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Abstract—This paper tackles the problem of downlink data
transmission in massive multiple-input multiple-output (MIMO)
systems where user equipments (UEs) exhibit high spatial
correlation and channel estimation is limited by strong pilot
contamination. Signal subspace separation among UEs is, in fact,
rarely realized in practice and is generally beyond the control of
the network designer (as it is dictated by the physical scattering
environment). In this context, we propose a novel statistical
beamforming technique, referred to as MIMO covariance shaping,
that exploits multiple antennas at the UEs and leverages the
realistic non-Kronecker structure of massive MIMO channels to
target a suitable shaping of the channel statistics performed at
the UE-side. To optimize the covariance shaping strategies, we
propose a low-complexity block coordinate descent algorithm that
is proved to converge to a limit point of the original nonconvex
problem. For the two-UE case, this is shown to converge to
a stationary point of the original problem. Numerical results
illustrate the sum-rate performance gains of the proposed method
with respect to spatial multiplexing in scenarios where the spatial
selectivity of the base station is not sufficient to separate closely
spaced UEs.

Index terms—Covariance shaping, massive MIMO, multi-user
MIMO, pilot contamination, statistical beamforming.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is a multi-
antenna technology that has great potential to boost the
spectral efficiency (SE) of cellular networks by means of
highly directional beamforming and spatial multiplexing of
many user equipments (UEs) in the same time-frequency
resources. It thus plays a pivotal role in current 5G New Radio
(NR) implementations [3]–[5] and is expected to maintain
this prominence in future wireless generations [6]–[10]. The
benefits of massive MIMO can be ascribed to the large number
of antennas available at the base station (BS), which we denote
by M . In this context, it is shown in [11] that the achievable
SE of downlink/uplink massive MIMO systems is unbounded
as M grows large and when minimum mean squared error
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(MMSE) precoding/combining is adopted at the BS, which can
asymptotically remove any interference. However, in presence
of a large number of UEs and finite BS antennas, the afore-
mentioned approach might still be limited by interference and
must rely on accurate instantaneous channel state information
(CSI). In crowded scenarios, such as outdoor events, transport
hubs, and stadiums, the channels of closely spaced UEs exhibit
high spatial correlation, which hinders the capability of the BS
to separate such UEs during both the channel estimation phase
and the data transmission phase. Moreover, when the channel
coherence time is limited, non-orthogonal pilots might be used
across the UEs during the channel estimation phase, which
results in strong pilot contamination [12], [13].

To overcome these issues and facilitate the operations in
the massive MIMO regime, several works have proposed to
leverage statistical CSI [14]–[25]. This consists mainly in the
channel covariance matrix of each UE, which is essentially
dictated by the angle spread spanned by the multipath prop-
agation of the signals impinging on the antenna array. This
angle spread is often bounded due to the high spatial resolution
of the massive array compared with the limited scattering. As
a result, the channel covariance matrices in massive MIMO
tend to be low-rank and dominated by few major propagation
directions [11], [17], [18]. This particular property can be
exploited for several applications such as reducing the feed-
back overhead in the channel estimation phase [14]–[16] and
mitigating the interference in the downlink data transmission
phase when the UEs exhibit non-overlapping or orthogonal
signal subspaces [17], [18]. For example, statistical CSI can
be used to precode signals such that their chosen propagation
paths do not interfere in average [19], [20]. In this regard, a
robust precoding/decoding design based on the average mean
squared error (MSE) matrix is derived in [19] under different
CSI conditions, whereas [20] provides a lower bound on the
ergodic sum rate for the two-UE setting when the UEs are
equipped with a single antenna.

There is also a large body of literature focusing on the
hybrid precoding problem, where the beamforming applied
at the BS is factorized into an inner and an outer precoding
matrix [14]–[16], [21], [22]. Here, the former is based on
instantaneous CSI while the latter depends only on the second-
order channel statistics. This results in reduced pilot length
required for the instantaneous effective channel estimation and
lower computational complexity associated with the inner pre-
coding design. Moreover, in the context of frequency-division
duplex (FDD) systems, such a hybrid precoding method can
be used to reduce the size of the resulting effective channels
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by exploiting the near-orthogonality of the angle spreads of
different UE groups [14]. In [15], this approach is shown to
incur a vanishing loss compared with the case of full CSI
when the number of BS antennas grows large, while the same
result is obtained in [16] for the case of finite number of
BS antennas and suitable UE scheduling. In time-division
duplex (TDD) systems, existing works have pointed out how
the exploitation of statistical CSI enables efficient pilot reuse
across the UEs [23]–[25]. In [23], pilot reuse for massive
MIMO transmissions over spatially correlated Rayleigh fading
channels is proposed when the angle spreads of the UEs with
the same pilots are non-overlapping. In [24], the second-order
channel statistics are used to precode the pilots, thus reducing
the variance of the channel estimation error by a factor that is
proportional to the number of UE antennas. A robust channel
estimation method dealing with scenarios in which the angle
spreads of the desired and interfering channels are overlapping
is proposed in [25] and exploits channel separability in the
power domain [26].

Most of the above works rely on specific structures of the
channel covariance matrices of the UEs in terms of rank and
degree of separation among signal subspaces. Such properties
are determined by the locations of the UEs combined with the
surrounding scattering environments, where both these factors
are generally beyond the control of the network designer.
Indeed, in many practical scenarios, the UEs exhibit high
spatial correlation, e.g., when they are not sufficiently far apart.
Hence, the condition of non-overlapping or orthogonal signal
subspaces is rarely satisfied in practice [11]. Note that, in
this setting, the number of BS antennas needed to effectively
separate interfering UEs with MMSE precoding/combining
increases with their spatial correlation, i.e., as the UEs get
closer to each other, and may become impractical in crowded
scenarios. Moreover, existing works are often based on the
assumption of Kronecker channel model owing to its simple
analytical formulation. However, such a model has been shown
to be an over-simplification of the true nature of MIMO
channels [27].1

A. Contributions

Building on the fact that most future UEs are envisioned
to be equipped with a small-to-moderate number of antennas,
this paper proposes a novel statistical beamforming technique
at the UEs-side, referred to as MIMO covariance shaping.2

While existing methods assume statistical orthogonality among
the UEs as a property given by the physical scattering environ-
ment and the Kronecker channel model due to its analytical
tractability, MIMO covariance shaping aims at modifying the
channel statistics of the UEs with highly overlapping channel
covariance matrices in order to enforce signal subspace sep-
aration in scenarios where the spatial selectivity of the BS is
not sufficient to separate such UEs. The proposed approach
consists in preemptively applying a statistical beamforming

1The Kronecker channel model is justified in scenarios where both trans-
mitter and receiver are surrounded by clusters of scatterers that are very far
apart, which is hardly realized in practice [28].

2Note that the term “covariance shaping” has been used in the past in
entirely different contexts, mainly estimation theory (see, e.g., [29]).

at the UE-side during both the uplink pilot-aided channel
estimation phase and the downlink data transmission phase,
and relies uniquely on statistical CSI. In this context, each
UE employs its antennas to excite only a subset of all the
possible propagation directions towards the BS such that the
spatial correlation among the interfering UEs is minimized
while preserving enough useful power for effective data trans-
mission. Hence, MIMO covariance shaping is suitable for
both pilot decontamination in TDD systems and statistical pre-
coding/combining. Remarkably, the proposed method exploits
the realistic non-Kronecker channel structure, which allows
to suitably alter the channel statistics perceived at the BS by
designing the transceiver at the UE-side. Therefore, it has the
unique advantage of turning the generally inconvenient non-
Kronecker nature of massive MIMO channels into a benefit.
Numerical results show the sum-rate performance gains with
respect to a reference scheme employing multiple antennas
at the UE for spatial multiplexing in scenarios where the
spatial selectivity of the BS is not sufficient to separate UEs
with highly overlapping channel covariance matrices and the
channel estimation is limited by strong pilot contamination.

The MIMO covariance shaping framework was initially
proposed in our prior works [1], [2] and recently used for
the minimization of the outage probability in [30]. This work
extends the metric proposed in [1] to all pairs of interfering
UEs to design a statistical receive beamforming at the UE
along with a statistical precoding at the BS. Differently from
[30], we argue that MIMO covariance shaping must be adopted
for both pilot decontamination during the uplink pilot-aided
channel estimation phase and combining during the downlink
data transmission phase. By doing so, the BS is able to acquire
accurate instantaneous estimates of the effective channels,
which are then used for efficient downlink precoding and result
in a great enhancement of the network performance.

The contributions of this paper are summarized as follows.
• We present the novel concept of MIMO covariance shap-

ing, which aims at designing a suitable shaping of the
channel covariance matrices of the UEs to enforce a full
or partial separation of their signal subspaces that would
be otherwise highly overlapping.

• We point out that the exploitation of the non-Kronecker
nature of massive MIMO channels is crucial to suitably
alter the channel statistics perceived at the BS by acting
at the UE-side.

• We derive a tractable expression of the ergodic achiev-
able sum rate under MIMO covariance shaping with the
objective of characterizing the impact of the proposed
framework on the system performance.

• We optimize the covariance shaping strategies by min-
imizing the variance of the inter-UE interference (as a
metric to measure the spatial correlation) among the in-
terfering UEs. To this end, we propose a low-complexity
block coordinate descent algorithm that is proved to
converge to a limit point of the original nonconvex
problem. For the two-UE case, this is shown to converge
to a stationary point of the original problem.

• We provide numerical results characterizing several sce-
narios where MIMO covariance shaping outperforms
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spatial multiplexing. In particular, a superior sum-rate
performance is achieved when the spatial selectivity of
the BS is not sufficient to separate UEs exhibiting high
spatial correlation and the channel estimation is limited
by strong pilot contamination.

Outline. The rest of the paper is structured as follows.
Section II introduces the system model for a general multi-
UE MIMO downlink system. Section III presents the concept
of MIMO covariance shaping. Section IV proposes efficient
methods to optimize the covariance shaping vectors. Section V
presents numerical results to evaluate the performance of the
proposed framework. Finally, Section VI concludes the paper.

Notation. Lowercase and uppercase boldface letters denote
vectors and matrices, respectively, whereas (·)T, (·)H, and
(·)∗ are the transpose, Hermitian transpose, and conjugate
operators, respectively. ‖ · ‖ and ‖ · ‖F represent the Euclidean
norm for vectors and the Frobenius norm for matrices, respec-
tively, whereas E[·] and V[·] are the expectation and variance
operators, respectively. IA denotes the A-dimensional identity
matrix and 0 represents the zero vector or matrix with proper
dimension. tr(·) and vec(·) are the trace and vectorization
operators, respectively. (amn)Mm,n=1 denotes the matrix of size
M ×M whose (m,n)th element is given by amn, whereas
[a1, . . . , aA] represents horizontal concatenation. We use ⊗
to denote the Kronecker product and umin[A] to denote
the eigenvector corresponding to the minimum eigenvalue of
matrix A, with

∥∥umin(A)
∥∥ = 1. 1A denotes the indicator

function, which is equal to 1 if condition A is satisfied and to
0 otherwise, and d·e is the ceiling operator. Lastly, CN (0,A)
is the circularly symmetric complex Gaussian distribution with
zero mean and covariance matrix A.

II. SYSTEM MODEL

In this section, we introduce the channel model for a general
multi-UE MIMO downlink system. Then, we describe the
uplink pilot-aided channel estimation assuming a TDD setting
and channel reciprocity between the uplink and the downlink.
Finally, we discuss the system model for the downlink data
transmission.

A. Channel Model
Consider a multi-UE MIMO system where a BS equipped

with M antennas serves K UEs with N antennas each in the
downlink. Let Hk , [hk,1, . . . ,hk,M ] = [gT

k,1, . . . ,g
T
k,N ]T ∈

CN×M denote the downlink channel matrix of UE k, where
hk,m ∈ CN×1 and gk,n ∈ C1×M are the channel vectors
between the mth BS antenna and UE k and between the
BS and the nth antenna of UE k, respectively. We assume
a correlated Rayleigh fading channel model where the entries
of Hk satisfy vec(Hk) ∼ CN (0,Σk) [31, Ch. 3]. Here, the
channel covariance matrix Σk ∈ CNM×NM has the following
general structure:

Σk ,


Σk,11 Σk,12 . . . Σk,1M

ΣH
k,12 Σk,22

...
...

. . .
ΣH
k,1M . . . Σk,MM

 (1)

where each block Σk,mn , E[hk,mhH
k,n] ∈ CN×N represents

the cross-covariance matrix between the mth and nth columns
of Hk. Lastly, we define the covariance matrix seen at UE k as
Rk , E[HkH

H
k ] ∈ CN×N and the covariance matrix relative

to UE k seen at the BS as Tk , E[HH
k Hk] ∈ CM×M , respec-

tively. Observe that, in the case of downlink data transmission,
Rk and Tk represent the receive and transmit covariance
matrices, respectively.

B. Uplink Pilot-Aided Channel Estimation

Assuming a TDD setting and channel reciprocity between
the uplink and the downlink (see, e.g., [32, Ch. 1.3.5]), the
channel matrices {Hk}Kk=1 are estimated at the BS using
antenna-specific uplink pilots, such that N pilot vectors per
UE are required. Let Sp , {k : UE k has pilot Pp} be
the set of UEs sharing the same pilot matrix Pp ∈ CN×τ ,
with p = 1, . . . , P . Here, P < K denotes the number of
orthogonal pilot matrices and τ represents the pilot length.
The orthogonal pilot matrices satisfy {PpP

H
p = τ

N IN}Pp=1,
i.e., N orthogonal pilot vectors are assigned to each UE, and
{PpP

H
q = 0}p 6=q. Note that these conditions imply τ ≥ PN .

Furthermore, Y ∈ CM×τ denotes the receive signal at the BS
during the uplink pilot-aided channel estimation phase, which
is given by

Y ,
P∑
p=1

∑
k∈Sp

√
ρUEH

H
k Pp + Z (2)

where ρUE is the transmit power at the UEs and Z ∈ CM×τ
is the noise term at the BS with elements independently
distributed as CN (0, σ2

BS). Let Φk,nn , E[gT
k,ng∗k,n] ∈ CM×M

denote the covariance matrix of gk,n. Then, the MMSE
estimate of gk,n, with k ∈ Sp, is given by (see, e.g., [32,
Ch. 3.2])

ĝH
k,n ,

N

τ
√
ρUE

Φk,nnQ−1k,nnYPH
p en ∈ CM×1 (3)

where en ∈ RN×1 is the nth column of IN , Qk,nn ,(
Φk,nn +

∑
j∈Sp\{k}Φj,nn + N

τ%UE
IM
)
∈ CM×M is the

normalized covariance matrix of the receive signal after
correlation with PH

p en, and %UE , ρUE
σ2

BS
. Note that (3) can

be seen as a superposition of channels estimated using the
same pilot PH

p en, which cannot be distinguished by the BS:
this phenomenon is referred to as pilot contamination [12].
Finally, the MMSE estimate of Hk is obtained as Ĥk ,
[ĝT
k,1, . . . , ĝ

T
k,N ]T ∈ CN×M .

C. Downlink Data Transmission

In the following, we focus on the downlink data transmis-
sion and assume that the BS transmits Lk ≤ N independent
symbols to UE k. We denote the transmit symbol vector for
UE k by sk ∈ CLk×1, with E[sks

H
k ] = ILk , and introduce

the multi-UE transmit symbol vector s , [sT1 , . . . , s
T
K ]T ∈

CL×1, with L ,
∑K
k=1 Lk. Before the transmission, the

BS precodes s using the multi-UE precoding matrix W ,
[W1, . . . ,WK ] ∈ CM×L, where Wk , [wk,1, . . . ,wk,Lk ] ∈
CM×Lk is the precoding matrix corresponding to sk and W
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satisfies the power constrain ‖W‖2F = 1. The receive signal
at UE k is thus given by

yk ,
√
ρBSHkWksk +

√
ρBS

∑
j 6=k

HkWjsj + zk ∈ CN×1

(4)

where ρBS is the transmit power at the BS and zk ∼
CN (0, σ2

UEIN ) is the noise term at the UEs. Finally, UE k
decodes sk as ŝk , VH

k yk ∈ CLk×1, where Vk ,
[vk,1, . . . ,vk,Lk ] ∈ CN×Lk is the corresponding combining
matrix. Assuming perfect CSI at the UEs, the resulting sum
rate is given by

R,
K∑
k=1

Lk∑
`=1

log2

(
1+

|vH
k,`Hkwk,`|2∑

(j,s)6=(k,`)|vH
k,`Hkwj,s|2+ 1

%BS
‖vk,`‖2

)
(5)

with %BS ,
ρBS
σ2

UE
.

III. COVARIANCE SHAPING AT THE UE-SIDE

Although MMSE precoding/combining can asymptotically
remove any interference as M grows large [11], this no
longer holds in the presence of a large number of UEs and
finite BS antennas. In particular, the number of BS antennas
needed to effectively separate interfering UEs with MMSE
precoding/combining increases with their spatial correlation,
i.e., as the UEs get closer to each other, and may become
impractical in crowded scenarios. In this setting, the BS
can spatially separate signals corresponding to different UEs
and mitigate or eliminate pilot contamination if their chan-
nel covariance matrices lie on orthogonal supports, i.e., if
ΣkΣj = 0 for a given pair of UEs k and j (see, e.g.,
[11]). However, the degree of statistical orthogonality among
the UEs is determined by their locations combined with the
surrounding scattering environments and both these factors are
generally beyond the control of network designers. Hence,
signal subspace separation among the UEs rarely occurs in
practice.

In this context, we propose a novel method relying uniquely
on statistical CSI and referred to as MIMO covariance shaping
(or simply covariance shaping), which is applied at the UE-
side to enforce the aforementioned signal subspace separation
in scenarios where the spatial selectivity of the BS is not
sufficient to separate the UEs. While covariance shaping is
conceived in such a way that it is agnostic to the operating
frequency, we envision its application especially in sub-6 GHz
frequency bands, where the availability of BS antennas may
be limited and further exacerbates the lack of sufficient spatial
selectivity. According to covariance shaping, the UEs preemp-
tively apply a statistical beamforming vector, different for each
UE, that aims at spatially separating their transmissions, thus
drastically reducing both pilot contamination and interference.
Here, the original MIMO channel of each UE is transformed
into an effective multiple-input single-output (MISO) channel
by combining the transmit/receive signal with the correspond-
ing statistical beamforming vector. To this end, the knowledge
of the channel covariance matrices of the UEs is required.
Although the time scale at which such information must be

acquired and used to compute the covariance shaping vectors
increases with the mobility of the UEs (or, more generally, as
the channel coherence time reduces), this still happens much
less frequently than the instantaneous uplink pilot-aided chan-
nel estimation. Remarkably, the proposed method exploits the
realistic non-Kronecker structure of massive MIMO channels
that allows to suitably alter the channel statistics perceived
at the BS by acting at the UE-side, thus turning a generally
inconvenient model into a benefit.

Let vk ∈ CN×1 denote the statistical beamforming vector
preemptively applied at UE k: in the rest of the paper,
we refer to vk as covariance shaping vector.3 Hence, the
original MIMO channel Hk between the BS and each UE k is
transformed into the effective MISO channel ḡk , vH

k Hk ∈
C1×M . In this setting, it follows that ḡk ∼ CN (0, Φ̄k),
where Φ̄k ∈ CM×M is the effective channel covariance matrix
defined as

Φ̄k , E[ḡT
k ḡ∗k] (6)

=
(
(IM ⊗ vH

k )Σk(IM ⊗ vk)
)T

(7)

with Σk introduced in (1) and where E[‖ḡk‖2] = tr(Φ̄k).
In the rest of this section, we describe how the two phases
of uplink pilot-aided channel estimation and downlink data
transmission are modified under covariance shaping and we
provide a tractable expression of the resulting ergodic achiev-
able sum rate. The optimization of the covariance shaping
vectors is discussed in Section IV. For ease of exposition,
we focus on the case where covariance shaping is applied to
all the UEs in the systems. Nonetheless, the proposed method
may be applied to one or more subsets of closely spaced UEs,
e.g., those who cannot be effectively separated with MMSE
precoding/combining. In this context, UEs adopting covariance
shaping and others employing the multiple antennas for spatial
multiplexing can be served simultaneously by the BS in a
transparent manner.

A. Uplink Pilot-Aided Channel Estimation
To estimate the effective channels {ḡk}Kk=1 resulting from

covariance shaping, the BS assigns the same pilot vector pp ∈
C1×τ to all UEs k ∈ Sp, with {‖pp‖2 = τ}Pp=1 and {pppH

q =
0}p 6=q . The receive signal at the BS during the uplink pilot-
aided channel estimation phase, which we denote by Ȳ ∈
CM×τ , is given by (cf. (2))

Ȳ ,
P∑
p=1

∑
k∈Sp

√
ρUEḡ

H
k pp + Z. (8)

Then, the MMSE estimate of ḡk, with k ∈ Sp, is given by
(cf. (3))

ˆ̄gH
k ,

1

τ
√
ρUE

Φ̄kQ
−1
k ȲpH

p ∈ CM×1 (9)

where Qk , Φ̄k +
∑
j∈Sp\{k} Φ̄j + 1

τ%UE
IM ∈ CM×M is

the normalized covariance matrix of the receive signal after

3Note that the UEs can be configured for transmission with covariance
shaping by the BS in the same way as for codebook-based or non-codebook-
based transmission in the current 5G NR implementations (see, e.g., [33,
Ch. 11.3] for more details).
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γk =
tr(Φ̄kQ

−1
k Φ̄k)2∑K

j=1 tr(Φ̄kΦ̄jQ
−1
j Φ̄j) +

∑
j∈Sp\{k} tr(Φ̄kQ

−1
j Φ̄j)2 + 1

%BS
‖vk‖2

∑K
j=1 tr(Φ̄j)

(16)

correlation with pH
p . Note that the estimation of the effective

channels only requires one pilot vector per UE. Hence, the
application of covariance shaping can potentially reduce the
pilot length with respect to the estimation of the channel
matrices {Hk}Kk=1 described in Section II-B, which requires
N pilot vectors per UE.

B. Downlink Data Transmission
Focusing on the downlink data transmission, the BS now

transmits only one symbol sk ∈ C to each UE k, i.e., {Lk =
1}Kk=1. Hence, we have s = [s1, . . . , sK ]T ∈ CK×1 and the
multi-UE precoding matrix becomes W = [w1, . . . ,wK ] ∈
CM×K , where wk ∈ CM×1 is the precoding vector corre-
sponding to sk. The receive signal at UE k is thus given by
(cf. (4))

ȳk ,
√
ρBSḡkwksk +

√
ρBS

∑
j 6=k

ḡkwjsj + vH
k zk ∈ C (10)

and, assuming perfect CSI at the UEs, the resulting sum rate
is given by (cf. (5))

R̄ ,
K∑
k=1

log2

(
1 +

|ḡkwk|2∑
j 6=k |ḡkwj |2 + 1

%BS
‖vk‖2

)
. (11)

C. Ergodic Achievable Sum Rate
We now analyze the sum rate as a function of the covariance

shaping vectors with the objective of characterizing the impact
of the proposed framework on the system performance. In
particular, we derive a tractable expression of the ergodic
achievable sum rate by assuming that each UE k does not
know the effective scalar channel ḡkwk = vH

k Hkwk in-
stantaneously but only its expected value. Building on [32,
Thm. 4.6], we can express the receive signal in (10) as

ȳk =
√
ρBSE[ḡkwk]sk + z′k (12)

where the effective noise term z′k ,
√
ρBS

(
ḡkwk −

E[ḡkwk]
)
sk +

√
ρBS

∑
j 6=k ḡkwjsj + vH

k zk accounts for the
lack of instantaneous CSI in addition to the interference and
the noise at UE k. A lower bound on the signal-to-interference-
plus-noise ratio (SINR) achievable by UE k can be obtained
by treating z′k as Gaussian noise, which yields the effective
SINR

γk ,

∣∣E[ḡkwk]
∣∣2

V[ḡkwk] +
∑
j 6=k E

[
|ḡkwj |2

]
+ 1

%BS
‖vk‖2

. (13)

The expression in (13) can be further simplified by consider-
ing the case where the BS adopts maximum ratio transmission
(MRT) precoding. In this setting, the multi-UE precoding
matrix can be written as

W =
ˆ̄HH√

E[‖H̄‖2F]
(14)

where H̄, [ḡT
1 , . . . , ḡ

T
K ]T∈CK×M and ˆ̄H, [ˆ̄gT

1 , . . . , ˆ̄g
T
K ]T∈

CK×M contain the effective channels and their MMSE esti-
mates defined in (9), respectively. Hence, when MRT precod-
ing is adopted at the BS, the effective SINR of UE k in (13),
with k ∈ Sp, reduces to

γk =

∣∣E[ḡk ˆ̄gH
k ]
∣∣2

V[ḡk ˆ̄gH
k ] +

∑
j 6=k E

[
|ḡk ˆ̄gH

j |2
]

+ 1
%BS
‖vk‖2E

[
‖H̄‖2F

] .
(15)

This can be rewritten in closed form as in (16), shown at
the top of this page, by substituting the following terms:
E[ḡk ˆ̄gH

k ] = tr(Φ̄kQ
−1
k Φ̄k), V[ḡk ˆ̄gH

k ] = tr(Φ̄2
kQ
−1
k Φ̄k),

E
[
|ḡk ˆ̄gH

j |2
]

= tr(Φ̄kΦ̄jQ
−1
j Φ̄j)+1j∈Sptr(Φ̄kQ

−1
j Φ̄j)

2, and
E
[
‖H̄‖2F

]
=
∑K
k=1 tr(Φ̄k). We refer to Appendix A for

the detailed derivations. Note that, in the case of perfect
channel estimation, i.e., when %UE → ∞ and all the UEs
have orthogonal pilots, we have {Φ̄kQ

−1
k Φ̄k = Φ̄k}Kk=1 and{

1j∈Sp = 0
}
j 6=k. In this context, the effective SINR in (16)

simplifies as

γk =
tr(Φ̄k)2∑K

j=1 tr(Φ̄kΦ̄j) + 1
%BS
‖vk‖2

∑K
j=1 tr(Φ̄j)

. (17)

Finally, Proposition 1 presents an ergodic achievable sum rate
with MRT in the two cases of perfect and imperfect channel
estimation. The proof follows from [32, Thm. 4.6] and is thus
omitted.

Proposition 1. Assume that the BS adopts MRT precoding.
Then, an ergodic achievable sum rate is given by

R̄lb =

K∑
k=1

log2(1 + γk) (18)

with γk defined in (16) and in (17) for imperfect and perfect
channel estimation, respectively. Furthermore, the following
limit holds as M →∞:

lim
M→∞

R̄lb = E[R̄] (19)

with R̄ defined in (11).

IV. COVARIANCE SHAPING OPTIMIZATION

In this section, we address the sum rate maximization
through a proper design of the covariance shaping vectors at
the UEs. To this end, we consider the variance of the inter-UE
interference as a metric to measure the spatial correlation or,
in other words, the degree of statistical orthogonality, between
two interfering UEs. In the following, we first consider the
simple case of K = 2 and then extend the resulting analysis
to the general case of K ≥ 2.

Let us define the inter-UE interference between UEs k and j
after applying covariance shaping as
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Ω(vk,vj) ,
ḡk(vk)ḡH

j (vj)√
E
[
‖ḡk(vk)‖2

]
E
[
‖ḡj(vj)‖2

] (20)

where the notation ḡk(vk) makes explicit the dependence
of the effective channel ḡk on the corresponding covariance
shaping vector vk. The effective channels of UEs k and j yield
asymptotic favorable propagation if they satisfy [32, Ch. 2.5.2]

lim
M→∞

Ω(vk,vj) = 0. (21)

For a practical number of BS antennas M , a meaningful
performance metric is the variance of Ω(vk,vj), expressed
as

δ(vk,vj) , V
[
Ω(vk,vj)

]
(22)

=
tr
(
Φ̄k(vk)Φ̄j(vj)

)
tr
(
Φ̄k(vk)

)
tr
(
Φ̄j(vj)

) (23)

where the notation Φ̄k(vk) makes explicit the dependence of
the effective channel covariance matrix Φ̄k on the correspond-
ing covariance shaping vector vk. Note that the terms in the
numerator and denominator of (23) can be written as

tr
(
Φ̄k(vk)Φ̄j(vj)

)
=

M∑
m,n=1

vH
k Σk,mnvkv

H
j Σj,nmvj (24)

=

M∑
m,n=1

vH
k Σk,mnvkv

H
j ΣH

j,mnvj , (25)

tr
(
Φ̄k(vk)

)
= vH

k

( M∑
m=1

Σk,mm

)
vk (26)

where we recall that Σk,mn represents the cross-covariance
matrix between the mth and nth columns of the original
channel Hk, i.e., before applying covariance shaping, as
defined in (1). Observe that δ(vk,vj) = 0 implies Φ̄kΦ̄j = 0,
i.e., Φ̄k and Φ̄j lie on orthogonal supports [11]. Indeed,
considering the eigenvalue decomposition of the effective
channel covariance matrices, which may be written as {Φ̄i =
UiΛiU

H
i }i∈{k,j}, the condition of statistical orthogonality is

satisfied if Uk = Uj and tr(ΛkΛj) = 0, which implies the
rank deficiency of both Φ̄k and Φ̄j . Clearly, in the general
case, this imposes M2 conditions whereas only 2N variables
can be adjusted: this means that the resulting system of
equations can be solved when N ≥ M2

2 , which is generally
not verified in practice since M � KN in massive MIMO
scenarios. Hence, since full signal subspace separation can
hardly be achieved by simple transceiver design at the UE-side,
it is of interest to minimize the spatial correlation between each
pair of interfering UEs.

A. Two-UE Case
In the two-UE case, i.e., for K = 2, the covariance

shaping vectors of UEs k and j are computed by solving the
optimization problem

minimize
vk,vj

δ(vk,vj)

subject to ‖vk‖2 = ‖vj‖2 = 1
(P1)

Algorithm 1 (Covariance shaping: Alternating optimization
algorithm)

Data: v
(0)
k , v

(0)
j , Σk, Σj , and the accuracy ε. Fix n = 1.

While
∣∣δ(v(n)

k ,v
(n)
j )−δ(v(n−1)

k ,v
(n−1)
j )

∣∣/δ(v(n)
k ,v

(n)
j ) > ε

S.1: Given v
(n−1)
j , compute {ηj,mn(v

(n−1)
j )}Mm,n=1 as

in (27).
S.2: Compute v

(n)
k as in (29).

S.3: Given v
(n)
k , compute {ηk,mn(v

(n)
k )}Mm,n=1 as in

(27).
S.4: Compute v

(n)
j as in (29).

End

S.5: Fix vk = v
(n)
k and vj = v

(n)
j .

with δ(vk,vj) defined in (23). Although problem (P1) is
not convex in either vk or vj , a suboptimal solution can be
efficiently obtained via alternating optimization, as suggested
in [1]. Let us introduce the definition

ηj,mn(vj) ,
vH
j ΣH

j,mnvj

vH
j

(∑M
m=1 Σj,mm

)
vj
. (27)

The optimal covariance shaping vector of UE k for a given
vj , denoted by v?k, is obtained as

v?k = argmin
vk : ‖vk‖2=1

∑M
m,n=1 vH

k

(
ηj,mn(vj)Σk,mn

)
vk

vH
k

(∑M
m=1 Σk,mm

)
vk

. (28)

Since (28) is in the form of generalized Rayleigh quotient, it
admits the solution

v?k = umin

[( M∑
m=1

Σk,mm

)−1( M∑
m,n=1

ηj,mn(vj)Σk,mn

)]
(29)

and the optimal covariance shaping vector of UE j for a given
vk is obtained in a similar way. Hence, problem (P1) is solved
by alternating the optimization between vk and vj until a
predetermined convergence criterion is satisfied, e.g., until the
difference between the values of the objective in consecutive
iterations is sufficiently small. This scheme is formalized in
Algorithm 1, whose convergence properties are characterized
in Proposition 2.

Proposition 2. The alternating optimization algorithm de-
scribed in Algorithm 1 converges to a stationary point of
problem (P1).

Proof: Observe that the objective function in (28) does
not depend on the scaling of vk and, if we relax the nonconvex
constraint ‖vk‖2 = 1 as ‖vk‖2 ≤ 1, (29) remains a solution
of (28). Then, according to [34, Corollary 2], every limit
point of the sequence generated by the alternating optimization
algorithm applied to problem (P1) with the relaxed constraints
is a stationary point of the original problem.

Algorithm 1 can be implemented in a centralized manner
at the BS and the covariance shaping vectors are fed back to
the corresponding UEs. Alternatively, it can be implemented
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(b) Corresponding covariance shaping vectors.

Fig. 1. Two-UE case: (a) 2D map of the considered NLoS scenario
with inter-UE distance d = 4 m; (b) corresponding covariance
shaping vectors with N = 2 obtained with exhaustive search and
with Algorithm 1.

in a distributed fashion at the UEs. In this case, each UE can
compute its covariance shaping vector without any information
exchange with the other UE provided that the channel statistics
of the latter are known, the order of update is fixed, and the
same initial points are used.4 In fact, under these conditions,
the entire alternating optimization procedure can be carried
out locally and independently at each UE. Note that the same
considerations hold for Algorithm 2 presented in the next
section for the multi-UE case, where we also discuss the
computational complexity.

The result of the covariance shaping optimization heavily
depends on the physical scattering environment. Consider the
non-line-of-sight (NLoS) scenario in Fig. 1(a), where there
is no line-of-sight (LoS) path between the BS and the UEs,
the UEs are equipped with uniform linear arrays (ULAs),
and the inter-UE distance is d = 4 m. In this case, as
shown in Fig. 1(b), the covariance shaping vectors tend to
focus their power along reflected paths that interfere with
each other as little as possible while also carrying sufficient
channel power, which results in a nearly interference-free

4Note that v(0)
k and v

(0)
j can be any predefined pair of normalized vectors

provided by the BS.
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(a) LoS scenario with K = 2.
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(b) Corresponding covariance shaping vectors.

Fig. 2. Two-UE case: (a) 2D map of the considered LoS scenario
with inter-UE distance d = 4 m; (b) corresponding covariance
shaping vectors with N = 2 obtained with exhaustive search and
with Algorithm 1.

transmission/reception. On the other hand, when a LoS path
exists, as in the LoS scenario in Fig. 2(a), this generally carries
more channel power than any other path. In this case, as
shown in Fig. 2(b), the propagation directions selected by the
covariance shaping vectors tend to partially capture the LoS
path while also focusing some of their power along separated
reflected paths in order to achieve some degree of statistical
orthogonality between the UEs. Remarkably, in both Fig. 1(b)
and Fig. 2(b), the result of Algorithm 1 is very close to the
optimal solution of problem (P1) obtained with exhaustive
search within a set of 103 uniformly distributed vectors over
the N -dimensional unit sphere for each UE, where the former
is characterized by negligible complexity with respect to the
latter.

Kronecker Channel Model. Let us consider the particular
case where each channel Hk follows the Kronecker channel
model [28]. In this setting, we have Hk = R

1
2

kH
(w)
k T

1
2

k ,
with Rk and Tk defined in Section II and vec(H

(w)
k ) ∼

CN (0, INM ). Accordingly, the channel covariance matrix in
(1) can be expressed as Σk = TT

k ⊗Rk with block elements
given by Σk,mn = T ∗k,mnRk, where Tk,mn denotes the
(m,n)th element of Tk. Hence, from (23), we have



8

δ(vk,vj)

=
tr
(
(vH
k Σk,mnvk)Mm,n=1(vH

j ΣH
j,mnvj)

M
m,n=1

)
tr
(
(vH
k Σk,mnvk)Mm,n=1

)
tr
(
(vH
j ΣH

j,mnvj)Mm,n=1

) (30)

=
tr
(
(Tk,mnvH

k Rkvk)Mm,n=1(Tj,mnvH
j Rjvj)

M
m,n=1

)
tr
(
(Tk,mnvH

k Rkvk)Mm,n=1

)
tr
(
(Tj,mnvH

j Rjvj)Mm,n=1

)
(31)

=
tr(TkTj)

tr(Tk)tr(Tj)
. (32)

It is straightforward to observe that, in this case, δ(vk,vj)
is independent of vk and vj . Hence, under the Kronecker
channel model, it is not possible to alter the channel statistics
perceived at one end of the communication link by design-
ing the transceiver at the other end: as a consequence, no
meaningful effective channel separation can be performed.
This is in accordance with the properties of the Kronecker
channel model, whereby the transmit and receive covariance
matrices are independent. In this context, the signal subspace
separation is exclusively determined by the physical scattering
environment and can only be achieved when tr(TkTj) = 0,
which is rarely satisfied in practice [27], [28].

B. Multi-UE Case

In the general case, i.e., for K ≥ 2, the covariance shaping
vectors for each UE are computed by solving the optimization
problem

minimize
{vk}Kk=1

∑
k 6=j

δ(vk,vj)

subject to
{
‖vk‖2 = 1

}K
k=1

(P2)

with δ(vk,vj) defined in (23). Although problem (P2) is
not convex in any of the optimization variables {vk}Kk=1,
a suboptimal solution can be efficiently obtained via block
coordinate descent, which can be interpreted as an extension of
the alternating optimization approach presented in the previous
section for the two-UE case. The optimal covariance shaping
vector of UE k for given {vj}j 6=k is obtained as

v?k = argmin
vk : ‖vk‖2=1

∑M
m,n=1 vH

k

(∑
j 6=k ηj,mn(vj)Σk,mn

)
vk

vH
k

(∑M
m=1 Σk,mm

)
vk

(33)

with ηj,mn(vj) defined in (27). Like (28), (33) is in the form
of generalized Rayleigh quotient and thus admits the solution

v?k = umin

[( M∑
m=1

Σk,mm

)−1( M∑
m,n=1

∑
j 6=k

ηj,mn(vj)Σk,mn

)]
(34)

and the optimal covariance shaping vectors of the other UEs j
for given {vk}k 6=j are obtained in a similar way. Hence,
problem (P2) is solved by optimizing the strategy of each UE
given the strategies of the other UEs until a predetermined
convergence criterion is satisfied. Furthermore, at each itera-
tion i, the update v

(i)
k = αv?k + (1− α)v

(i−1)
k can be used to

Algorithm 2 (Covariance shaping: Block coordinate descent
algorithm)

Data: {v(0)
k }Kk=1, {Σk}Kk=1, α ∈ (0, 1], and the accuracy ε.

Fix n = 1.
While ∑

k 6=j

∣∣δ(v(n)
k ,v

(n)
j )− δ(v(n−1)

k ,v
(n−1)
j )

∣∣
δ(v

(n)
k ,v

(n)
j )

> ε

For k = 1, . . . ,K

S.1: Given {v(n−1)
j }j 6=k, compute

{ηj,mn(v
(n)
j )}Mm,n=1 as in (27), ∀j 6= k.

S.2: Compute v?k as in (34).
S.3: Update v

(n)
k = αv?k + (1− α)v

(n−1)
k .

End
End

S.4: Fix {vk = v
(n)
k }Kk=1.

limit the variation of the covariance shaping vectors between
consecutive iterations, where the step size α ∈ (0, 1] is
chosen to strike the proper balance between convergence speed
and accuracy (see, e.g., [10], [35]). The proposed scheme is
formalized in Algorithm 2, whose convergence properties are
characterized in Proposition 3.

Proposition 3. The block coordinate descent algorithm de-
scribed in Algorithm 2 converges to a limit point of prob-
lem (P2).

Proof: At each iteration i of Algorithm 1, the covariance
shaping vector of UE k results from solving (28), which
admits the optimal solution in (29). Hence, the sequence{
δ(v

(i)
k ,v

(i)
j )
}
i

is non-increasing since

δ(v
(i)
k ,v

(i−1)
j ) ≤ δ(v(i−1)

k ,v
(i−1)
j ). (35)

Moreover, since δ(vk,vj) ≥ 0, the sequence
{
δ(v

(i)
k ,v

(i)
j )
}
i

converges to a finite non-negative value.
The computational complexity of Algorithm 2 is essentially

dictated by step S.2, which corresponds to the computation
of the optimal covariance shaping vector of UE k for given
{vj}j 6=k. This is expressed in (34) and has a complexity
O(N2.37) due to the eigenvalue decomposition and inverse
matrix operations [25]. Hence, the overall computational com-
plexity of Algorithm 2 is O(IKN2.37), where I is the number
of iterations required for convergence. Note that both N and
I are fairly modest since the UEs are equipped with a small-
to-moderate number of antennas and the algorithm converges
in very few iterations (i.e., less than 10 in the simulation
scenarios considered in Section V). We can thus conclude
that Algorithms 1 and 2 are remarkably efficient in terms of
computation complexity.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we present numerical results to evaluate the
gains achieved by the proposed covariance shaping framework.
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To this end, we compare the following alternative transmis-
sion/reception schemes, where the first is based on covariance
shaping and the second is considered as a reference.5

(A) Covariance shaping. The multiple antennas at the UE are
employed to implement covariance shaping and one data
stream per UE is transmitted using MMSE precoding.
Specifically, each UE k applies its covariance shaping
vector vk, obtained with Algorithm 1 or Algorithm 2
(depending on the value of K), during both the uplink
pilot-aided channel estimation phase and the downlink
data transmission phase, as discussed in Section IV. The
BS obtains the MMSE estimates of the resulting effective
channels {ḡk}Kk=1 as in (9) based on the transmission
of P < K orthogonal pilot vectors by the UEs. These
estimates are used to compute the (M ×K)-dimensional
MMSE precoding matrix at the BS as in [11].

(B) Spatial multiplexing. The multiple antennas at the UE
are employed for spatial multiplexing and N data streams
per UE are transmitted using MMSE precoding. Specifi-
cally, the BS obtains the MMSE estimates of the channel
matrices {Hk}Kk=1 as in (3) based on the transmission of
P < K orthogonal pilot matrices by the UEs. These es-
timates are used to compute the (M ×KN)-dimensional
MMSE precoding matrix at the BS as in [11].

Some comments are in order.
• The reference scheme in (B) requires antenna-specific pi-

lots for the estimation of the channel matrices {Hk}Kk=1.
In particular, N orthogonal pilot vectors are assigned to
each UE to avoid any pilot contamination among the
antennas of the same UE, which implies τ ≥ PN .
On the other hand, the estimation of the effective chan-
nels {ḡk}Kk=1 resulting from covariance shaping requires
τ ≥ P and, therefore, the pilot length can potentially be
reduced.

• The reference scheme in (B) allows the transmission
of up to N data streams per UE, while only one data
stream per UE is transmitted when covariance shaping is
used. In the following, we demonstrate how the proposed
covariance shaping method can effectively outperform
spatial multiplexing in scenarios where the UEs exhibit
highly overlapping channel covariance matrices and the
spatial selectivity of the BS is not sufficient to separate
such UEs.

We evaluate different scenarios in which the BS serves K
closely spaced UEs. We assume that the UEs are equipped
with ULAs, whereas both ULAs and uniform planar arrays
(UPAs) are considered at the BS. In this context, we define
the ULA response at each UE for the angle of impingement
θ as

a(θ) , [1, e−2πδ cos(θ), . . . , e−2πδ(N−1) cos(θ)]T ∈ CN×1
(36)

where δ = 0.5 represents the ratio between the antenna
spacing and the signal wavelength. Likewise, we define the

5The relevant spatial multiplexing methods in [36], [37] were also tested
as reference schemes. Nonetheless, they are not included in this section since
they are always outperformed by the reference scheme in (B) in the considered
simulation scenarios.

Parameter Symbol Value
Number of BS antennas M 128

Number of UEs K {2, 4, 8}
Number of UE antennas N 2

Noise variance at the BS σ2
BS −80 dBm

Noise variance at the UEs σ2
UE −80 dBm

Transmit power at the BS ρBS 30 dBm
Transmit power at the UEs ρUE 25 dBm
Number of orthogonal pilots P

⌈
K
2

⌉
Pilot length τ {1, 2, 4}

Ricean factor κ
2.5 (LoS)
0 (NLoS)

Pathloss exponent β 2

Inter-UE distance d {2, 4} m

TABLE I. Simulation parameters (unless otherwise stated).

UPA response at the BS for the angles of impingement φ along
the azimuth direction and ψ along the elevation direction as

b(φ, ψ)

, [1, e−2πδ cos(φ), . . . , e−2πδ(Mx−1) cos(φ)]T

⊗ [1, e−2πδ sin(ψ), . . . , e−2πδ(My−1) sin(ψ)]T ∈ CM×1 (37)

where Mx and My represent the number of BS antennas
along the azimuth and elevation directions, respectively, with
M = MxMy . The ULA response at the BS for the angle
of impingement φ can be recovered from (37) by setting
Mx = M , My = 1, and ψ = 0. Then, the instantaneous
channel between the BS and each UE k follows the discrete
physical channel model in [38] and is given by

Hk =

√
κ

1 + κ
d
− β2
k a(θk)b(φk, ψk)H

+

√
1

1 + κ

U∑
u=1

d
− β2
k,uαk,ua(θk,u)b(φk,u, ψk,u)H (38)

where κ is the Ricean factor, U is the number of reflected
paths, dk and dk,u are the distances of the LoS path and
of the uth reflected path, respectively, θk and θk,u are the
angles of impingement at the UE of the LoS path and of the
uth reflected path, respectively, φk (resp. ψk) and φk,u (resp.
ψk,u) are the angles of impingement at the BS of the LoS
path and of the uth reflected path along the azimuth (resp.
elevation) direction, respectively, αk,u is the random phase
delay of the uth reflected path, and β is the pathloss exponent.
Unless otherwise stated, we use the simulation parameters
listed in Table I. The following results are obtained by means
of Monte Carlo simulations with 5×103 independent channel
realizations. Lastly, we point out that, in the considered
simulation scenarios, Algorithms 1 and 2 are always observed
to converge in very few iterations, i.e., less than 10.

A. Two-UE case

Following the discussion in Section IV-A, we first study
the simple case of K = 2 UEs in order to highlight the key
features of the proposed covariance shaping framework. In
this setting, we assume P = 1, i.e., the UEs are assigned the
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Fig. 3. Two-UE case: NMSE of the channel estimation versus the
transmit power at the UEs ρUE for the NLoS scenario depicted in
Fig. 1(a), with ULA at the BS.

same pilot, and we remark that there is no pilot contamination
among the antennas of the same UE for the reference scheme
in (B). Assuming that the BS is equipped with a ULA, we
consider the LoS and NLoS scenarios illustrated in Fig. 1(a)
and in Fig. 2(a), respectively, where the corresponding covari-
ance shaping vectors are shown in Fig. 1(b) and in Fig. 2(b),
respectively. Observe that, in both cases, the inter-UE distance
is d = 4 m: this is quite small compared with the distance of
about 50 m between the UEs and the BS, and results in highly
overlapping channel covariance matrices.

Let us define the normalized MSE (NMSE) of the channel
estimation for UE k as

NMSEk , E
[
‖ˆ̄gk − ḡk‖2

‖ḡk‖2

]
(39)

for the effective channels {ˆ̄gk}Kk=1 resulting from covariance
shaping and as

NMSEk ,
1

N

N∑
n=1

E
[
‖ĝk,n − gk,n‖2

‖gk,n‖2

]
(40)

for the channel matrices {Ĥk}Kk=1. Considering the NLoS
scenario in Fig. 1(a), Fig. 3 plots the NMSE of the channel
estimation versus the transmit power at the UEs.6 Thanks to
the improved statistical orthogonality between the UEs, co-
variance shaping considerably increases the channel estimation
accuracy with respect to the case where the original MIMO
channels are estimated in the presence of pilot contamination
among the antennas of different UEs.

Considering again the NLoS scenario in Fig. 1(a), Fig. 4
plots the average sum rate versus the transmit power at the BS
ρBS for different numbers of BS antennas M . For M ≤ 128,
it is straightforward to see that the signal subspace separa-
tion enforced by covariance shaping during both the uplink
pilot-aided channel estimation phase and the downlink data
transmission phase has a highly beneficial effect on the system

6Note that the transmit signal-to-noise ratio (SNR) is given by simply
dividing the transmit power at the BS by the noise variance at the BS, which
is given in Table I.
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Fig. 4. Two-UE case: average sum rate versus the transmit power at
the BS ρBS for the NLoS scenario depicted in Fig. 1(a), with d = 4 m,
ULA at the BS, and for different values of M .
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Fig. 5. Two-UE case: average sum rate versus the transmit power at
the BS ρBS for the LoS scenario depicted in Fig. 2(a), with M = 128,
ULA at the BS, and for different values of d.

performance. However, covariance shaping is outperformed by
the reference scheme in (B) for M = 256. In this setting, the
enhanced spatial selectivity of the BS allows to effectively
separate the UEs and promotes the transmission of multiple
data streams per UE. Focusing now on the LoS scenario in
Fig. 2(a), Fig. 5 plots the average sum rate versus the transmit
power at the BS ρBS, with M = 128 and for different values of
the inter-UE distance d. Evidently, the reference scheme in (B)
is markedly limited by the overlapping channel covariance
matrices of the UEs and is able to effectively separate the UEs
only for very large inter-UE distances (i.e., d = 30 m). On the
other hand, covariance shaping is able to enforce statistical
orthogonality even when the UEs are closely spaced.

B. Multi-UE Case

Following the discussion in Section IV-B, we now examine
the general case of K ≥ 2. We begin by considering the NLoS
scenario in Fig. 6(a) with K = 4. Here, the BS is equipped
with a ULA and we vary the inter-UE distance d in order to
quantify its impact on the degree of statistical orthogonality
among the UEs. In this setting, P = 2 orthogonal pilots
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Fig. 6. Multi-UE case: (a) 2D map of the considered NLoS scenario
with K = 4 and variable inter-UE distance d; (b) corresponding
covariance shaping vectors with N = 2 obtained with Algorithm 2.

are assigned such that two adjacent UEs always utilize or-
thogonal pilots. The covariance shaping vectors obtained with
Algorithm 2 are shown in Fig. 6(b): these tend to focus their
power along reflected paths that are as orthogonal as possible
to each other while also carrying sufficient channel power (cf.
Fig. 1(b)). Fig. 7 plots the average sum rate versus the inter-UE
distance d, with M = 128 and ρBS = 30 dBm. Note that, under
the considered pilot assignment, pilot contamination occurs
only between UEs at distance 2d. In this context, we also study
the case where the UEs are scheduled into two separate groups
of non-adjacent UEs without pilot contamination (scheduling),
as opposed to the case where all the UEs are the served
simultaneously with pilot contamination (no scheduling). As
in Fig. 5, the reference scheme in (B) outperforms covariance
shaping only for very large inter-UE distances (i.e., d ≥ 13 m).
In this regard, the scheduling approach is shown to further
deteriorate the performance of spatial multiplexing due to the
pre-log factor of 1/2 in the sum rate despite avoiding the pilot
contamination.

We conclude this section by considering the NLoS scenario
in Fig. 8 with K = 8. Here, the BS is equipped with a UPA
and is placed at a height of 20 m with respect to the UEs
and the scatterers. Moreover, the UEs are separated into two
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Fig. 7. Multi-UE case: average sum rate versus the inter-UE distance
d for the NLoS scenario depicted in Fig. 6(a), with M = 128, ULA
at the BS, and ρBS = 30 dBm.

groups with inter-group distance D = 20 m and the inter-
UE distance is d = 2 m, which results in highly overlapping
channel covariance matrices within the same group. In this
setting, P = 4 orthogonal pilots are assigned such that two
adjacent UEs always utilize orthogonal pilots and covariance
shaping is applied independently to each group. Fig. 9 plots
the average sum rate versus the transmit power at the BS ρBS

for different numbers of BS antennas M . Note that M = 64
corresponds to Mx = My = 8, whereas M = 128 corresponds
to Mx = 16 and My = 8. As in Fig. 7, we also study the case
where the UEs in each group are scheduled into two separate
subgroups of non-adjacent UEs without pilot contamination
among groups (scheduling). The signal subspace separation
enforced by covariance shaping during both the uplink pilot-
aided channel estimation phase and the downlink data trans-
mission phase becomes even more beneficial when the BS
is equipped with a UPA with limited spatial selectivity in the
azimuth direction. Again, the scheduling approach is shown to
further deteriorate the performance of spatial multiplexing due
to the pre-log factor of 1/2 in the sum rate despite avoiding
the pilot contamination within the same group.

VI. CONCLUSIONS

In this paper, we introduce the novel concept of MIMO co-
variance shaping as a means to achieve statistical orthogonality
among interfering UEs. It consists in preemptively applying
a statistical beamforming at each UE during both the uplink
pilot-aided channel estimation phase and the downlink data
transmission phase, aiming at enforcing a separation of the
signal subspaces of the UEs that would be otherwise highly
overlapping. The proposed MIMO covariance shaping frame-
work exploits the realistic non-Kronecker structure of massive
MIMO channels, which allows to suitably alter the channel
statistics perceived at the BS by designing the transceiver at
the UE-side. To compute the covariance shaping strategies, we
present a low-complexity block coordinate descent algorithm
that minimizes the inter-UE interference (as a metric to
measure the spatial correlation), which is proved to converge
to a limit point of the original nonconvex problem or to a
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Fig. 8. Multi-UE case: (a) 2D map of the considered NLoS scenario
with K = 8, inter-UE distance d = 2 m, and inter-group distance
D = 20 m.
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Fig. 9. Multi-UE case: average sum rate versus the transmit power
at the BS ρBS for the NLoS scenario depicted in Fig. 8, with UPA at
the BS and for different values of M .

stationary point in the two-UE case. We provide numerical
results characterizing several scenarios where MIMO covari-
ance shaping outperforms a reference schemes employing the
multiple antennas at the UE for spatial multiplexing. Specifi-
cally, this occurs when the spatial selectivity of the BS is not
sufficient to separate UEs exhibiting high spatial correlation,
(e.g., when the BS is equipped with a UPA with limited
spatial selectivity in the azimuth direction) and the channel
estimation is limited by strong pilot contamination. Future
work will consider MIMO covariance shaping in combination
with multi-stream transmission and will analyze the trade-off
between statistical orthogonality and spatial multiplexing.

APPENDIX A
DERIVATIONS OF THE EFFECTIVE SINR IN (16)

In this Appendix, we derive the expectation terms in (15)
to obtain the expression of the effective SINR in (16). First
of all, given the multi-UE effective channel matrix H̄ =
[ḡT

1 , . . . , ḡ
T
K ]T, where the effective channels {ḡk}Kk=1 are

independent and ḡk ∼ CN (0, Φ̄k), it is easy to verify that

E[‖H̄‖2F] =

K∑
k=1

tr(Φ̄k). (41)

Furthermore, recalling the definition of ˆ̄gk in (9), we have

E[ḡk ˆ̄gH
k ] = tr(Φ̄kQ

−1
k Φ̄k). (42)

We now focus on deriving V[ḡk ˆ̄gH
k ], with k ∈ Sp. We have

V[ḡk ˆ̄gH
k ]

= E
[
|ḡk ˆ̄gH

k |2
]
−
∣∣E[ḡk ˆ̄gH

k ]
∣∣2 (43)

= E
[
ḡkΦ̄kQ

−1
k

(
ḡH
k +

∑
j∈Sp\{k}

ḡH
j +

1

τ
√
ρUE

ZpH
p

)

×
(

ḡk +
∑

j∈Sp\{k}

ḡj +
1

τ
√
ρUE

ppZ
H

)
Q−1k Φ̄kḡ

H
k

]
− tr(Φ̄kQ

−1
k Φ̄k)2 (44)

= E[ḡkΦ̄kQ
−1
k ḡH

k ḡkQ
−1
k Φ̄kḡ

H
k ]

+
∑

j∈Sp\{k}

E[ḡkΦ̄kQ
−1
k ḡH

j ḡjQ
−1
k Φ̄kḡ

H
k ]

+
1

τ2ρUE

E[ḡkΦ̄kQ
−1
k ZpH

p ppZ
HQ−1k Φ̄kḡ

H
k ]

− tr(Φ̄kQ
−1
k Φ̄k)2 (45)

where in (44) we have used the expression in (42) and where
(45) follows from the independence between ḡk and ḡj , ∀k 6=
j, and between ḡk and Z. Then, we write ḡH

k = Φ̄
1
2

k xk, with
xk ∼ CN (0, IM ), and obtain

V[ḡk ˆ̄gH
k ]

= E
[
xH
k Φ̄

1
2

k Φ̄kQ
−1
k Φ̄

1
2

k xkx
H
k Φ̄

1
2

kQ−1k Φ̄kΦ̄
1
2

k x
]

+
∑

j∈Sp\{k}

tr(Φ̄2
kQ
−1
k Φ̄jQ

−1
k Φ̄k)

+
1

τ%UE

tr(Φ̄2
kQ
−2
k Φ̄k)− tr(Φ̄kQ

−1
k Φ̄k)2 (46)

= tr(Φ̄2
kQ
−1
k Φ̄kQ

−1
k Φ̄k) + tr(Φ̄kQ

−1
k Φ̄k)2

+
∑

j∈Sp\{k}

tr(Φ̄2
kQ
−1
k Φ̄jQ

−1
k Φ̄k)

+
1

τ%UE

tr(Φ̄2
kQ
−2
k Φ̄k)− tr(Φ̄kQ

−1
k Φ̄k)2 (47)

= tr

(
Φ̄2
kQ
−1
k

(
Φ̄k +

∑
j∈Sp\{k}

Φ̄j +
1

τ%UE

IM

)
Q−1k Φ̄k

)
(48)

= tr(Φ̄2
kQ
−1
k Φ̄k) (49)

where (46) is obtained by substituting E[ZpH
p ppZ

H] =
τσ2

BSIM , in (47) we have exploited the fact that
E[xkx

H
k Axkx

H
k ] = A + tr(A)IM for a given Hermitian

matrix A ∈ CM×M [13, App. A.2], and in (49) we have used
the definition of Qk provided in Section III-A. Finally, we
focus on deriving E

[
|ḡk ˆ̄gH

j |2
]
, with k ∈ Sp and with j ∈ Sq .
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Following similar steps as above, we have

E
[
|ḡk ˆ̄gH

j |2
]

= E
[
ḡkΦ̄jQ

−1
j

(
ḡH
j +

∑
l∈Sq\{j}

ḡH
l +

1

τ
√
ρUE

ZpH
q

)

×
(

ḡj +
∑

l∈Sq\{j}

ḡl +
1

τ
√
ρUE

pqZ
H

)
Q−1j Φ̄j ḡ

H
k

]
(50)

= E[ḡkΦ̄jQ
−1
j ḡH

j ḡjQ
−1
j Φ̄j ḡ

H
k ]

+
∑

l∈Sq\{j}

E[ḡkΦ̄jQ
−1
j ḡH

l ḡlQ
−1
j Φ̄j ḡ

H
k ]

+
1

τ2ρUE

E[ḡkΦ̄kQ
−1
k ZpH

q pqZ
HQ−1k Φ̄kḡ

H
k ] (51)

= tr(Φ̄kΦ̄jQ
−1
j Φ̄jQ

−1
j Φ̄j)

+
∑

l∈Sq\{j}

tr(Φ̄kΦ̄jQ
−1
j Φ̄lQ

−1
j Φ̄j)

+ 1q=ptr(Φ̄kQ
−1
j Φ̄j)

2 +
1

τ%UE

tr(Φ̄kΦ̄jQ
−2
j Φ̄j) (52)

= tr

(
Φ̄kΦ̄jQ

−1
j

(
Φ̄j +

∑
l∈Sq\{j}

Φ̄l +
1

τ%UE

IM

)
Q−1j Φ̄j

)
+ 1q=ptr(Φ̄kQ

−1
j Φ̄j)

2 (53)

= tr(Φ̄kΦ̄jQ
−1
j Φ̄j) + 1q=ptr(Φ̄kQ

−1
j Φ̄j)

2. (54)

Note that the second term in (54) is active only if UEs k and j
are assigned the same pilot.
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Paris, at the Communication systems department
of EURECOM in 2021. He is currently a research

scientist in the 5GN group at NEC Laboratories Europe GmbH. His research
interests lie in convex optimization, signal processing and wireless commu-
nication. He received the Best Paper Award in the Wireless Communications
Symposium at IEEE ICC 2019.

Italo Atzeni (Member, IEEE) received the MSc
degree (Hons.) in telecommunications engineering
from the University of Cagliari, Italy, in 2010 and
the PhD degree (Hons.) in signal theory and com-
munications from the Polytechnic University of Cat-
alonia–BarcelonaTech, Spain, in 2014. Since 2019,
he is with the Centre for Wireless Communications,
University of Oulu, Finland, where he is currently
an Assistant Professor. From 2014 to 2017, he was a
Researcher with the Mathematical and Algorithmic
Sciences Laboratory, Paris Research Center, Huawei

Technologies, France. From 2017 to 2018, he was a Research Associate with
the Communication Systems Department, EURECOM, France. He previously
held a research appointment at The Hong Kong University of Science and
Technology, Hong Kong, in 2013. His primary research interests are in
communication and information theory, statistical signal processing, convex
and distributed optimization theory, and their applications to low-complexity,
energy-efficient solutions for multi-antenna communications. He received the
Best Paper Award in the Wireless Communications Symposium at IEEE ICC
2019. He was granted the MSCA-IF grant for the project “Device-Centric
Low-Complexity High-Frequency Networks” (DELIGHT) in 2020. He serves
as Editor for the IEEE Communications Letters.

Laura Cottatellucci (Member, IEEE) received the
Master degree from La Sapienza University, Rome,
Italy, the Ph.D. degree from the Technical Univer-
sity of Vienna, Austria, in 2006, and the Habili-
tation degree from the University of Nice-Sophia
Antipolis, France. Since December 2017, she is
Professor for Digital Communications at the Institute
of Digital Communications of Friedrich Alexander
Universität (FAU) of Erlangen-Nürnberg (Germany)
and Adjunct Professor in EURECOM, France, since
September 2021. She worked in Telecom Italia

(1995-2000) as responsible of industrial projects and as a Senior Research in
Forschungszentrum Telekommunikation Wien Austria (Apr. 2000-Sep. 2005).
She was a Research Fellow in INRIA, France, (Oct.-Dec. 2005) and at
the University of South Australia (2006). She was also Assistant Professor
(Dec. 2006-Nov. 2017) and Adjunct Professor (Mar. 2018-Aug. 2019) in
EURECOM, France. Her research interests lie in the field of communications
theory and signal processing for wireless communications, satellite and
complex networks. She served as associate editor of the IEEE Transactions
on Communications and the IEEE Transactions on Signal Processing (Feb
2016-2020). She is an elected member of the IEEE Technical Committee on
Signal Processing for Communications and Networking since 2017.

David Gesbert (Fellow, IEEE) is currently serving
as Director of EURECOM, Sophia Antipolis, France
(www.eurecom.fr). He received the Ph.D. degree
from TelecomParis, France, in 1997. From 1997 to
1999, he was with the Information Systems Lab-
oratory, Stanford University. He was the Founding
Engineer of Iospan Wireless Inc., a Stanford spin
off pioneering MIMO-OFDM (currently Intel). Be-
fore joining EURECOM in 2004, he was with the
Department of Informatics, University of Oslo, as
an Adjunct Professor. He has published about 350

articles and 25 patents, 7 of them winning IEEE Best paper awards. He has
been the Technical Program Co-Chair for ICC2017 and has been named a
Thomson-Reuters Highly Cited Researchers in computer science. He is a
Board Member for the OpenAirInterface (OAI) Software Alliance. In 2015,
he has been awarded an ERC Advanced Grant. In 2020, he was awarded
funding by the French Interdisciplinary Institute on Artificial Intelligence for
a Chair in the area of AI for the future IoT. In 2021, he received the Grand
Prix in Research from IMT-French Academy of Sciences.


	Introduction
	Contributions

	System Model
	Channel Model
	Uplink Pilot-Aided Channel Estimation
	Downlink Data Transmission

	Covariance Shaping at the UE-Side
	Uplink Pilot-Aided Channel Estimation
	Downlink Data Transmission
	Ergodic Achievable Sum Rate

	Covariance Shaping Optimization
	Two-UE Case
	Multi-UE Case

	Numerical Results and Discussion
	Two-UE case
	Multi-UE Case

	Conclusions
	Appendix A: Derivations of the Effective SINR in 
	References
	References
	Biographies
	Placido Mursia
	Italo Atzeni
	Laura Cottatellucci
	David Gesbert



