.3 GHz Intel
CORE i5 processor and a 7.7 GB usable memory with no
graphics processing unit (GPU) support. These timing values
were collected over a period of 30 seconds for each LiDAR
setup. Concatenation curve has a higher gradient since the
accumulator has to handle an increasing number of points with
an increasing number of LiDAR sensors. Transformation can
be estimated independently causing a lower gradient.

A LiDAR sensor generates a point cloud data stream at a
rate of 20 Hz imposing a theoretical limit on the frequency

TABLE I: Comparison between point cloud measurements and
actual measurements

Scenario Actual length (m) Point length (m) Error (m)
Minimum range 0.70 0.7502 0.0502
Width of a cupboard 0.93 0.9860 0.0560
Height of a cupboard 0.92 0.9995 0.0795
Width of a room 3.12 3.1689 0.0489
Length of a room 5.00 5.0951 0.0951

of ELiD Map generation. The proposed solution is able to
process and transform point clouds from five different LiDAR
sensors within 50 ms. This is within the point cloud generation
interval of 50 ms. This timing value can be reduced using
multiple threaded applications running in parallel with GPU
support to merge point clouds in a binary tree pattern. Also, in
a real implementation, such a multi-LiDAR system needs to be
connected using Ethernet hubs to feed a continuous collision
free LiDAR data stream to the central processor which will
also add some delay.

2 3 4 5
LiDAR Count

0.00
0.01
0.02
0.03
0.04
0.05
0.06

Ti
m

e
(s

)

Transform operation
Concatenation

Fig. 7: Time consumption for merge and transform multiple
point clouds.

C. LiDAR Setup time

The proposed solution is implemented as a two step
process. The first step is a one-time setup stage where the
transformation matrix is estimated for each point cloud. The
second stage is the operation stage where the concatenation
takes place. Once the setup stage is completed, the LiDAR
sensors are assumed to be fixed. The setup stage will re-
quire manual intervention and takes about twelve minutes to
complete. This includes tasks such as calibrating IMU sensor
readings (300 s), estimating rotation parameters (90 s) and
translation parameters (300 s). This setup time can be improved
further by reducing the manual intervention required to select
specific features from the point clouds. For this, a machine
learning based feature detection algorithm can be implemented
to choose such points automatically.

D. Path planning with voxelized ELiD Map

A ground setup with cubicles building up a simple maze
was laid in a place in the university premises to demonstrate
the application scenario. Two Ouster OS1-16 LiDAR sensors
were placed on the two corners of the room and an ELiD
Map was generated using the proposed method. A Kobuki
TurtleBot was used as the ground robot. Figure 8 shows the
result of the calculated shortest voxel path in red between
two points marked as green and blue dots on the voxelized
ELiD Map. The offset between real world measurements and

Fig. 8: Planning shortest path in a point cloud

voxelized ELiD Map introduced as a result of the voxelization
was taken into consideration while calculating the path. This
would ensure that the robot will avoid any collisions with
obstacles when passing them by. As described in Section IV,
the path is calculated offline and uploaded to the robot using a
Secure SHell (SSH) connection established over a WiFi link.
Figure 9 depicts an instance in the demonstration where the
robot (highlighted in red) is utilizing the path information
generated to reach the destination. The blue circles represent
where the LiDAR sensors were placed.

Fig. 9: An image of the setup where the robot is navigating
along the path generated based on the ELiD Map

VI. CONCLUSION

In this paper, we have focused on a novel approach of gen-
erating an ELiD Map using integrated elevated sensors in the
infrastructure targeting factory automation that plays a key role
in enabling 6G evolution. First, we have generated the ELiD
Map utilizing inherent properties of the LiDAR point clouds;
the rings and the embedded IMU readings from the LiDAR
sensors. Then, we have carried out experiments showing that
the proposed method provides an ELiD Map with an accuracy
of 10 cm when compared to real-world measurements. Finally,
we have demonstrated the usability of the generated ELiD
Map with a practical implementation of path planning and
navigation of a robot. In this work, path planning was done
in an offline manner for a static environment. As an extension
on the application, this can be improved where the central
processor detects dynamic obstacles in near real-time and
communicates the necessary navigation commands to avoid
such obstacles to the robot through a fast wireless link.

REFERENCES

[1] N. Rajatheva et al., “Scoring the Terabit/s Goal:Broadband Connectivity
in 6G.” [Online]. Available: https://arxiv.org/pdf/2008.07220.pdf, 2020.

[2] M. Kjærgaard, H. Blunck, T. Godsk, T. Toftkjær, D. Lund, and
K. Grønbæk, “Indoor Positioning Using GPS Revisited.” [Online].
Available: https://doi.org/10.1007/978-3-642-12654-3 3, 05 2010.

[3] H. Greimel, “Self-driving tech on Factory Floors.” [Online]. Avail-
able: https://www.autonews.com/article/20170930/OEM06/171009976/
self-driving-tech-on-factory-floors, Sep 2017.

[4] N. Jayaweera, N. Rajatheva, and M. Latva-aho, “Autonomous Driving
without a Burden: View from Outside with Elevated LiDAR,” IEEE
89th Vehicular Technology Conference, pp. 1–7, 04 2019.

[5] N. Jayaweera, D. Marasinghe, N. Rajatheva, and M. Latva-Aho, “Fac-
tory Automation: Resource Allocation of an Elevated LiDAR System
with URLLC Requirements,” in 2020 2nd 6G Wireless Summit (6G
SUMMIT), pp. 1–5, 2020.

[6] B. Holfeld, D. Wieruch, T. Wirth, L. Thiele, S. A. Ashraf, J. Huschke,
I. Aktas, and J. Ansari, “Wireless Communication for Factory Automa-
tion: an opportunity for LTE and 5G Systems,” IEEE Communications
Magazine, vol. 54, no. 6, pp. 36–43, 2016.

[7] V. Matiukas and D. Miniotas, “Point Cloud Merging for Complete
3D Surface Reconstruction,” Electronics And Electrical Engineering,
vol. 113, 09 2011.

[8] Y. He, B. Liang, J. Yang, S. Li, and J. He, “An Iterative Closest Points
Algorithm for Registration of 3D Laser Scanner Point Clouds with
Geometric Features,” Sensors, vol. 17, p. 1862, 08 2017.

[9] Y. Liu, “Automatic Registration of Overlapping 3D Point Clouds using
Closest Points,” Image and Vision Computing, vol. 24, 2006.

[10] A. Nuchter, K. Lingemann, and J. Hertzberg, “Cached k-d tree search
for icp algorithms,” 3DIM 2007 - Proceedings 6th International Con-
ference on 3-D Digital Imaging and Modeling, pp. 419–426, 08 2007.

[11] Z. Pusztai, I. Eichhardt, and L. Hajder, “Accurate Calibration of Multi-
LiDAR-Multi-Camera Systems,” Sensors, vol. 18, p. 2139, 07 2018.

[12] X. Gong, Y. Lin, and J. Liu, “3D LiDAR-Camera Extrinsic Calibration
Using an Arbitrary Trihedron,” Sensors (Basel, Switzerland), vol. 13,
pp. 1902–18, 02 2013.

[13] S. Shi, Z. Wang, J. Shi, X. Wang, and H. Li, “From Points to Parts:
3D Object Detection from Point Cloud with Part-aware and Part-
aggregation Network,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. PP, pp. 1–1, 02 2020.

[14] S. Rodriguez Florez, V. Fremont, and P. Bonnifait, “Extrinsic Cali-
bration Between a Multi-layer LiDAR and a Camera,” MFI 2008 -
Multisensor Fusion and Integration for Intelligent Systems, 2008.

[15] H. Alismail, D. Baker, and B. Browning, “Automatic Calibration of a
Range s Sensor and Camera System,” 3DIMPVT 2012 - 3D Imaging,
Modeling, Processing, Visualization and Transmission, 10 2012.

[16] A. Geiger, F. Moosmann, O. Car, and B. Schuster, “Automatic Camera
and Range Sensor Calibration using a Single Shot,” in 2012 IEEE
International Conference on Robotics and Automation, 2012.

[17] C. Zhang, J. Wang, J. Li, and M. Yan, “2D Map Building and Path
Planning Based on LiDAR,” in 2017 4th International Conference on
Information Science and Control Engineering (ICISCE), (Los Alamitos,
CA, USA), pp. 783–787, IEEE Computer Society, jul 2017.

[18] A. Mahmood and R. Bicker, “Path Planning, Motion Control and
Obstacle Detection of Indoor Mobile Robot,” 10 2016.

[19] N. Vandapel, J. Kuffner, and O. Amidi, “Planning 3-D Path Networks
in Unstructured Environments,” 05 2005.

[20] C. Lartigue, Y. Quinsat, C. Mehdi-Souzani, A. Guarato, and S. Tabibian,
“Voxel-based Path Planning for 3D Scanning of Mechanical Parts,”
Computer-Aided Design and Applications, vol. 11, 2013.

[21] Ouster Inc., “OS1 Mid-Range High-Resolution Imaging Lidar.”
https://data.ouster.io/downloads/OS1-lidar-sensor-datasheet.pdf.

[22] M. A. Fischler and R. C. Bolles, “Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography,” Commun. ACM, vol. 24, no. 6, 1981.

[23] H. Kam, S.-H. Lee, T. Park, and C.-H. Kim, “RViz: a toolkit for real
domain data visualization,” Telecommunication Systems, vol. 60, 2015.

