
1536-1276 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2021.3124586, IEEE
Transactions on Wireless Communications

1

Federated Learning Based Content Popularity
Prediction in Fog Radio Access Networks

Yanxiang Jiang, Senior Member, IEEE, Yuting Wu, Fu-Chun Zheng, Senior Member, IEEE,
Mehdi Bennis, Fellow, IEEE, and Xiaohu You, Fellow, IEEE

Abstract—In this paper, the content popularity prediction
problem in fog radio access networks (F-RANs) is investigated.
In order to obtain accurate prediction with low complexity, we
propose a novel context-aware popularity prediction policy based
on federated learning (FL). Firstly, user preference learning is
applied by considering that users prefer to request the contents
they are interested in. Then, users’ context information is utilized
to cluster users efficiently by adaptive context space partitioning.
After that, we formulate a popularity prediction optimization
problem to learn the local model parameters by using the
stochastic variance reduced gradient (SVRG) algorithm. Finally,
FL based model integration is proposed to learn the global
popularity prediction model based on local models using the
distributed approximate Newton (DANE) algorithm with SVRG.
Our proposed popularity prediction policy not only can predict
content popularity accurately, but also can significantly reduce
computational complexity. Moreover, we theoretically analyze the
convergence bound of our proposed FL based model integration
algorithm. Simulation results show that our proposed policy
increases the cache hit rate by up to 21.5 % compared to existing
policies.

Index Terms—F-RAN, popularity prediction, user preference
learning, context-aware, federated learning.

I. INTRODUCTION

With the unprecedented rapid proliferation of intelligent
devices, wireless networks are confronted with a myriad of
challenges and notably data traffic pressure on the fronthaul
wireless links [1]. To cope with this issue, fog radio access
networks (F-RANs) have emerged as a promising solution
to alleviate the traffic burden on fronthaul links by caching
popular contents in fog access points (F-APs) [2]. In F-
RANs, F-APs with limited caching and computing resources
are densely deployed at network edges to provide reliable and
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stable service for users [3]. By placing contents in the F-APs
which are closer to users, a mass of repeated transmission
through fronthaul links can be avoided and traffic burden can
be reduced [4]. Due to the caching capacity constraints, F-APs
need to predict future content popularity accurately in order
to prefetch the most popular contents during off-peak traffic
periods and improve caching efficiency [5].

Traditional caching policies, such as least recently used
(LRU) and least frequently used (LFU), are widely used in
wired networks, but their efficiency is limited since content
popularity is not considered [6]. When considering content
popularity, most of the existing works on edge caching were
carried out based on the assumption that the popularity
of contents was known in advance, which is not practi-
cal. Predicting future content popularity based on available
information is therefore of great importance [7]. Recently,
improving caching efficiency by predicting content popularity
accurately has gained significant interest. An auto-regressive
(AR) model based content popularity prediction algorithm
was proposed in [8] and the model parameters were learned
by least square estimates. Similarly, an auto regressive and
moving average (ARMA) model was shown to outperform the
LFU caching scheme in [9]. In [10], a deep learning based
content popularity prediction scheme was proposed. In [11],
the authors proposed to learn popularity prediction model for
each content class from the historical popularity series through
training a simplified bidirectional long short-term memory
(Bi-LSTM) network. In [12], the authors proposed popularity
prediction methods to track the various trends with spatial-
temporal content popularity and user dynamics based on the
research in [11]. In [13], a multilevel probabilistic model
was proposed and Bayesian learning was utilized to obtain
the model parameters. In [14], a user preference model was
proposed to predict content popularity and track the popularity
change based on the user preference and the features of the
requested content. However, these existing works except for
[13] and [14] can not predict the popularity of newly-added
or unseen contents whose statistical data are not available in
advance. In other words, the prediction process for online
contents can not be carried out until enough information about
user requests has been collected. In [13], the knowledge of
the prior distribution of the parameters is required. In [14],
the authors focused more on edge caching than popularity
prediction.

By considering the huge computation resources consump-
tion during the model training process, it is impractical to
accomplish the whole process on a separate device when
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there is a huge amount of training data. Besides, it is not
sustainable to transmit all the data to a centralized server
because of the constrained network bandwidth. Therefore, a
new machine learning framework called Federated Learning
(FL) was proposed for training models in a distributed manner
[15]. By adopting this technique, the model training process
is distributed over a number of mobile user equipments (UEs)
or edge nodes. Each participant contributes to the model by
independently computing intermediate gradient values based
on its local training data and sending model updates to the
aggregator. The learning process of FL mainly includes two
steps. In the local update step, each participant performs
local computation based on its local data in order to update
the model parameters broadcasted by the aggregator. In the
global aggregation step, the aggregator collects the updated
models sent by participants and aggregates them to generate
an updated global model, which will be broadcasted in the
next iteration. The above two steps are repeated until a
predefined accuracy is achieved. FL has gained a wide range
of interest in recent years. The reasons for supporting FL are
as follows. First of all, FL is easy to implement with the rapid
development of edge computing [16]. As the edge devices are
equipped with a large amount of computing resources, it is
unnecessary to collect all the data and complete the computing
process in a centralized powerful server. Second, FL makes
the process of data collection and model training more flexible
and in general consumes less bandwidth. The edge devices
can collect local data at any time, and contribute to the global
model when needed.

Despite the benefits brought by FL, there are also many
challenges to confront with, including learning time alloca-
tion, resource allocation, participant selection, etc. In order to
deal with the above challenges, much research about FL has
been conducted. In [16], for example, the authors proposed
two main trade-offs: (i) between the computation and commu-
nication time determined by the predefined learning accuracy;
(ii) between the learning time and UE energy consumption.
In [17], the convergence bound of distributed gradient de-
scent was analyzed theoretically and a control algorithm that
determines the best tradeoff between local update and global
aggregation was proposed to minimize the loss function under
a given resource budget. In [18], the authors proposed a
novel model aggregation approach to deal with the problem
of bandwidth limitation by exploiting the natural signal su-
perposition of a wireless multiple access channel. In [19], a
differentially private asynchronous FL scheme for resource
sharing in vehicular networks was proposed to protect the
privacy of uploaded models. In [20], a dynamic incentive
scheme for FL was proposed to adjust the participants and
their level adaptively. In [21], a clustering-based asynchronous
FL framework was proposed to adapt to the heterogeneity of
industrial IoT. In [22], an effective incentive mechanism for
FL was proposed to motivate high-reputation mobile devices
with high-quality data to participate in model learning. In
conclusion, there has been much research concerned with the
development of FL.

Motivated by the aforementioned discussions, our main
contributions are summarized below.

1) We propose a new popularity prediction policy based
on user preference learning and adaptive context space
partitioning. Unlike traditional approaches, the inputs
of the prediction model are the popularity scores for
contents of the clustered users, which are preprocessed
by user preference learning and adaptive context space
partitioning. Then, the popularity prediction model is
learned automatically by training the model with histor-
ical popularity and the preprocessed inputs based on S-
tochastic Variant Reduced Gradient (SVRG) Algorithm.
Specifically, our proposed popularity prediction policy
is effective in predicting the popularity of newly-added
contents with no available statistical data.

2) We put forward an FL based model integration approach
for global popularity prediction model construction. The
proposed algorithm is carried out by combining SVRG
with the Distribute Approximate Newton (DANE) Al-
gorithm. This way, the global model can be generated
based on local models in a distributed manner. More-
over, the computation and communication overhead is
greatly reduced.

3) We analyze the convergence of our proposed FL based
model integration approach by comparing it with a
centralized method from a theoretical point of view.
Based on the result obtained from theoretical analysis,
we show the relationship between the frequency of
global aggregation and the learning accuracy.

4) We validate our theoretical results with real data. Simu-
lation results show that our proposed popularity predic-
tion policy can predict future content popularity with
high precision. Cache placement is performed based
on the prediction results and higher cache hit rate is
achieved in comparison with traditional approaches.

The remainder of this paper is organized as follows. In
Section II, the system model is presented. The proposed
popularity prediction policy is described in Section III. The
theoretical performance analysis of our proposed FL based
model integration approach is provided in Section IV. Simu-
lation results are shown in Section V. Final conclusions are
drawn in Section VI.

II. SYSTEM MODEL

As shown in Fig. 1, we consider the F-RAN in a spe-
cific region consisting of M F-APs and N users. Let
Q = {q1, q2, . . . , qm, . . . , qM} denote the set of F-APs and
U = {u1, u2, . . . , un, . . . , uN} denote the set of users in the
region. Every F-AP has its own coverage area, limited storage
capacity and computing ability. Mobile users are associated
with an F-AP and can be served by it when located in its
coverage area. It is assumed that the users in the coverage area
of each F-AP remain unchanged during the considered time
period. Let C = {c1, c2, . . . , ci, . . . , cI} denote the content
library, where I is the cumulative number of contents at the
current time. If user un sends a request for content ci that
is stored in its associated F-AP qm, ci can be sent to un
directly from its local cache. Otherwise, qm needs to fetch ci
from neighboring F-APs or the cloud server. Assume that all
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Fig. 1. Illustration of the scenario in F-RAN.

the contents have the same size1, and the coverage areas of
different F-APs do not overlap with each other.

The popularity of contents in F-APs is determined by
the requests sent by the associated users. Let reqi denote
the cumulative user requests for content ci. If an individual
caching strategy in a single F-AP is considered, the local
popularity prediction model of the F-AP is required; if a co-
operative caching strategy among several F-APs is considered,
the global popularity prediction model in the larger coverage
area of these F-APs is required. Let p̂i and pi denote the
predicted and real popularity of ci, respectively. The value of
pi can be calculated as follows:

pi =
reqi∑I
t=1 reqt

. (1)

There exists deviation between p̂i and pi. Therefore, the mean-
square error (MSE) is utilized to measure the accuracy of the
prediction as follows:

MSE =
1

I

I∑
i=1

|p̂i − pi|2. (2)

The F-APs cache the most popular contents according to the
predicted popularity. If a request from users is served by the
cache of F-APs instead of by fetching the content from the
cloud server through fronthaul links, a cache hit event occurs.
Cache hit rate is defined as the ratio of the cache hits to
the overall number of requests. It is utilized to evaluate the
caching performance.

The objective of this paper is to find a content popularity
prediction policy to predict future popularity accurately and
minimize the MSE of the prediction results. For convenience,
a summary of major notations is presented in Table I.

III. PROPOSED POPULARITY PREDICTION POLICY

In order to minimize the MSE of the prediction results, we
propose a novel content popularity prediction policy, which in-
cludes offline user preference learning, adaptive context space
partitioning, popularity prediction model construction and FL
based model integration. The proposed policy can predict
content popularity accurately and allow popular contents to
be cached based on the prediction results.

1Note that contents with different sizes can always be split into data
segments of the same size, and each data segment can then be considered as
a “content”. For convenience, we also split the cache space into cache units
of the same size and set the size of a cache unit equal to the size of a content.

A. Policy Description

The procedure of the proposed popularity prediction policy
comprises the following four steps, as shown in Fig. 2.

(1) Offline user preference learning: The popularity of
contents will change constantly due to the variation of user
preference. Therefore, user preference learning is the first step
of the proposed policy. User preference learning is conducted
independently by training the local data at the UE in an offline
manner. If the user preference is similar to the content feature,
the probability for the user to request the content will be high,
leading to a higher popularity score for the content [23].

(2) Adaptive context space partitioning: After offline user
preference learning, users send the preference and context
information to their associated F-APs. Context information of
users includes gender, age, personality, occupation, location,
equipment, etc. Then, the F-APs can take the correlation
between user activity levels and context information into
account, since users sharing similar context are more likely
to have similar activity levels. As a consequence, adaptive
context space partitioning is applied as the second step in the
proposed policy to cluster users effectively [24].

(3) Popularity prediction model construction: In the third
step, a popularity prediction model is constructed based on the
obtained popularity scores of users in the context subspaces
after partitioning. The model parameters can be learned by
training using the historical data.

(4) Federated learning based model integration: If the local
popularity prediction models in F-APs have been obtained, a
global model consisting of these F-APs can be generated by
integrating the local models in a distributed manner [25]. By
using this approach, computational complexity can be reduced
and the bandwidth for transmitting local data can be saved.

The proposed popularity prediction policy is illustrated in
Fig. 2. The details of the four steps of the policy will now be
presented below.

B. Offline User Preference Learning

The contents in the library are not constant, since there is
a large amount of contents uploaded every day. The features
of content may consist of content categories or labels and
each content has different weights for different features. Let
χi = [χi1, χi2, . . . , χij , . . . , χiJ ]

T denote the content feature
vector of ci, where χij is the weight of the corresponding
content feature and J is the number of content features.
Let wn = [wn1, wn2, . . . , wnj , . . . , wnJ ]

T denote the user
preference vector of user un, where wnj is the user pref-
erence probability of the corresponding content feature. User
preference can be learned independently without interaction
with each other. Therefore, user preference learning is flexible,
which can be conducted at any idle time.

There is a large amount of records of user requests in
UE which can be used as training samples. Let An =
{(χi, yn,i) , i ∈ [1, I]} denote the set of training samples for
user un, where yn,i is the binary request label. If un has
requested content ci, yn,i = 1; otherwise yn,i = 0. Due to
the offline nature, the privacy of users can be protected since
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TABLE I. SUMMARY OF MAJOR NOTATIONS.
M , Q Number of F-APs, set of M F-APs
N , U Number of users, set of N users
I , C Number of contents, set of I contents
p̂i, pi Predicted popularity of content ci, real popularity of content ci
χi The content feature vector of content ci
J Dimension of content feature vector

wn, wn,j
The user preference vector of un, the preference of un for
feature j

An = {(χi, yn,i)}, yn,i
The set of training samples for un, the binary request label of
un for ci

ζn, D The context vector of un, dimension of context spaces
Θ1,Θ2, . . . ,Θs, . . .ΘS The set of context subspaces after partitioning

xi = [x1,i, x2,i, . . . , xS,i]
T The popularity scores for ci of all the context subspaces after

partitioning
a = [a1, a2, . . . , as, . . . , aS ]

T The vector of the parameters of the popularity prediction model
Bm = {(pi,xi), i ∈ [1, I]} The set of the training samples in the considered F-AP qm

am(t), a(t)
The vector of model parameters in F-AP qm learned by fed-
erated learning, the vector of global model parameters learned
by federated learning.

a[l](t)
The vector of global model parameters for t ∈ [(l − 1)τ, lτ ]
learned by centralized learning.
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user 
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federated learning based model integration

popularity 
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Fig. 2. Illustration of the proposed popularity prediction policy.
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numerous user data are kept in private equipment instead of
being transmitted to the central server.

Sigmoid function is used to approximate the correspon-
dence between the feature vector and request label of contents.
For simplicity, let hwn

(χi) = 1/(1 + e−w
T
n ·χi). The proba-

bility function of un is formulated to represent the probability
for yn,i as follows:

pwn (yn,i|χi) = hwn (χi)
yn,i (1− hwn (χi))

1−yn,i . (3)

Given enough samples, the likelihood function of un can be
expressed as follows [26]:

L (wn) =
∏

(χi,yn,i)∈An

pwn
(yn,i|χi) . (4)

Since maximizing likelihood estimation (MLE) is equivalent
to minimizing the negative likelihood function [27], the cross
entropy loss function is formulated as the negative log-
likelihood function as follows:

F (wn) = − 1

|An|
· lnL(wn)

=
1

|An|
∑

(χi,yn,i)∈An

[
ln
(

1 + ew
T
n ·χi

)
− yn,i ·wT

n · χi
]
.

(5)

Consequently, wn can be obtained by minimizing F (wn) as
follows:

wn = arg min
wn∈RJ

F (wn) . (6)

The Follow The (Proximally) Regularized Leader (FTRL-
Proximal) algorithm [14] is adopted to learn the user pref-
erence. In addition, user preference needs to be updated dy-
namically when the change of the objective function F (wn)
exceeds a certain threshold.

C. Adaptive Context Space Partitioning

User preference may differ based on their context infor-
mation [28]. For example, the movie types favored by boys
and girls, young and old, are usually different. Moreover,
the activity levels of users are likely to be related to their
context information. It is quite intuitive that the young people
have higher activity levels than the old because the young
is more accustomed to using smart devices. Therefore, we
propose to partition the context space uniformly into parts of
similar contexts for further popularity prediction. In addition,
popularity scores for contents can be learned independently
in each context subspace. After partitioning, the users in the
same context subspace having similar activity levels can be
treated as a group. By using this approach, the number of
items to track is significantly reduced. As a consequence,
the computational complexity is maintained to a manageable
extent.

Let ζn = [ζn,1, ζn,2, . . . , ζn,d, . . . , ζn,D]
T ∈ [0, 1]D denote

the context vector of user un, where ζn,d is the normalized
value for the corresponding context information and D is
the dimension of context space. The process of adaptive
context space partitioning is illustrated in Fig. 3 and Algorithm
1, which is inspired by the research in [29]. The original

Fig. 3. Illustration of adaptive context space partitioning (D
= 2).
Algorithm 1 Adaptive Context Space Partitioning

Input: ζn = [ζn,1, ζn,2, . . . ζn,D]
T , D, r1, r2, ψ =

number of the total subspaces
Output: Θ1,Θ2, . . . ,Θs, . . .ΘS

1: initialize i = 0, l0 = 0, ψ = 1
2: while i < ψ do
3: if Num(Θi) ≥ r1 · 2r2li then
4: split Θi into 2D subspaces Θj

5: ψ = ψ + 2D

6: lj = li + 1
7: end if
8: i = i+ 1
9: end while

context space Θ0 is constructed and normalized as [0, 1]D,
and its level l0 = 0. All the users considered are included in
Θ0. Consider Θi which is to be partitioned. Let Num(Θi)
denote the number of users in Θi and li be the level of
Θi. If Num(Θi) exceeds a certain threshold, Θi is split into
2D subspaces. As one of these child subspaces, Θj has an
increased level of lj = li + 1. The threshold determines the
rate at which the context space is partitioned. Therefore, it
needs to be carefully designed. We design the threshold to
have the form r1 · 2r2li , where r1 > 0 and r2 > 0 are hyper-
parameters in Algorithm 1. Due to this splitting process, a
subspace of level li has length 2−li along each axis. For
clarity of description, we rename the final obtained subspaces
as Θ1,Θ2, . . . ,Θs, . . .ΘS , where S is the cumulative number
of context subspaces. Users are then clustered according to
the partitioning results.

Since user preference has been obtained, sigmoid function
hwn (χi) can be used as the mapping function f (wn,χi) to
map the correlation of user preference and content feature to
popularity scores. The popularity score xs,i of Θs for content
ci is obtained based on the preference of all the users in Θs
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as follows:
xs,i =

1

W

∑
ζn∈Θs

f (wn,χi) , (7)

where W is the total number of user requests in the coverage
area of the F-AP. Let xi = [x1,i, x2,i, . . . , xS,i]

T denote the
popularity scores for content ci of all the context subspaces
after partitioning. The popularity scores are used as the inputs
of the popularity prediction model in the following subsection.
By preprocessing the inputs of the model through adaptive
context space partitioning, the number of model parameters
will decrease significantly.

D. Popularity Prediction Model Construction

Without loss of generality, we consider the local pop-
ularity prediction model in a typical F-AP. Let a =
[a1, a2, . . . , as, . . . , aS ]

T denote the vector of model parame-
ters. By using xi as the input of the prediction model, p̂i can
be expressed as follows:

p̂i = aTxi = a1x1,i + a2x2,i + · · ·+ aSxS,i. (8)

The least square method is applied to learn a. Let B =
{(pi,xi), i ∈ [1, I]} denote the set of training samples in the
F-AP. The model parameters can be obtained by minimizing
MSE as follows:

min 1
L

∑
(pi,xi)∈B

∣∣pi − aTxi∣∣2
s.t. as ≥ 0,∀s ∈ [1, S]

, (9)

where L is the number of training samples in the F-AP.
The model is trained with historical popularity and historical
popularity scores in context subspaces.

The elements of a in the prediction model represent the
activity levels of the users in the corresponding context
subspaces [30]. It implies that their contributions to the
network traffic differ from each other. The SVRG algorithm
is adopted to solve the optimization problem in (9) [31]. It is
a variant of stochastic gradient descent (SGD) with explicit
variance reduction, which can achieve faster convergence.
Let vi (a) =

∣∣pi − aTxi∣∣2, V (a) = 1
L

∑
(pi,xi)∈B vi (a).

The detailed procedure of SVRG is shown in Algorithm 2.
Specifically, the algorithm operates in two nested loops. In
the outer loop, it computes the gradient value of the entire
function (Line 4 in Algorithm 2). In the inner loop where τ
fast stochastic updates are performed (Line 6-10 in Algorithm
2), the gradient in iteration t is calculated as follows:

gt = 5vi (at)− (5vi
(
aj
)
−5V

(
aj
)
), (10)

where (5vi
(
aj
)
− 5V

(
aj
)
) is regarded as the bias of

the gradient estimate 5vi (at). By adjusting the number of
stochastic steps, the tradeoff between convergence rate and
computational complexity can be flexibly balanced.

E. Federated Learning Based Model Integration

The global popularity prediction model aggregated by
K F-APs is considered2. Without loss of generality, let

2The value of K can be set according to practical requirements.

Algorithm 2 Stochastic Variance Reduced Gradient (SVRG)

Input: xi = [x1,i, x2,i, . . . , xS,i]
T
,∀i ∈ [1, I]

Output: a = [a1, a2, . . . , as, . . . , aS ]
T

1: initialize τ = number of stochastic steps per epoch, η =
stepsize, a0

2: for j = 0, 1, 2, · · · do
3: compute and store . Full pass through data
4: 5V

(
aj
)

= 1
L

∑
(pi,xi)∈B5vi

(
aj
)

5: set a1 = aj

6: for t = 1 to τ do
7: pick (pi,xi) ∈ B uniformly at random
8: calculate gt according to (10)
9: at+1 = at − ηgt . Stochastic update

10: end for
11: aj+1 = aτ+1

12: end for

{q1, q2, · · · , qm, · · · , qK} denote the set of considered F-APs.
In order to learn the global model, the cloud server needs to
solve the optimization problem as follows:

min 1
L∗

∑
(pi,xi)∈B∗

∣∣pi − aTxi∣∣2
s.t. as ≥ 0,∀s ∈ [1, S]

, (11)

where L∗ denotes the total number of training samples,
B∗ denotes the corresponding set of training samples. For
simplicity, let V ∗ (a) = 1

L∗

∑
(pi,xi)∈B∗

∣∣pi − aTxi∣∣2. Due
to the expanded coverage area and the increased number of
associated users compared with the local model, it is obvious
that L∗ � L. As a consequence, the computational load for
determining the global model parameters be extremely high.
In addition, the training data in the distributed F-APs needs
to be transmitted to the cloud server, which will consume
the bandwidth resources. To cope with these issues, FL based
model integration is proposed to generate the global model
based on local models in a distributed manner.

Let Bm denote the set of training samples in F-AP qm
and Lm be the number of training samples in F-AP qm.
The optimized objective function in (11) can be expressed
as follows3:

V ∗(a) =

K∑
m=1

Lm
L∗
· 1

Lm

∑
(pi,xi)∈Bm

vi (a) . (12)

The MSE in qm can be expressed as Vm (a) =
1
Lm

∑
(pi,xi)∈Bm

vi (a). Therefore, the optimization problem
in (11) can be converted to the following equivalent form:

min
∑K
m=1

Lm

L∗ Vm (a)
s.t. as ≥ 0,∀s ∈ [1, S]

. (13)

It indicates that the global optimization is determined by local
optimizations. The most intuitive solution is to make each F-

3The popularity of contents in different F-APs are different due to the
diversity of user preference and user activity levels. The global popularity
of the K F-APs should be recalculated based on local popularity and user
requests. However, in order to solve the optimization problem in a distributed
way, we use (12) to approximate the global optimization problem which is
expressed by the recalculated global popularity.
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Algorithm 3 Federated Learning Based Model Integration

Input: xi = [x1,i, x2,i, . . . , xS,i]
T
, τ =number of stochastic

steps per epoch, h =stepsize
Output: a = [a1, a2, . . . , as, . . . , aS ]

T

1: initialize τ = number of stochastic steps per epoch, η =
stepsize, a0

2: for j = 0, 1, 2, · · · do . Overall iterations
3: compute and store
4: 5V ∗

(
aj
)

= 1
L∗

∑
(pi,xi)∈B∗5vi

(
aj
)

5: for m = 1, 2, · · · ,K do . Distributed loop
6: (in parallel over nodes)
7: initialize a(1)

m = aj

8: for t = 1 to τ do . Actual update loop
9: sample (pi,xi) ∈ Bm uniformly at random

10: calculate gtm according to (15)
11: a

(t+1)
m = a

(t)
m − ηgtm

12: end for
13: end for
14: aj+1 = aj + 1

K

∑K
m=1(a

(τ+1)
m − aj) . Aggregate

15: end for

AP minimize its local function, and then average the results
of all the F-APs. However, it is impractical unless the local
model parameters are all the same. The DANE algorithm [31]
is applied to remedy the above method by modifying the local
problems before each aggregation step.

Theorem 1: A feasible solution is to perturb the local
function Vm (a) of qm in each iteration j with the disturbance
term: −(bjm)Ta. It means that in each iteration j, the F-APs
parallelly solve the optimization problem as follows:

aj+1
m = arg min

a∈RS

{
Vm(a)− (bjm)Ta

}
, (14)

where aj+1
m denotes the vector of model parameters of qm

in iteration j + 1. The value of bjm can be calculated as
(5Vm(aj)−5V ∗(aj)) [31].

Proof: Please see Appendix A.
As described in the previous subsection, (14) can be solved

with SVRG. Consequently, FL based model integration is
proposed to incorporate DANE and SVRG into learning the
popularity prediction model. By using this approach, the
global model can be learned in a distributed way. Moreover,
the convergence rate can be improved by adopting SVRG. The
detailed description is shown in Algorithm 3. Let gtm denote
the gradient in iteration t in qm. In the actual update loop,
gtm is calculated by applying (10) to solving (14) as follows:

gtm = [5vi
(
a(t)
m

)
− (5Vm(aj)−5V ∗(aj))]

− [5vi(aj)− (5Vm(aj)−5V ∗(aj))] +5V ∗(aj)

= 5vi
(
a(t)
m

)
−5vi

(
aj
)

+5V ∗
(
aj
)
. (15)

F. Computational Complexity

The proposed policy can reduce computational complexity
in the following three aspects. Firstly, we divide users into

groups that have similar activity levels and in the same context
subspace. In this way, we can process these groups instead of
tracking each user, which reduces computational complexity.
Secondly, SVRG is used in our federated learning, which can
avoid traversing all dataset in each iteration. Refer to [31],
let n = ρ/β be the condition number of the loss function.
For the traditional SGD method, to achieve a precision of
ε, n2 ln (1/ε) data samples are needed to calculate their
gradients, whereas our adopted SVRG method only needs to
process n ln (1/ε) data samples, thereby reducing the gradient
calculation process of

(
n2 − n

)
ln (1/ε) samples. Finally, the

characteristics of federated learning determines that retraining
the global model in each round of updates is not needed, but
only requires to aggregate the model updates uploaded by
each UE. In addition, federated learning makes full use of the
computing power of each UE.

According to the above descriptions, the proposed populari-
ty prediction policy not only predicts popularity of existing or
newly-added contents with a high accuracy, but also signifi-
cantly reduces the computational complexity and communica-
tion overhead. Nevertheless, the popularity prediction models
need to be updated dynamically when the MSE exceeds a
predefined threshold.

IV. PERFORMANCE ANALYSIS OF FEDERATED LEARNING

In this section, the performance of our proposed FL based
popularity prediction policy will be analyzed. Let af denote
the final vector of model parameters obtained from Algorithm
3. Let a∗ denote the optimal solution of problem (13). The
convergence of Algorithm 3 will be investigated and the upper
bound of V (af )− V (a∗) will be derived4.

According to the above descriptions, FL is applied to the
model integration step of the proposed popularity prediction
policy. However, it is confronted with lots of constraints
in practical applications, including limited communications
bandwidth and computation resources [17]. Taking these lim-
itations into consideration, the hyper-parameters in Algorithm
3 should be well designed, especially the value of τ . As illus-
trated in Fig. 4, the process of FL mainly consists of two parts:
local computation and communications, which are carried
out iteratively. In each communications round, uploading and
downloading model updates costs communications resources.
Between two neighbouring communications rounds, each F-
AP performs local computation, which costs computation
resources. From Algorithm 3, the value of τ determines the
frequency of global aggregation, which thereby will deter-
mine the tradeoff between the costs of communications and
computation. Therefore, the value of τ needs to be designed
carefully, because it has a direct impact on the performance
of FL under given resource budget.

In order to compare the performance of FL with the optimal
case, we assume a scenario in which the vector of model
parameters is trained in a centralized manner [32]. As shown
in Fig. 4, we can divide the FL process into Z intervals,

4For simplicity, we use V (a) to denote the global optimized objective
function among all the considered F-APs, which is denoted as V ∗(a) in
(12).
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Fig. 4. Time allocation for federated learning.

where Z is the total number of communications rounds. Let [l]
denote the interval [(l−1)τ, lτ ] , for l = 1, 2, ..., Z. Let a[l](t)
be an auxiliary parameter vector in interval [l] in the scenario
of centralized learning (CL). At the beginning of each interval,
a[l](t) is synchronized with a(t) which is trained by FL. In
general, a[l](t) can be updated by gradient descent (GD) as
follows:

a[l](t) = a[l](t− 1)− η5 V (a[l](t− 1)), (16)

in which a[l](t) is only defined for t ∈ [(l − 1)τ, lτ ].
In order to derive the upper bound of V (af )− V (a∗), we

make the following assumption.
Assumption 1: We assume the following for all i:
1) vi(a) is convex;
2) vi(a) is ρ-Lipschitz, i.e., ‖vi(a1)− vi(a2)‖ ≤ ρ‖a1 −
a2‖ for any a1, a2;

3) vi(a) is β-smooth, i.e., ‖ 5 vi(a1) − 5vi(a2)‖ ≤
β‖a1 − a2‖ for any a1, a2;

4) There exists an upper bound of the gradient divergence
between vi(a) and the global loss function V (a), i.e.,
‖ 5 vi(a)−5V (a)‖ ≤ δ for any i, and a.

According to the linear characteristic of the prediction
model in (8), Assumption 1 is satisfied. Then, it is easy to
infer that Vm(a) and V (a) are also convex, ρ-Lipschitz, and
β-smooth.

Lemma 1: For any interval [l] and t ∈ [l], the upper bound
of the difference between the parameters obtained from CL
and FL respectively can be defined as follows:

‖am(t)− a[l](t)‖ ≤ g(t− (l − 1)τ), (17)

where
g(x) ,

2δ

β
((ηβ + 1)x − 1), (18)

for any x = 0, 1, 2, ....
Proof: Please see Appendix B.
Theorem 2: For any interval [l] and t ∈ [l], the upper bound

of the difference between the parameters obtained from CL
and FL respectively can be expressed as follows:

‖a(t)− a[l](t)‖ ≤ g(t− (l − 1)τ), (19)

in which g(x) is defined as in (18).
Proof: Please see Appendix C.
According to Theorem 2, we can see that the difference

of the parameters learned from CL and FL is proportional
to the gradient divergence δ. If δ gets smaller, the training

samples in different F-APs are more similar, which distinctly
will make the difference of the parameters obtained from CL
and FL smaller. In extreme cases, if the training samples in
F-APs are all the same, apparently δ = 0 and the upper bound
of ‖a(t)− a[l](t)‖ will be 0. In addition, we can see that as
x increases, the value of the function g(x) also increases. It
means that the upper bound on the difference between a(t)
and a[l](t) will be higher over time.

Since V (a) is also ρ-Lipschitz, we can derive that
V (a(t))− V (a[l](t)) ≤ ρ‖a(t)−a[l](t)‖ ≤ ρg(t− (l− 1)τ).
When t = (l− 1)τ , g(t− (l− 1)τ) = 0, ‖a(t)−a[l](t)‖ ≤ 0.
It means that at the beginning of the interval, a(t) = a[l](t).
This is consistent with the definition of a[l](t).

Theorem 3: When all the following conditions are satisfied:
1) ηβ < 1;
2) (1− βη

2 )ση > ρg(τ)
τε ;

3) V (a[l](t))− V (a∗) ≥ ε for all l;
4) V (af )− V (a∗) ≥ ε,

for some ε > 0, in which we define σ ,
(minl

1
‖a[l]((l−1)τ)−a∗‖ ), then the convergence upper

bound of V (af )− V (a∗) is given by:

V (af )− V (a∗) ≤ 1

T (ησ(1− βη
2 )− ρg(τ)

τε2 )
. (20)

Proof: Please see Appendix D.
According to Theorem 3, the convergence upper bound of

V (af ) − V (a∗) is affected by many parameters. As shown
in (20), when the value of τ gets larger, the value of g(τ)

τ
will become larger, making the convergence upper bound of
V (af )−V (a∗) higher. The reason is that when τ gets smaller,
the training process of FL will be closer to CL.

V. SIMULATION RESULTS

To evaluate the performance of the proposed popularity
prediction policy, we perform simulations based on the data
extracted from the MovieLens Dataset [33]. The MovieLens
100K Dataset contains 100, 000 ratings of 943 users on 1682
movies. Each user has rated at least 20 movies. Each data set
entry consists of an anonymous user ID, a movie ID, a rating
(1-5) and a timestamp. We assume that the ratings correspond
to the number of requests from users. Therefore, a rating
matrix is created. In addition, demographic information about
the users is provided in the dataset, including their gender,
age, occupation and Zip-code. For numerical evaluations, we
select gender and age as context information. Besides, the
genres of the movies are provided, which can be used as the
content features. In the simulations, we set the parameters in
the algorithms as follows: r1 = 0.5, r2 = 1, α = 0.5, β = 1,
η = 0.01, K = 5.

In Fig. 5, we show the logarithmic root mean-square error
(RMSE) of our proposed popularity prediction policy and the
AR model based policy with different number of considered
contents [8]. It can be observed that the RMSE value of
the proposed policy gradually decreases as the number of
contents increases. The reason is that the proposed policy can
better learn the relationship between popularity and content
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Fig. 5. Root mean-square error versus number of contents.
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Fig. 6. Cache hit rates versus total cache size.

features with more training samples. It can also be observed
that the RMSE of the proposed policy is smaller than the AR
model based policy. The reason is that the inputs of these
two policies are different. The input of the proposed policy
captures the internal characteristics of popularity after a series
of data preprocessing, whereas the input in the AR model
based policy is processed roughly only.

In Fig. 6, we show the cache hit rates of our proposed
policy and four benchmark policies, including the AR model
based policy [8], LRU, LFU [6], and Random Caching (RC).
Assume that the caching policy for the proposed policy and
the AR based policy are to cache the most popular contents
preferentially according to the prediction. In spite of the
different methods they implement, all the above policies are
proposed to maximize cache hit rates. It can be observed that
the cache hit rates of all the considered policies increase
gradually as the storage capacity increases. It can also be
observed that the proposed policy achieves better performance
than the four benchmarks with higher cache hit rate. The LRU
and LFU are liable to suffer performance degradation due
to their neglect of content popularity. Due to the improved
prediction accuracy as shown in Fig. 5, the proposed policy
achieves higher cache hit rate than the AR based policy
by up to 21.5%. Moreover, the proposed policy can predict
the popularity of newly-added contents by leveraging user
preference, which also leads to better caching performance.
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Fig. 7. Root mean-square error versus number of iterations.
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In Fig. 7, we show the logarithmic RMSE of our proposed
policy and the centralized policy as the number of iterations
varies when generating the global model. It can be observed
that our proposed policy achieves faster convergence than the
centralized policy. The reason is that our proposed policy
generates the global model by integrating the existing local
models based on FL. The global model can be initialized by
the local models, instead of random generation. Consequently,
a large part of repeated computation is avoided. While the
centralized policy has to recalculate the training samples after
data transmission, which is resource-wasting.

In Fig. 8, we show the value of the loss function (logarith-
mic RMSE) of our proposed policy when using different val-
ues of τ . It can be observed that the value of the loss function
decreases gradually as the number of communications round-
s increasing. Obviously, the loss function converges more
quickly when τ is bigger. For larger value of τ , each F-AP
using FL is able to achieve high predefined training accuracy
with less communications rounds. Therefore, there exists a
tradeoff between computation resources and communications
resources. The value of τ can be adjusted flexibly according
to the resource constraints.
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VI. CONCLUSIONS

In this paper, we have proposed a novel popularity pre-
diction policy based on user preference learning, adaptive
context space partitioning and FL. Our proposed policy can
predict content popularity more accurately, even when the
contents have no statistical data in advance. The reason is that
the relation between content popularity and user preference
is considered. Specifically, FL based model integration is
efficient in reducing computational complexity and commu-
nication overhead, which makes our proposed policy more
practical. The convergence bound of the FL based model
integration approach is analyzed. Based on the theoretical
analysis and the obtained expressions, the relationship be-
tween the convergence upper bound and the critical parameters
is presented. Simulation results have shown that our proposed
policy achieves better prediction and caching performance
than traditional policies. Future work will explore the idea of
combining user mobility prediction with content popularity
prediction.

APPENDIX A. PROOF OF THEOREM 1

The idea behind the optimization problem of the form in
(14) is the following. The intuitive averaging method is not
practical in reality, unless the local functions Vm(a)(m =
1, 2, ...,K) are all the same. An efficient improved method
is to modify the local optimization problems before the
aggregation steps. In order to modify the local problems, the
local function Vm(a) in qm in iteration j can be perturbed by
a quadratic term of the form: −(bjm)Ta+ µ

2 ‖a−a
j‖2. Instead

of solving the original optimization problem in (9), each F-AP
should solve the perturbed problem. Therefore, the modified
problem takes the following form:

aj+1
m = arg min

a∈RS

Vm(a)− (bjm)Ta+
µ

2
‖a− aj‖2. (21)

The regularizer µ
2 ‖a − a

j‖2 can help avoid overfitting.
For simplicity, we can choose µ = 0. The vector bjm is
not well defined yet. In order to obtain bjm and figure out
how bjm would change along with iterations, the optimality
conditions should be considered. Asymptotically as j → ∞,
it is expected that ajm → a∗, in which a∗ denotes the optimal
solution. The value of a∗ should be the solution of following
equation:

5Vm(a)− bjm + µ(a− aj) = 0. (22)

As a consequence, the vector bjm should be calculated as the
following form:

bjm = 5Vm(a∗) + µ(a∗ − aj) ≈ 5Vm(a∗), (23)

since aj ≈ a∗. However, the vector a∗ is unknown. Another
solution is to put forward an update rule which makes bjm
converge to 5Vm(a∗) as j →∞.

DANE is presented to solve the problems like (13). The
core idea of DANE is to form a local subproblem Vm(a)
which only depends on local data and the gradient of the
entire function 5V ∗(a). DANE operates via the quadratic

perturbation trick (21) with

bjm = 5Vm(aj)− η5 V ∗(aj). (24)

When j →∞, aj → a∗, so 5V ∗(aj)→5V ∗(a∗) = 0. As
a result, bjm converges to 5Vm(a∗) as j →∞ In the default
setting, we take µ = 0 and η = 1.

This completes the proof.

APPENDIX B. PROOF OF LEMMA 1

At the beginning of each interval, a[l](t) and am(t) is
synchronized with a(t). As a consequence, when t = (l−1)τ ,
am(t) = a[l](t). Since g(0) = 0, we can derive that
‖am(t)− a[l](t)‖ = g(0) when t = (l − 1)τ .

Based on Algorithm 3, we know that the iterative formula
of am(t) is:

am(t) = am(t− 1)− η[5vi(am(t− 1))

−5vi(a((l − 1)τ)) +5V (a((l − 1)τ))]. (25)

Then we can derive Lemma 1 by induction. Firstly, we assume
that

‖am(t− 1)− a[l](t− 1)‖ ≤ g(t− 1− (l − 1)τ) (26)

holds for some t ∈ ((l− 1)τ, lτ). Based on (16) and (25), we
have:

‖am(t)− a[l](t)‖
= ‖am(t− 1)− η[5vi(am(t− 1))−5vi(a((l − 1)τ))

+5V (a((l − 1)τ))]− [a[l](t− 1)− η5 V (a[l](t− 1))]‖
= ‖am(t− 1)− a[l](t− 1)− η(5vi(am(t− 1))

−5vi(a[l](t− 1)) +5vi(a[l](t− 1))−5V (a[l](t− 1)))

−5vi(a((l − 1)τ)) +5V (a((l − 1)τ))‖
≤ ‖am(t− 1)− a[l](t− 1)‖+ η‖ 5 vi(am(t− 1))

−5vi(a[l](t− 1))‖+ η‖ 5 vi(a[l](t− 1))−5V (a[l](t− 1))‖
+ η‖ 5 vi(a((l − 1)τ))−5V (a((l − 1)τ))‖

≤ (ηβ + 1)‖am(t− 1)− a[l](t− 1)‖
+ 2ηδ ≤ (ηβ + 1)g(t− 1− (l − 1)τ) + 2ηδ

= (ηβ + 1)
2δ

β
((ηβ + 1)t−1−(l−1)τ − 1) + 2ηδ

=
2δ

β
((ηβ + 1)t−(l−1)τ − 1)

= g(t− (l − 1)τ). (27)

This completes the proof.

APPENDIX C. PROOF OF THEOREM 2

We can prove Theorem 2 based on Lemma 1. According
to the aggregation step in Algorithm 3, we have:

a(t) =
K∑
m=1

Lm
L
am(t)

=
K∑
m=1

Lm
L

(am(t− 1)− η[5vi(am(t− 1))

−5vi(a((l − 1)τ)) +5V (a((l − 1)τ))])

= a(t− 1)−
K∑
m=1

Lm
L
η[5vi(am(t− 1))
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−5vi(a((l − 1)τ)) +5V (a((l − 1)τ))]. (28)

For t ∈ ((l − 1)τ, lτ), we have:

‖a(t)− a[l](t)‖

= ‖a(t− 1)− η
K∑
m=1

Lm
L

[5vi(am(t− 1))−5vi(a((l − 1)τ))

+5V (a((l − 1)τ))]− [a[l](t− 1)− η5 V (a[l](t− 1))]‖

= ‖a(t− 1)− a[l](t− 1)− η

L

K∑
m=1

Lm[5vi(am(t− 1)

− 1

Lm

∑
(pj ,xj)∈Bm

5vj(a[l](t− 1)))]

− η

L

K∑
m=1

Lm(5vi(a((l − 1)τ))−5V (a((l − 1)τ)))‖

≤ ‖a(t− 1)− a[l](t− 1)‖+ η

L

K∑
m=1

∑
(pj ,xj)∈Bm

‖ 5 vi(am(t− 1))

−5vj(a[l](t− 1))‖+ ηδ

≤ ‖a(t− 1)− a[l](t− 1)‖+ η

L

K∑
m=1

∑
(pj ,xj)∈Bm

‖ 5 vi(am(t− 1))

−5vj((am(t− 1)) +5vj((am(t− 1))−5vj(a[l](t− 1))‖
+ ηδ

≤ ‖a(t− 1)− a[l](t− 1)‖+ ηβ

L

K∑
m=1

Lm‖am(t− 1)− a[l](t− 1)‖

+ 2ηδ

≤ ‖a(t− 1)− a[l](t− 1)‖+ ηβ

L

K∑
m=1

Lmg(t− 1− (l − 1)τ) + 2ηδ

= ‖a(t− 1)− a[l](t− 1)‖+ 2ηδ(ηβ + 1)t−1−(l−1)τ . (29)

As a consequence,

‖a(t)− a[l](t)|| − ||a(t− 1)− a[l](t− 1)‖
≤ 2ηδ(ηβ + 1)t−1−(l−1)τ . (30)

When t = (l − 1)τ , a(t) = a[l](t), so a(t)− a[l](t) = 0. By
summing up (30) over different values of t ∈ ((l − 1)τ, lτ),
we have:

‖a(t)− a[l](t)‖ =
t∑

x=(l−1)τ+1

‖a(x)

− a[l](x)‖ − ‖a(x− 1)− a[l](x− 1)‖

≤ 2ηδ
t∑

x=(l−1)τ+1

(ηβ + 1)x−1−(l−1)τ

=
2δ

β
((ηβ + 1)t−(l−1)τ − 1)

= g(t− (l − 1)τ). (31)

This completes the proof.

APPENDIX D. PROOF OF THEOREM 3
Intuitively, we have V (a[l](t)) − V (a∗) > 0. Then, we

introduce the following lemmas.
Lemma 2: When ηβ < 1, for any l and t ∈ [l], we have

that ‖a[l](t)− a∗‖ does not increase with t.

Proof: According to Lemma 3.5 in [34], we have:

5 V (a[l](t))
T (a[l](t)− a∗)−

‖5 V (a[l](t))‖2

2β

≥ V (a[l](t))− V (a∗) > 0, (32)

i.e., 5V (a[l](t))
T (a[l](t) − a∗) >

‖5V (a[l](t))‖2

2β . Therefore,
we have:

‖a[l](t+ 1)− a∗‖2 = ‖a[l](t)− η5 V (a[l](t))− a∗‖2

= ‖a[l](t)− a∗‖2 − 2η5 V (a[l](t))
T (a[l](t)− a∗)

+ η2‖ 5 V (a[l](t))‖2

< ‖a[l](t)− a∗‖2 − η
‖ 5 V (a[l](t))‖2

β
+ η2‖ 5 V (a[l](t))‖2

= ‖a[l](t)− a∗‖2 + η(
ηβ − 1

β
)‖V (a[l](t))‖2. (33)

When ηβ < 1, we have:

‖a[l](t+ 1)− a∗‖2 ≤ ‖a[l](t)− a∗‖2. (34)

Lemma 3: For any l, when ηβ < 1 and t ∈ [l], we have:

V (a[l](t+1))−V (a[l](t)) ≤ η(
βη

2
−1)‖5V (a[l](t))‖2. (35)

Proof: According to Lemma 3.4 in [34], we have:

V (x1)−V (x2) ≤ 5V (x2)T (x1−x2)+
β

2
||x1−x2||2. (36)

Then, we can derive that

V (a[l](t+ 1))− V (a[l](t)) ≤ 5V (a[l](t))
T (a[l](t+ 1)− a[l](t))

+
β

2
‖a[l](t+ 1)− a[l](t)‖2

= 5V (a[l](t+ 1))T (−η5 V (a[l](t))) +
β

2
‖ − η5 V (a[l](t))‖2

= η(
βη

2
− 1)‖ 5 V (a[l](t))‖2. (37)

Lemma 4: For any l, when ηβ < 1 and t ∈ [l], we have:

1

V (a[l](t+ 1))− V (a∗)
− 1

V (a[l](t))− V (a∗)

≥ ση(1− βη

2
). (38)

Proof: According to (35), we have:

V (a[l](t+ 1))− V (a∗) ≤ V (a[l](t))

− V (a∗) + η(
βη

2
− 1)‖ 5 V (a[l](t))‖2. (39)

Since function V (a) is convex, we have:

V (a[l](t))− V (a∗) ≤ V (a[l](t))
T (a[l](t)− a∗)

≤ ‖V (a[l](t))‖‖a[l](t)− a∗‖. (40)

Therefore, we can derive that

V (a[l](t))− V (a∗)

‖a[l](t)− a∗‖
≤ ‖V (a[l](t))‖. (41)
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Substituting (41) into (39), we have

V (a[l](t+ 1))− V (a∗) ≤ V (a[l](t))− V (a∗)

− η(1− βη

2
)
(V (a[l](t))− V (a∗))2

‖a[l](t)− a∗‖2

≤ V (a[l](t))− V (a∗)− ση(1− βη

2
)(V (a[l](t))− V (a∗))2.

(42)

Since (V (a[l](t + 1)) − V (a∗))(V (a[l](t)) − V (a∗)) > 0
(proved in Lemma 2), we can use it to divide both sides of
(42) and have

1

V (a[l](t))− V (a∗)
≤ 1

V (a[l](t+ 1))− V (a∗)

− ση(1− βη

2
)

V (a[l](t))− V (a∗)

V (a[l](t+ 1))− V (a∗)
. (43)

From (39), we know that V (a[l](t))−V (a∗) ≥ V (a[l](t+

1)) − V (a∗). Thus, V (a[l](t))−V (a∗)

V (a[l](t+1))−V (a∗) ≥ 1. Substituting it
into (43), we have:

1

V (a[l](t+ 1))− V (a∗)
− 1

V (a[l](t))− V (a∗)

≥ ση(1− βη

2
). (44)

Now we can prove Theorem 3.
Based on Lemma 4, we can infer that

1

V (a[l](lτ))− V (a∗)
− 1

V (a[l]((l − 1)τ))− V (a∗)

=
lτ−1∑

t=(l−1)τ

(
1

V (a[l](t+ 1))− V (a∗)
− 1

V (a[l](t))− V (a∗)
)

≥ τση(1− βη

2
). (45)

Summing up (45) for all l = 1, 2, ..., Z yields

Z∑
l=1

[
1

V (a[l](lτ))− V (a∗)
− 1

V (a[l]((l − 1)τ))− V (a∗)
]

≥
Z∑
l=1

τση(1− βη

2
) = Zτση(1− βη

2
). (46)

Since T = Zτ , we can rewrite (46) as follows:
1

V (a[Z](T ))− V (a∗)
− 1

V (a[1](0))− V (a∗)

−
Z−1∑
l=1

(
1

V (a[l+1](lτ))− V (a∗)
− 1

V (a[l](lτ))− V (a∗)
)

≥ Tση(1− βη

2
). (47)

We also have:
1

V (a[l+1](lτ))− V (a∗)
− 1

V (a[l](lτ))− V (a∗)

=
V (a[l](lτ))− V (a∗)− V (a[l+1](lτ)) + V (a∗)

(V (a[l+1](lτ))− V (a∗))(V (a[l](lτ))− V (a∗))

= −
V (a[l+1](lτ))− V (a[l](lτ))

(V (a[l+1](lτ))− V (a∗))(V (a[l](lτ))− V (a∗))

≥ −
ρ‖a[l+1](lτ)− a[l](lτ)‖

(V (a[l+1](lτ))− V (a∗))(V (a[l](lτ))− V (a∗))

= −
ρ‖a(lτ)− a[l](lτ)‖

(V (a[l+1](lτ))− V (a∗))(V (a[l](lτ))− V (a∗))

≥ − ρg(τ)

(V (a[l+1](lτ))− V (a∗))(V (a[l](lτ))− V (a∗))
. (48)

Since V (af )−V (a∗) ≥ ε, we have V (a[l](lτ))−V (a∗) ≥
ε for all l. We have proved that V (a[l](t)) ≥ V (a[l](t+ 1)).
Therefore,

−1

(V (a[l+1](lτ))− V (a∗))(V (a[l](lτ))− V (a∗))

≥ − 1

ε2
. (49)

Substituting (49) into (48), we have:

1

V (a[l+1](lτ))− V (a∗)
− 1

V (a[l](lτ))− V (a∗)

≥ −ρg(τ)

ε2
. (50)

Substituting (50) into (47), we have:

1

V (a[Z](T ))− V (a∗)
− 1

V (a[1](0))− V (a∗)

≥ Tση(1− βη

2
) +

Z−1∑
l=1

(−ρg(τ)

ε2
)

= Tση(1− βη

2
)− (Z − 1)

ρg(τ)

ε2
. (51)

According to (49), we also have:

−1

(V (a(T ))− V (a∗))(V (a[Z](T ))− V (a∗))
≥ − 1

ε2
. (52)

Then, we have:
1

V (a(T ))− V (a∗)
− 1

V (a[Z](T ))− V (a∗)

=
V (a[Z](T ))− V (a∗)− V (a(T )) + V (a∗)

(V (a(T ))− V (a∗))(V (a[Z](T ))− V (a∗))

=
V (a[Z](T ))− V (a(T ))

(V (a(T ))− V (a∗))(V (a[Z](T ))− V (a∗))

≥ − ρg(τ)

(V (a(T ))− V (a∗))(V (a[Z](T ))− V (a∗))

≥ −ρg(τ)
ε2

. (53)

Summing up (51) and (53), we have:

1

V (a(T ))− V (a∗)
− 1

V (a[1](0))− V (a∗)

≥ Tση(1− βη

2
)− Z ρg(τ)

ε2

= Tση(1− βη

2
)− T

τ

ρg(τ)

ε2

= T [ση(1− βη

2
)− ρg(τ)

τε2
]. (54)
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Thus, we have:
1

V (a(T ))− V (a∗)
≥ 1

V (a(T ))− V (a∗)

− 1

V (a[1](0))− V (a∗)

≥ T [ση(1− βη

2
)− ρg(τ)

τε2
] > 0. (55)

When the condition that (1− βη
2 )ση > ρg(τ)

τε is satisfied, we
can derive that

V (a(T ))− V (a∗) ≤ 1

T (ση(1− βη
2 )− ρg(τ)

τε2 )
, (56)

i.e.,

V (af )− V (a∗) ≤ 1

T (ησ(1− βη
2 )− ρg(τ)

τε2 )
.

This completes the proof.
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