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Abstract—The mmWave communication up to 71 GHz is
already specified in 3rd generation partnership project (3GPP)
5G New Radio (NR), and communication in sub-THz bands
is being studied for 6G widely in the academia and industry.
Operation with very narrow beamwidths and much higher
bandwidths in contrast to Frequency Range 1 (sub-6 GHz) can
cater to the high data rate requirements at the expense of
extra signal processing burden to overcome the unfavourable
conditions such as high attenuation and scattering in the presence
of obstacles. Such severe signal power attenuation caused by
an obstacle may degrade the network performance due to link
failures occurring as a result of line-of-sight (LoS) to non-LoS
(NLoS) transitions. These limitations raise the necessity of a
sensing system to collect situational awareness data to assist the
wireless communication network. This work proposes a method
to improve the LoS detection and user localization accuracy using
multiple light detection and ranging (LiDAR) sensors co-located
in access points (APs). We also propose an approach to predict
the LoS transitions based on static LiDAR maps and the proposed
method detected the LoS transition 400ms before its occurrence.

Index Terms—LiDAR, 5G, 6G, vision aided communications,
mmWave, THz, LoS, NLoS.

I. INTRODUCTION

The emergence of bandwidth-hungry applications like vir-
tual reality, wearable technology, vehicular communication
created the platform for the beam-based wireless commu-
nication networks operating at Frequency Range 2 (24.25
GHz to 71 GHz) or sub-THz to be a prominent candidate
for future wireless networks. The blessing of extremely wide
bandwidths of such frequencies helps to achieve data rates up
to 20 Gbps [1]. Their short wavelengths significantly reduce
the form factor of the hardware, while narrow beams allow
exploiting the spatial diversity. Such benefits come at the
expense of limited cell coverage due to high signal attenuation.
Another main challenge for higher frequency communications
is its sensitivity to the presence of obstacles that cause signal
blockage between the transmitter (Tx) and the receiver (Rx). In
the presence of an obstacle, Tx-Rx beam pair link performance
significantly deteriorates, and there is a high possibility of a
link failure due to its high carrier frequency and lower diffrac-
tion properties . If a link fails due to a blockage, the wireless
network needs to find an unblocked path or scan for a new

beam pair link that corrects the beam misalignment . Thus,
the beam recovery process causes extra latency to recover the
beam pair and degrade the signal quality and reliability. If the
communication system has knowledge about the obstacles in
the proximity of a serving user, it can avoid the potential link
failures before they occur by performing predictive operations.
In addition, the accuracy of the user location information and
obstacle detection become paramount. These facts justify the
necessity of a complementary sensing system to assist the
traditional wireless networks to expand their capabilities to
meet the rising stringent requirements of the future wireless
networks.

Ongoing discussions and proposals in 3GPP, towards NR
Release-19 (5G-Advanced) reveal the interest in cooperative
communication and sensing to enhance communication-related
operations in future wireless communication networks. The
related discussions have started in the SA1 working group re-
sponsible for Service and System Aspects [2]. Sensing-assisted
communication is a key area where radio frequency (RF) or
non-RF sensor data is used to optimize communication-related
operations. The RF sensing has proven its capability on user
detection up to several tens of centimetres, even though the
ability to detect surrounding obstacles is uncertain . Moreover,
it consumes RF resources and introduces a burden on RF
interference mitigation which increase the implementation
complexity of the APs. On the contrary, non-RF sensors such
as cameras and LiDARs can provide accurate information
about the environment to the communication network with-
out interrupting network operations. The camera technology
introduces privacy concerns which restricts its installation
everywhere . Improved sensing accuracy, higher resolution
and the longer range give edge to the LiDAR sensor to
be the most promising candidate to enable the vision for
future wireless networks. LiDAR uses a laser, in a range and
energy that is not considered harmful to eyes, to measure
the distance to an object based on the time-of-flight. Such
measurements provide a detailed 3-dimensional (3D) point
cloud as output which can be introduced as a digital twin of the
physical environment. Furthermore, the network-based sensing
approach provides the global perception of the environment to
extract required information for the wireless networks, such as



the user and blockage positions, compared to the user-based
sensing. Utilizing the existing sensors in the infrastructure
or a separate sensor network will impose limitations on the
scalability of network-based sensing. Thus, the inclusion of
the sensor as a part of the AP simplifies the network and assist
in sharing the sensor data within the communication network.

Motivated by the emergence of sensing-assisted communi-
cation and the limitations faced by higher frequency commu-
nications, this work proposes a method to improve the LoS
detection accuracy using multiple LiDARs co-located with
APs. We further solve the static blockage prediction problem
by utilizing the aforementioned LoS-detection method and
using the static LiDAR maps captured by the LiDARs.

II. RELATED WORK

In our previous works, we have discussed the effectiveness
of utilizing infrastructure based elevated LiDARs to optimize
the performance of wireless networks while reducing the bur-
den on radio links [3]. Moreover, the fusion of multiple LiDAR
point clouds from different angles yields better accuracy on
measurements compared to a single LiDAR [4]. In a recent
work, we proposed a method to predict human blockages using
infrastructure-mounted LiDARs in indoor scenarios [5]. Hu-
man detection using LiDAR data has been a highly discussed
research topic in the last decade [6]. A deep learning-based
LoS detection and beam selection method has been proposed
in [7]. This work considers a single LiDAR located at the
base station, and they obtained an accuracy higher than 70%
for LoS detection. Apart from using LiDAR data, a novel
deep learning architecture for link blockage prediction using
beamforming vectors and RGB images has been proposed in
[8]. Furthermore, authors in [9] discuss about the importance
of infrastructure-mounted sensors to minimize overhead of
mmWave array configuration and future research directions.

III. PROPOSED SOLUTION

In this work, we consider an indoor hotspot scenario where
I APs serve J users. Each AP is equipped with a LiDAR
sensor to collect situational awareness data without utilizing
radio resources. A back-haul link connects the set of LiDAR-
integrated-APs (LiAPs) to a central location (CL) which is
responsible to perform the global tasks as shown in Fig. 1.

Fig. 1. The LiAP system

The installation of a LiDAR at the AP transforms the LoS
detection problem in wireless networks to a human detection
problem in the LiDAR point cloud. In other words, if the ith

LiAP detects a human, a LoS link exists between ith LiAP and
the corresponding user. We assume that any considered human
in the indoor premises is an active user from the wireless
network perspective, and LiAPs are placed such that a user is
ensured the LoS state with at least with one LiAP. If ith LiAP
fails to detect a user and other LiAPs report a user, a LoS
link does not exist between ith LiAP and the corresponding
user. Even though there are sophisticated LiDAR point-cloud
based human detection algorithms with higher accuracy, there
is still a possibility of misdetection due to body features
or postures of the user. The voxelization of high-resolution
point clouds to down-sample the resolution, and the imperfect
denoising capability of the algorithms contribute to this misde-
tection significantly. Similarly, the same reasons can increase
the probability of false detections. Therefore, we propose a
common agreement based user detection method (CAM) to
improve the user detection accuracy of the LiAP network
by using the information obtained from the neighbouring
LiAPs. This approach significantly improves the LoS detection
accuracy.

A. LoS detection with CAM

In an environment with multiple LiAPs, a user could be
visible to many LiAPs. In the initial user detection phase, each
LiAP performs the user detection using its voxelized LiDAR
point cloud. Let’s assume the probability of detecting jth user
from ith LiAP using its voxelized point cloud is pi,j . In case
of a user detection, the particular LiAP votes for a detection
and reports the location of the detected user to the CL. The
CAM running in CL utilizes multiple perceptions to improve
pi,j using voting mechanism. The method can be described as
follows:

• Based on the information received from LiAPs, CL
defines a ∈ (0, 1)I×J , where ai,j is a binary parameter
for detection of the jth user by the ith LiAP where it is 1
in case of detection and 0 otherwise. The location vector
L ∈ RJ×2 contains xy coordinates1 of the detected users
in the same order as in a. Then the CL transfers L back
to LiAPs.

• The ith LiAP validates the received L vector with the
locations obtained in the initial user detection phase.
The original point cloud prior to voxelization is used for
this validation process to improve the detection accuracy.
For example, a simple validation can be performed by
analysing the point density around the locations found in
L by fitting a bounding box. If the LiAP fails to detects a
user on the jth location Lj , it updates Lj to 0. Otherwise
the value in Lj is kept unchanged. The updated L is sent
back to the CL.

• The CL updates a with newly received L vectors and the
probability of false detections is minimized by imposing a
voting threshold (δ). Let the number of votes received for
the user j̄ be vj̄ =

∑I
i=1 ai,j̄ and if vj̄ < δ, the CL sets

ai,j̄ = 0,∀i to remove the false user detection j̄. Note that

1Average location has been considered if many LiAPs report the same user.



the δ should be a small value compared to the number of
LiAPs. Otherwise, this thresholding results in classifying
a correct user detection as a false detection, due to the
less number of votes from LiAPs. Hence, δ should be
determined according to I . Furthermore, the dimension
of a can be higher than J due to false detections in the
initial user detection phase. Finally, the CL informs the
updated a to LiAPs.

The solution obtained from CAM which is the updated a is
the LoS mapping between LiAPs and active users. If ai,j = 1,
there exists an LoS link between ith LiAP and jth user, 0
otherwise. This approach can be extended to predict the LoS
states or predict the variation of a which happens due to user
mobility.

B. LoS prediction

By having the information on obstacles that can cause a link
failure in future, proactive measures can be taken to improve
the performance of the communication network rather than
waiting for a link failure to take an action. Hence, this section
proposes a static LiDAR map based novel LoS prediction
method to recognize possible LoS transitions (LoS to NLoS
or NLoS to LoS) which may occur due to static obstacles
in the environment. In the previous work, we considered the
moving human blockages [5]. Thus, now we focus only on
the LoS transitions occurring due to static blockages present
in the environment. We preform the LoS prediction with a two-
step procedure. First, we identify potential boundaries which
can cause a Los transition (Transition boundaries) and then the
identifies boundaries are utilized for LoS transition prediction.

1) Transition boundary extraction: A 3D point cloud con-
tains the set of coordinates where LiDAR’s light rays met
the reflection surfaces. Any obstacle such as walls, tables,
chairs,.etc., which has a good reflectivity, can be sensed by Li-
DARs. Moreover, the LoS prediction followed by the obstacle
detection, using a point cloud is an exhaustive process. Hence,
we consider a LiDAR point cloud obtained by a LiAP in the
absence of moving entities as a LoS map of the corresponding
LiAP. The complexity of the LoS map can be reduced by
projecting the point cloud to its ground plane while preserving
the vital information in the LoS map. Even in the 2D LoS map,
a tall object can be distinguished since it shows a higher point
density along the boundaries of the obstacle and creates a hull
which is the NLoS region of the LoS map as shown in Fig. 2a.
Thus, LoS maps are composed of LoS zones and NLoS zones
while users switch the link status between LoS and NLoS by
crossing these transition boundaries.

Any NLoS region can be modelled as a polygon which is
represented by a set of vertices, and the sub-set of sides at
which a user change its LoS state is considered as the set of
transition boundaries corresponding to the considered NLoS
region. In this approach, we identify the possible LoS transi-
tion boundaries using the 2D projection of the LoS map. Fig. 2
shows an example scenario of the process. A simple algorithm
can be implemented in LiAP to explore the discontinuities
of the 2D projection, and these discontinuities create the

(a) 2D projection of the point cloud
to ground plane

(b) The set of points lie on transi-
tion boundaries

(c) Transition boundaries

Fig. 2. The transition boundary extraction process

transition boundaries. The algorithm finds the discontinuities
in the 2D projection of the static point cloud captured by
LiAPs based on the orientation of k-nearest neighbouring
points. For example, a highly concentrated set of points with
a linear spread reflects the existence of a wall which is not a
discontinuity. Hence, a wall is not a transition boundary. The
transition boundaries lie on the extracted discontinued points
as shown in Fig. 2b. These boundaries can be fitted with a line
segment using the sequential-RANSAC algorithm [10]. These
transition boundaries are marked with red lines in Fig. 2c.
Note that only a few transition boundaries have been marked
for clarity.

Let us define the set of LoS transition boundaries de-
tected by ith LiAP as {Bi,1, Bi,2, .., Bi,K} where kth element
Bi,k ∈ R2×2 represents the kth LoS transition boundary in
terms of two pairs of xy coordinates which represents a line-
segment. The value of K will differ from one LiAP to another
depending on its placement.

2) Transition boundary-based LoS prediction: Let us con-
sider a single user located at the Lj(t) location in the tth time.
The CL will update Lj(t) in LiAPs periodically by executing
CAM. The basis of LoS prediction is formed on, the CL
identifying whether the user is moving towards a transition
boundary of a certain LiAP or not. Based on the transition
boundaries extracted by ith LiAP and Lj(t), we define the
following parameters.

• The time-varying shortest distance between the current
user location and kth LoS transition boundary is denoted
by di,k(t) is a function of Bi,k and Lj(t). The shortest
distance to a line segment from a point can be calculated
using simple geometry.

• The minimum distance required for a LoS tran-
sition of a user is Di

min(t), where Di
min(t) =

min{di,1(t), di,2(t), .., di,K(t)}.
A simple approach would be to predict LoS transitions by



imposing a physical distance-based threshold (γ) on Di
min(t).

If Di
min(t) < γ, there is a high probability for a LoS transition

in the near future. Otherwise, the user will potentially remain
in its current LoS state for a longer duration. Fig.3 shows the
aforementioned parameters and the LoS to NLoS transition
zones are marked around the transition boundaries based on γ
in green dashed lines. Similarly, the NLoS to LoS transition
zone can be defined. Hence, we use the term transition zone
to encompass both ideas.

Fig. 3. Parameters

The introduction of a physical boundary to mark transition
zones is not effective due to practical reasons. If the user
moves parallel to a transition boundary within the transition
zone still LiAP will report a possible LoS transition to the
CL. Even though, these predictive measures avoid the risk of a
possible link failure, such false reports reduce the performance
of the wireless network. Hence, we should focus more on
Di

min(t) when it is closer to 0, to improve the LoS prediction
accuracy. To improve the sensitivity of Di

min(t) at its lower
range, we consider the log-scale of Di

min(t). Moreover, we
capture the converging rate of the user and the nearest transi-
tion boundary by the rate of change of Di

min(t) in log-scale
as

∇i(t) = log(Di
min(t))− log(Di

min(t− 1)). (1)

Furthermore, if ∇i(t) < 0, the user is moving towards the
nearest transition boundary and if user moves away from
the nearest transition boundary, ∇i(t) > 0. By imposing a
threshold (α) on ∇i(t), ith LiAP reports a probable LoS
transition to the CL, if ∇i(t) < α. Note that the CL already
has the updated LoS mapping of time-varying a(t). Hence, the
CL is aware of the current and the next state of the radio links
to make a proactive decisions such as triggering a handover
to another LiAP where Dī

min(t) is high.

IV. RESULTS AND DISCUSSION

In this work, we use the Blensor 3D animation platform
to simulate and evaluate the proposed methods. The Blensor
is an open-source 3D rendering tool that can simulate depth
sensors such as LiDARs [11]. We consider a layout of an
open office proposed by 3GPP [12] as shown in Fig. 1. Each
LiAP is equipped with a rotating LiDAR: Velodyne HDL-32E
LiDAR sensor, and it is placed 3 m above the ground plane.

The LiDAR is set to have a scanning frequency of 10 Hz
which corresponds to a 100 ms sampling period. The standard
deviation of the LiDAR noise is 0.08 dB. We utilize a simple
human detection algorithm based on the iterative point cloud
clustering method which serves as the foundation to evaluate
the proposed CAM and LoS prediction methods [13].

A. LoS detection with CAM

To evaluate the proposed CAM, we modify the floor by
adding a chair, tables and walls. A set of static users with
different properties are placed on the floor area as depicted in
Fig. 4. We simulate six LiAPs for this evaluation. Before eval-
uating CAM, we present the performance of the implemented
human detection algorithm as a benchmark.

Fig. 4. An open office with 6 LiDARs collocated with APs

The users have different postures and body sizes. Further-
more, three users form a cluster (with 1 m user separation),
and one user is placed near the obstacles. In the setup, the
user 3 is not visible to LiAP 2, but all the other users are
visible to the remaining LiAPs. In the simulations, each LiAP
performs the initial user detection independently and Table I
summarizes the observed results for each user after the initial
detection phase and the corresponding maximum localization
errors from the reported locations.

Table I: Initial user detections

j Remarks i=1 i=2 i=3 i=4 i=5 i=6 Maximum localization error
1 Surrounded by LiAPs 1 1 1 1 1 1 0.13 m
2 Surrounded by obstacles 1 1 1 0 0 0 0.14 m
3 Short (120 cm) & non LoS 1 0 1 1 0 1 0.15 m
4 In cluster 1 0 0 0 1 1 1 0.10 m
5 In cluster 1 0 1 1 1 1 1 1.0 m
6 In cluster 1 1 1 1 1 1 1 0.13 m
7 Sitting 0 0 0 1 0 0 0.12 m

Each detected user is assigned a unique identification by
the CL. The remarks column describes the special property of
the corresponding user. The localization error is the distance
between exact centroid of the user and the detected centroid of
the user. Maximum localization error is taken over the reported
locations from the set of LiAPs for each user. The user 1 is an
isolated user surrounded by LiAPs, and all LiAPs detect the
user with a maximum localization error of 13 cm. The users
in a cluster can be detected separately based on the distance
between LiAPs and the user cluster (LiAP 4, 5 and 6 are very
close to cluster 1). The posture of the user has a significant



effect on the detection. If the user stands near an obstacle or sit,
the probability of misdetection is high due to the complexity of
the cluster. The height of the user is not critical, yet detectable
height reduces as the number of surrounding obstacles and
their height increase. From the results obtained by the initial
detection algorithm, we observe a maximum user localization
error of 1 m when the user is in a cluster and a misdetection
probability of 0.31.

Now we execute the CAM in CL on top of the initial user
detection algorithm to evaluate its performance and set δ = 2.
Table II shows the final results obtained by the CL and the
localization error of the averaged user location obtained with
the CAM. The LiAP 2 fails to detect the user 3 as expected,
and the visibility of the remaining users except the user 7 was
confirmed by the proposed CAM. The reason for misdetection
of user 7 who is in a sitting posture is the elimination due
to the lack of sufficient votes from other LiAPs. Clearly, the
CAM has a significant impact on the localization error which
improves the localization error from 0.18 m to 0.13 m. This
approach yields a misdetection probability of 0.14 which is a
significant improvement compared to the initial user detection
performance.

Table II: User detections enhanced by CAM

j Remarks i=1 i=2 i=3 i=4 i=5 i=6 Localization error
1 Surrounded by LiDARs 1 1 1 1 1 1 0.05 m
2 Surrounded by obstacles 1 1 1 1 1 1 0.10 m
3 Short (120 cm) & non LoS 1 0 1 1 1 1 0.12 m
4 In cluster 1 1 1 1 1 1 1 0.03 m
5 In cluster 1 1 1 1 1 1 1 0.41 m
6 In cluster 1 1 1 1 1 1 1 0.12 m
7 Sitting 0 0 0 0 0 0 0.12 m

B. LoS prediction

To evaluate the proposed LoS prediction method, we modify
the office floor layout by adding more walls. It increases the
probability of LoS transitions as a result of user mobility.
Furthermore, we created a 2D map of the corresponding 3D
environment and generated a path for a single user moving
inside the area . For the simulations, we captured the user
locations over 280 seconds2, which corresponds to 2800 LiAP
scans. For this setup, we created a dataset by activating LiAP
1, LiAP 2 and LiAP 5. Hence, the dataset is composed of
8400 LiDAR scans in total. We observed 24 LoS transitions
made by the user with all 3 LiAPs activated in the dataset. We
present the results of the proposed LoS prediction method in
Fig. 5. The variation of Di

min(t) for three LiAPs (i = 1, 2, 5)
is shown in Fig. 5a. It can be observed that the linear scale
for Di

min(t) is inefficient as the transitions take place when
Di

min(t) is very small. The variations of Di
min(t) in log-scale

shows its sensitivity for lower values of Di
min(t) and possible

LoS transitions with vertical asymptotes as depicted in Fig.

2For this evaluation, we consider a path which is not closer to the obstacles
to guarantee 100% user detection accuracy and a minimum localization error
(Table I).

5b. Furthermore, it shows the variation of ∇i(t) for LiAP 1
compared to log(D1

min(t)).
By setting the α = −0.2, the approach predicted all the

transitions that occured in the dataset. The distribution of the
time taken for the actual transition after the prediction is shown
in Fig.6. When we set α = −0.2 to predict the transition,
actual transition happened after 4 frames on average. Hence,
the system has predicted the transitions 400 ms (on average)
before the actual transition since the algorithm execution
frequency is 10 Hz synchronous with the sensor rate. If we
increase α, we can predict the transition a few more frames
ahead at the expense of increased false transition predictions.

C. Discussion

The integration of a LiDAR sensor to an AP introduces
many added advantages for the wireless network rather than
utilizing the existing sensor devices in the infrastructure.
Mainly, the existing infrastructure mounted sensors require
customized configurations, an additional processing stage and
a separate backhaul connection to deliver the intended infor-
mation for the wireless network. Even though it is a cost-
effective solution, it has scalability limitations, and coverage
will be questionable. Nevertheless, AP equipped with a LiDAR
as a single module can solve these limitations with cooperation
among both entities. In contrast to a traditional AP, LiAP
requires more capacity to process LiDAR point clouds lo-
cally. Alternatively, a centralized approach facilitates efficient
point cloud processing at the CL which has more resources.
Furthermore, fusion of the point clouds at the CL, yields a
better object detection accuracy. Such an approach reduces the
processing requirement at the LiAP. However, it increases the
backhaul capacity requirement. Furthermore, the cost overhead
of the LiAP will depend on the integrated LiDAR sensor while
the power requirement is higher compared to a traditional AP.

The proposed LoS prediction method needs careful place-
ment of the LiAPs such that the network completely covers
the floor area. Furthermore, the infrequent LoS map updates
should be triggered periodically or once a significant change in
the environment occur. The circular void space (Fig. 3) below
the rotating LiDAR sensor which is a blind spot resulting from
its elevated placement can be considered as a highly probable
LoS area for the LiAP. Moreover, here we discard the elevation
of the UE when characterizing the transition boundaries to
ensure the risk-free prediction. The LiAP and the proposed
methods have the potential to address many challenges faced
by wireless networks such as initial access and reduction of
beam management overheads.

V. CONCLUSION

In this paper, we introduced APs co-located with a LiDAR
sensors to solve the LoS detection and prediction problem
in a mmWave communication system with static obstacles.
We improve the LoS detection accuracy using a coordinated
voting approach which resulted in a reduction of misdetection
probability from 31% to 14% while improving the localization
error by 5 cm. Furthermore, we address the LoS prediction
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problem using a static LiDAR map. The method treated the
static LiDAR map as the LoS map and extracted the proba-
ble LoS transition boundaries. The proposed LoS prediction
method predicted the LoS transitions 400 ms (on average)
before their occurrence, which is sufficient for the wireless
communication network to take proactive measures before a
possible link failure.
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