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Abstract—In this paper, a novel framework is proposed to per-
form data-driven air-to-ground channel estimation for millimeter
wave (mmWave) communications in an unmanned aerial vehicle
(UAV) wireless network. First, an effective channel estimation
approach is developed to collect mmWave channel information,
allowing each UAV to train a stand-alone channel model via a
conditional generative adversarial network (CGAN) along each
beamforming direction. Next, in order to expand the application
scenarios of the trained channel model into a broader spatial-
temporal domain, a cooperative framework, based on a dis-
tributed CGAN architecture, is developed, allowing each UAV to
collaboratively learn the mmWave channel distribution in a fully-
distributed manner. To guarantee an efficient learning process,
necessary and sufficient conditions for the optimal UAV network
topology that maximizes the learning rate for cooperative channel
modeling are derived, and the optimal CGAN learning solution
per UAV is subsequently characterized, based on the distributed
network structure. Simulation results show that the proposed
distributed CGAN approach is robust to the local training
error at each UAV. Meanwhile, a larger airborne network size
requires more communication resources per UAV to guarantee
an efficient learning rate. The results also show that, compared
with a stand-alone CGAN without information sharing and
two other distributed schemes, namely: A multi-discriminator
CGAN and a federated-learning CGAN method, the proposed
distributed CGAN approach yields a higher modeling accuracy
while learning the environment, and it achieves a larger average
data rate in the online performance of UAV downlink mmWave
communications.

Index Terms — generative adversarial network; millimeter wave;
UAV communications; beyond 5G.

I. INTRODUCTION

Millimeter wave (mmWave) frequency bands are a pillar
of next-generation wireless systems as they will enable ultra-
high-speed communications and airborne wireless networks
[2]. In order to overcome the fast attenuation of mmWave
signals, multiple-input multiple-output (MIMO) technologies
with highly-directional beamforming are employed so as to
increase the cell throughput and improve the communication
reliability. Compared with the sub-6 GHz spectrum, the higher
frequency of mmWave yields a shorter coherence time for
the wireless channels. Therefore, mmWave communication
links are more time-sensitive and require frequent channel
measurements [3]. Meanwhile, highly-directional beamform-
ing requires accurate knowledge of angle-of-arrivals (AoAs)

A preliminary version of this work appears in the proceedings of IEEE ICC
2021 [1].
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and angle-of-departures (AoDs) for the propagation paths in
order to achieve beam alignment between transmitter and
receiver [4]. However, both the channel estimation and beam
training can incur heavy communication overhead and reduce
the spectrum efficiency [5]. Therefore, in order to improve the
transmission performance, it is essential to have an accurate
model to characterize a mmWave link and estimate its under-
lying MIMO channels.

Compared with a terrestrial communication network,
mmWave channel modeling for an airborne, drone-based
wireless system is more challenging [6]. Airborne wireless
networks have been increasingly considered as a suitable
platform to deploy mmWave communications, due to a high
possibility of line-of-sight (LOS) link states. For example,
an unmanned aerial vehicle (UAV)-based station (BS) can
dynamically adjust its location so as to maintain a LOS
channel with transceivers [7]. However, a mobile UAV BS
must often provide connectivity to a much larger geographical
area compared with a typical terrestrial cellular BS. Moreover,
compared to a terrestrial channel, the air-to-ground (A2G)
channel includes more model parameters, such as the 3D
location and dynamic orientation of the UAV, which makes
the channel modeling process more challenging. Meanwhile,
given that the mmWave channel response is time and location
dependent, the statistical model generated from one commu-
nication environment experienced by a UAV, at a given time
and spatial coordinate, cannot be flexibly generalized into
other temporal or spatial settings [8]. As a result, traditional
channel modeling methods, such as ray-tracing, can become
very difficult and time-consuming to measure mmWave A2G
channels efficiently. Indeed, most current A2G channel models
are calibrated at sub-6 GHz frequencies, while a standard-
defined A2G model over mmWave bands, as well as the
experimental data, has been very limited [9]. However, for
a UAV BS, it is essential to have an accurate A2G channel
model to estimate the mmWave link state, and, thus, save pilot
training time and transmit power for efficient communications.
In order to address the challenges of mmWave A2G channel
modeling, a data-driven approach can be applied, where a
UAV BS collects the A2G channel information during its
cellular service, and then, build a stochastic channel model to
estimate the long-term channel parameters. Such a UAV can
also collaborate with neighboring UAVs to build a generalized
spatial-temporal map of the mmWave environment.
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A. Related Works

In order to capture the stochastic characteristics of mmWave
channels, a number of data-driven modeling approaches were
developed in [2], [5], and [9]-[15]. Traditional methods, such
as spatial-temporal correlation [2] and compressed sensing
[10], were investigated for characterizing mmWave MIMO
transmissions. The authors in [5] developed a neural network
approach for characterizing mmWave transmissions and esti-
mating MIMO channels. A deep learning dataset is developed
in [11] to extract the propagation feature of mmWave-based
communication links. However, all of the proposed modeling
frameworks in [2], [5], [10], and [11] focus on a terrestrial
mmWave transmission scenario, and their results are not ap-
plicable for A2G channel modeling, due to distinct propagation
environments. To specifically address the characteristics of
airborne mmWave communications, some recent works in [9]
and [12]-[15] investigate the UAV-related mmWave channel
from different perspectives. The authors in [12] provided a
comprehensive survey on A2G propagation channel modeling
for both the microwave and mmWave spectrum bands. The
authors in [9] developed a generative neural network to
predict the mmWave link state and model statistical channel
parameters between a UAV and a ground BS. An empirical
propagation loss model is proposed in [13] based on an
extensive measurement for UAV-to-UAV communications at
60 GHz, and a traditional ray tracing method is applied in
[14] to build a geometry-based stochastic model for UAV-to-
vehicle communications at 28 GHz. Furthermore, the received
signal strength and delay spread of mmWave transmissions is
analyzed in [15] to provide further details for A2G channels.
However, all of the prior art in [9] and [12]-[15] studies the
characteristics of mmWave channel models based on a single
and local dataset, and, thus, the generated channel model is
constrained by a limited amount of channel samples and a few
dedicated measurement environments. As such, these existing
models cannot be used as a general and standardized model
for A2G mmWave channels.

In order to extend the channel model to large-scale appli-
cation scenarios, a promising solution is to use a cooperative
modeling approach with multiple, distributed channel datasets.
In a recent work [16], the authors developed a federated
learning (FL) framework to train the channel model from
distributed data sources. However, the centralized network
topology of the FL framework requires a global controller
for information aggregation, and, thus, it cannot operate in a
fully distributed network as is the case in an airborne network.
The work in [17] characterized a time-varying channel model
via continuous data exchange in a distributed wireless system.
However, sharing the raw channel data in a real-time manner
yields heavy communication overhead. Furthermore, beyond
the discriminative models in [5] and [16], a generative machine
learning model is applied in recent works [8] and [18] to
model the wireless channel. The authors in [8] proposed a
generative adversarial network (GAN) framework to model
the wireless channel based on massive raw data, and the work
in [18] employed a conditional GAN to represent unknown
channels to enable the encoding and modulation optimization,
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given the pilot training information. However, all of the prior
works in [8] and [16]-[18] do not focus on the characteristic
of mmWave frequencies or A2G wireless links. Thus, their
results are not applicable to the mmWave channel estimation
in the UAV communications. Given that a generative model
can learn the application range of the channel model from
the temporal-spatial information in the dataset while training
the channel features, it provides a better learning framework
compared with a discriminative approach (e.g., such as those
in [5] and [16]). Remarkably, there are no fully distributed
generative learning frameworks developed to deal with the
problem of data-driven mmWave channel modeling in prior
works. As such, to fill this gap, in this work, a fully-distributed
cooperative generative learning model will be developed to
characterize the environment of A2G mmWave links.

B. Contributions

The main contribution of this paper is a novel framework
that can perform data-driven channel modeling for mmWave
communications in a distributed UAV network. In particu-
lar, a learning approach, based on a distributed conditional
generative adversarial network (CGAN) is proposed for the
UAV network to jointly learn the mmWave A2G channel
characteristics from multiple, distributed datasets. In summary,
our key contributions are:

« First, we develop an effective channel measurement ap-
proach to collect real-time A2G channel information over
mmWave frequencies, allowing each UAV to train a
stand-alone channel model via a CGAN at each beam-
forming direction.

o Next, to expand the application scenarios of the trained
channel model into a broader spatial-temporal domain,
we propose a cooperative learning framework, based
on the distributed framework of brainstorming GANs
[19]. This distributed generative approach allows each
UAV to learn the channel distribution from other agents
in a fully distributed manner, while characterizing an
underlying distribution of the mmWave channels based
on the entire channel dataset of all the UAVs. In order
to avoid revealing the real measured data or the trained
channel model to other agents, each UAV shares synthetic
channel samples that are generated from its local channel
model in each iteration. The proposed approach does
not require any control center, and it can accommodate
different types of neural networks.

o To guarantee an efficient learning process in the dis-
tributed UAV system, we analytically derive the prob-
ability of learning completion for the distributed CGAN
learning at each iteration. Then, we theoretically derive
the necessary and sufficient conditions for the optimal
UAV-to-UAV communication topology that maximizes
the learning rate for cooperative channel modeling. Fi-
nally, based on the structure of the distributed UAV
network, we characterize the optimal CGAN learning
solution per UAV.

Simulation results show that the proposed distributed CGAN
approach is resistant and robust to the local training error
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of each UAV. When the airborne network size becomes
larger, more communication resources per UAV are required
to guarantee an efficient learning rate. Meanwhile, in each
iteration, by sharing more generated samples, the learning
rate of the distributed CGAN scheme will increase, but the
data transmission duration will also be larger. To ensure an
efficient data transmission, a better wireless link state or a
larger transmit power will be required so as to improve the
transmission rate. The results also show that, compared with a
local CGAN without information sharing and other distributed
schemes, such as the multi-discriminator CGAN and the
FL-based CGAN methods, the proposed distributed CGAN
approach yields a higher modeling accuracy in the learning
result, and it achieves a higher average data rate in the online
performance of UAV downlink mmWave communications.

The rest of this paper is organized as follows. Section II
presents the communication model and data collection. The
CGAN learning framework, distributed UAV network, and
problem formulation are presented in Section III. The optimal
network topology and learning solutions are derived in Section
IV. Simulation results are shown in Section V. Conclusions
are drawn in Section VL

II. COMMUNICATION MODEL AND DATA COLLECTION
A. Millimeter Wave Channel Model

Consider an airborne cellular network, in which a set Z of
UAVs provide mmWave downlink communications to ground
user equipment (UE). We assume that each UAV is equipped
with an uniform linear array of M antennas, and the steering
vector of the UAV’s transmit antennas is given by a;(¢")
[1,edXsin(@") ... d(M=DZsin(@)|T where \ is the carrier
wavelength, and ot € [0,27) is the AoD. Meanwhile, each
UE is equipped with an uniform linear array of N antennas,
and the receiver’s antenna vector is a,.(¢") = [1, e/ sin(®"),

-, e WN=DX (@7 with g7 being the AoA. Consequently,
the MIMO channel matrix H € CN*M can be given by [10]

L
H =Y wa.(¢)af (),

=1

M

where (-)# is the conjugate transpose, L is the number of

distinct paths, and oy € C, ¢!, and ¢] are the complex channel
gain, AoD, and AoA of path [, respectively.

Given the fact that the A2G channel over mmWave is very
sensitive to blockage and has few scattering links, the value
of L will be much smaller than M x N. Meanwhile, since
a massive MIMO mmWave array can provide a narrow beam
that eliminates much of the multipath [20], we can assume
that both the UAV and each UE apply a perfect directional
radiation technology for beam training purposes, such that
both the transmitter’s and receiver’s antennas have only one
main lobe without any side lobes. Thus, the mmWave channel
consists of a single path, i.e. L = 1, which is either line-of-
sight (LoS), reflected none-line-of-sight (NLoS), or complete
outage. This assumption is supported by experimental results
in [15] and [21], where a single path-component is observed
from the 60 GHz UAV communications in the suburban and
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rural environments. Meanwhile, the transceiver design in [22]
and other prior works in [23]-[25] can further support the use
of a single-path assumption for general mmWave systems.
Now, we consider a UAV located at 3D coordinates « and a
UE located at 3D coordinates y, where  and y are available
via a global positioning system (GPS) module, equipped at
each UAV and UE, respectively. Then, at the service time {,
the A2G MIMO channel matrix in (1) can be rewritten as

H(z,y,t,¢".¢") = a(z,y, 1,6, ¢")a (¢ )a; (¢"), (2)

where the channel gain « is jointly determined by the AoD-

AoA pair ¢ £ (¢!, ¢") of the mmWave path, as well as the
communication environment (x,y,t). Here, the service time
t is based on a local clock at the UAV.

B. Channel Estimation and Data Collection

In a directional transmission system, pilot training is nec-
essary to align the beam direction between the UAV and its
served UE. Thus, the A2G mmWave channel information can
be measured during the beam training stage. Due to the narrow
beam, it is necessary to exploit a pre-determined codebook
for beam alignment between the UAV and the UE. Let K be
the length of the codebook, and (wy, q;,) be the k-th pair of
beamforming and combining vectors in the codebook. Then,
the received pilot signal at the UE for the k-th pilot training
is

3)

where P is the transmit power of pilot symbols at the UAV,
and n ~ CN (0,01 y) is the noise vector. Here, we assume
that each UAV and UE will have a digital beamforming phased
array such that the direction information of signal departure
¢!, and signal arrival ¢}, during the k-th pilot training can be
uniquely determined by the beamforming vector wy and the
combining vector q,,, respectively. Therefore, the AoD can be
given as a function of the beamforming vector ¢! (wy,), and the
AoA as ¢}(q;,). The relationship between the beamforming
direction and the digital weights of the antenna arrays has
been widely studied and mathematically derived in [4], [26],
and [22].

Then, let ® be the Kronecker product, and vec(-) be the
vectorization of a matrix. The received pilot signal in (3) can
be rewritten as

L = \/Ig(wf ® qu)vec(Hk) + qun,
= VP(wj @ q')[a; (wi) © ar(qy)]ar(@, y,t, ;) + g’ n,
= Bkak(wa Yy, ta d)k) + qu’l'L,

ri, = VPqi Hywy + qfin,

“)
where (-)* is the transpose, (-)* is complex conjugate, and
Br = VP(wl @ q)(a}, ® a.;) € C. After receiving
{rk k=1 K,each UE will send the pilot training information
to the UAV via a sub-6 GHz uplink [27]. Note that the
beamforming vector wj and the combining vector g, are
chosen from a pre-determined codebook which is known by
the UAV for beam training purposes, and the antenna steering
vectors a; and a, can be uniquely determined based on wy
and g, directly. Thus, the value of {fj}vr is completely
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known by the UAV. Therefore, according to pilot signals in
(4), the channel gain from the UAV located at « towards a
UE located y during time ¢ with an AoD-Ao0A pair ¢, can
be estimated via

ar(@,y,t,¢p) =168y ' = an(@, y, t, pp) + iy,  (5)

where 7, = 3, 1qu n is the uncorrelated estimation error.

During the airborne cellular service, the channel gain aj
can be measured and collected by each UAV over a spatial-
temporal domain, with K different pairs of antenna steering
directions. We denote the channel dataset of a given UAV i
as §; = {sn7 d)n}nzl,-n S = {wny Y bny Qs ¢n}n:1,~-- ,Sis
where s, = {®n,Y,,, tn, &y} is a channel sample, ¢,, is the
AoA-AoD information associated with s, and S; = |S;] is
the total number of channel samples. Here, note that the pilot
training stage is inevitable for beamforming transmissions, and
the resulting pilot signals are usually discarded after channel
measurement. In this work, we allow each UAV to keep the
pilot signals, collect channel information, and build its own
dataset S;. Given that all the channel components are available
from pilot signals, the proposed data collection process does
not require any additional communication overhead to form
the dataset S; at each UAV i.

Based on S;, each UAV can build its own model for estimat-
ing A2G mmWave links in its dedicated measurement area.
However, traditional channel modeling approaches, such as
ray tracing and regression, cannot provide a suitable modeling
framework for A2G mmWave links for several reasons. First,
different from terrestrial wireless channels, there are limited
studies on the characteristics of A2G links over the mmWave
spectrum (e.g., see [15] and [21], however, those works
focus on the small-scale temporal and spatial characteristics
of mmWave channel, but do not develop tractable models).
As a result, it is difficult to find a rigorous data-driven
channel model to optimize mmWave A2G channel parameters,
using well-known regression methods [14]. Meanwhile, the
amount of channel samples that each UAV owns is usually not
sufficient to build an accurate stochastic model that properly
captures the amplitude, phase and directional features of
the MIMO channel response over a large spatial-temporal
domain. For example, the altitude of a UAV largely determines
the LOS probability towards UEs, and, hence, an accurate
estimation of the mmWave link state will require a large
amount of measurement data, which mandates cooperative
learning. Moreover, the mmWave channel characteristics are
location and time dependent. In order to build a general and
standardized A2G mmWave model, the channel data must be
collected from multiple distinct communication environments,
and the corresponding channel parameters will span a larger
set of possible values, which brings more challenges for the
channel modeling accuracy. To address the aforementioned
challenges for mmWave A2G channel estimation, we will in-
troduce a data-driven deep learning approach with cooperative
information sharing, such that an accurate channel model can
be developed by each UAV over a large-scale spatial and
temporal domain.
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z ~ N(0, Uép) G; s = Gi(z|p)
3

Fig. 1: The learning framework of a stand-alone CGAN for
each UAV 1.

Update
parameter;

III. DISTRIBUTED CHANNEL MODELING VIA
CONDITIONAL GANS

A. Conditional GAN for Channel Modeling

Given the channel dataset S;, each UAV 1§ can train a
local channel model, based on deep neural networks (DNNs).
For example, a discriminative learning model, such as in [5]
and [16], can be trained to take a spatial-temporal pair as
input and outputs a complex channel gain. This discriminative
framework enables a UAV to predict the mmWave channel
given any new input, however, it fails to capture any ad-
ditional information from &;, other than the channel gain
value. Indeed, based on the dataset (x,,y,,,tn)vn C Si, we
can acquire the geographic area that UAV i has previously
visited and the time interval during which UAV i measures
the channel information. The underlying distribution of the
spatial-temporal pairs in S; will define the application range
of the trained channel model. In order to jointly capture the
applicable spatial-temporal domain from S, while learning
the channel model, we propose a generative approach for the
mmWave A2G channel modeling.

Given that the pre-determined codebook defines a dedicated
set of AoA-AoD pairs for each UAV and its downlink UE, the
antenna steering information ¢ can be considered as a prior
knowledge that does not depend on channel measurement.
Then, in order to model the channel distribution given differ-
ent AoA-AoD directions, a conditional generative adversarial
network (CGAN) framework [28] is applied, where each UAV
i has a condition sampler U, a generator GG;, a discriminator
D;, and a local dataset S;, as shown in Fig. 1. In each training
epoch, the condition sampler draws an AoA-AoD pair out
of K possible directions, following a uniform distribution
¢ ~ U[1,K], which is identical for each UAV, and the
sampling result ¢ will be used as the direction condition in
the CGAN training. Next, the generator G;(z,07|¢), which
is a DNN with a parameter vector 87, maps a random input
z to the channel sample space S under the condition ¢, and
the discriminator D;(s,8%|¢), which is another DNN with
a parameter vector 0?, takes a channel sample s and the
condition ¢ as an input, and outputs a value between 0 and
1. If the output of D, is close to 1, then the input sample
s = (x,y,t,«) is highly likely to be a real data sample,
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which contains the channel gain « that is measured between
the UAV located at = and the UE located at y during the
time interval ¢ with an antenna steering pair ¢; otherwise,
a zero output of D; means that the input channel sample is
fake. Therefore, the generator of each UAV ¢ aims to generate
channel samples close to the real measurement data, while the
discriminator tries to distinguish the fake data from the real
channel samples.

Let f; be the channel sample distribution in the dataset S;,
fE be the learned distribution of the generator for UAV 4, and
f7 be the sampling distribution of the random input z. Then,
the goal of a stand-alone CGAN is to train its generator G; to
find the channel distribution f; under each condition ¢, while
the discriminator D; is used to quantify the learning accuracy
of G;. Hence, we model the interactions between the generator
and discriminator of UAV ¢ by a zero-sum game framework
with a value function [28]:

K
VilDi, i) =50 > Ba, 108 Di(s10)| o
k=1

+ Banz [log(1 = Di(Gilzle4)))]-

For each condition ¢, the first term in (6) forces the discrim-
inator to output one for the real data, and the second term
penalizes the generated data samples created by the generator.
Therefore, the generator of each UAV ¢ aims at minimizing
the value function while its discriminator tries to maximize
this value. It has been proven in [29] that this stand-alone
CGAN game admits a unique Nash equilibrium (NE) where
fiG = f; and D; = 0.5. At the NE, under each condition, the
channel sample distribution of the generator is identical to the
distribution of the dataset, and thus, the discriminator cannot
distinguish between the generated samples and the real data.
Instead, the discriminator will randomly output O and 1, which
yields an average output of 0.5.

However, in practice, each UAV only has a limited number
of channel samples. Although a stand-alone CGAN can learn
the channel representation of a UAV’s local dataset, it can
be biased and only feasible for a limited spatial-temporal
domain. Once the UAV moves to an unvisited area or a
new UE appears at a new location, pilot measurement will
again be necessary to acquire the propagation feature of the
new environment and update the channel model. However,
both the data collection and the model update processes are
time-demanding and energy-consuming for a UAV platform.
Therefore, to avoid repeated channel estimations within the
same space, a UAV can learn the channel information from
other UAVs that operated in this region. Here, we note that raw
data exchange in a real-time manner among UAVs can yield
heavy communication overhead and require a lot of energy
and spectrum resource. Meanwhile, sharing the location-time
information of served UEs to an unauthorized UAV can
raise privacy issues, especially when each UAV belongs to
a different network operator. Thus, the data exchange for
mmWave A2G channel modeling in a distributed UAV network
must be communication-efficient and privacy-preserving.
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Fig. 2: An illustration of the distributed CGAN framework
with four UAVs, where O = {2}, Oz = {3,4}, O3 = {2},
and O4 = {1}.

B. Distributed CGANs Framework

In order to address the challenge for A2G mmWave channel
modeling, we propose a distributed CGAN framework, where
a generative channel model is trained by each UAV to create
channel samples from an underlying distribution of the overall
dataset, without explicitly revealing the data distribution or
showing real data samples. Note that, the use of distributed
GANSs is an emerging area of research in the machine learning
community with only a handful of prior works [19], [30], and
[31], none of which was used in the context of a wireless
communication problem. Meanwhile, the existing works in
[19], [30], and [31] analyze their distributed GAN system,
given that the network architecture is fixed and known, and
each learning agent is allowed to send any amount of data
samples to any number of other agents at each iteration, i.e.,
the data transmission capability over the communication link
between any two agents is infinite, and the link is highly
reliable. However, these assumptions cannot be supported in
a resource-limited and dynamic network. In order to enable
the use of the distributed GAN into a realistic UAV system,
a network formation approach will be designed in the section
to address practical communication constraints with limited
information exchange.

Given a set Z of I UAVs, we consider that the available
data in S = §; U --- U Sy follow a distribution f. The local
dataset S; of each UAV i is collected from different geographic
areas or at different service times. Hence, the distribution f; of
each local dataset S; does not span the entire spatial-temporal
space of the real channel distribution. The goal is to train the
generator distribution f& of each UAV i to find the network-
wide channel distribution f, under the constraint that no UAV
1 sends its real dataset S;. To achieve this goal, we extend
the newly introduced concept of distributed brainstorming
GANs in [19] to the context of the studied wireless channel
modeling problem with learning conditions. Thus, in our
framework, each UAV ¢ only shares the generated samples
(not the raw data) from G; and the AoA-AoD conditions
with other UAVs in each training epoch. Fig. 2 illustrated the
proposed distributed CGAN framework, where the input of
the discriminator for each UAV ¢ comes from its local dataset
S;, and the generated samples from its own generator GG; and
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the generators of its neighboring UAVs. In this distributed
CGAN framework, the generators collaboratively generate
channel samples to fool all of the discriminators while the
discriminators try to distinguish between the generated and
real channel samples. Let ; be the set of UAVs from whom
UAV i receives generated samples, and let O; be the UAV set
to whom UAV i sends its generated channel samples. Then,
for each UAV i, the interaction between its generator and
discriminator can be modeled by a game-theoretic framework
with a value function:

| X
Vi(Di, Gi{Gj}jen.) = K ;Eswﬁ {IOg Di<s|¢k)} o

+ B [log(1 = Di(Gil2161)))]

where f?=mf; + JeN; i ij is a mixture distribution of
UAV i’s local dataset S; and received data from all neighboring

UAVs in N;. Here, we define m; = P Z;em 5 and m;; =
7751

Y, e 55 where 1.5; is the number of generated channel
samples that UAV j sends to UAV i in each epoch, and n > 0.
Analogous to [19], given that the value functions of all UAVs
are interdependent, we define the total utility function for the
distributed UAV network as follows:

I

VEDiH_ AGi}=)) = > Vi(Di,Gi. {Gi}ien),  ®)
i=1

where all generators aim at minimizing the total utility func-

tion defined in (8), while all discriminators try to maximize

this value. Therefore, the optimal discriminators and gener-

ators of the distributed CGAN learning can be derived as a

min-max problem as follows:

€))

(DI} AGT o) = arg  min arg max V.
Note that, the optimal discriminators and generators in (9) both
depend on the structure of the UAV communication system.
However, the prior art in [19] and [30] only defined the general
framework of distributed GANSs, but it did not account for
the presence of data exchange or the wireless networking
optimization for information sharing. Therefore, next, we will
first define the structure of the UAV communication system.
Then, based on the optimized network topology, we identify
the optimal solution to the learning problem in (9).

C. Distributed UAV Communication Network

The communication structure of the UAV network is cap-
tured by a directed graph G = (Z,&), where Z is the set
of UAVs, and £ is the set of edges. Each edge e;; € & is
an ordered UAV pair that corresponds to an air-to-air (A2A)
communication link. For example, for any ¢,j € Z, if e;; € £,
then in each CGAN learning iteration, UAV 7 will send its
generated samples to the discriminator of UAV j. The number
of neighboring UAVs from whom UAV i receives generated
samples is called the in-degree, where N; = |V;|, and the out-
degree of UAV i is O; = |O;|. Meanwhile, for any u,v € Z,
if we can start from u, follow a set of connected non-repeated
edges in £, and finally reach v, then we say that a path E,, ,
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exists from u to v, and the length of the path ,, , equals to the
number of edges on E, ,. Moreover, we denote the loop path
that starts and ends both at v as F,,, and denote the loop-path
length as [,,.

In order to efficiently share the generated channel samples,
orthogonal frequency-division multiple access (OFDMA) tech-
niques with B available resource blocks (RBs) are used to
support the A2A communication over sub 6-GHz frequencies
[27], where B > I. In order to avoid interference, we require
the number of communication links not to exceed the number
of RBs, i.e., |£] < B, which is reasonable for UAV networks.
Meanwhile, assuming a fixed hovering location for each UAV
during the learning stage, the A2A communication rate from
UAV i to j using RB bis given as R;; = wy, log, (1 + % ,
where wy, is the A2A communication bandwidth, P;; and h;;
are the transmit power and path loss from UAV i to j, and o2
is the noise power. A signal-to-noise ratio (SNR) threshold 7
is introduced, such that for any UAV pair (i, ), if the received
SNR at UAV j is lower than 7, i.e. Pijh;j/0? < 7, then, no
RB will be assigned to this A2A communication link, i.e.,
ei; ¢ £. In each iteration, each UAV i sends 7.5; generated
samples to its neighboring UAVs in O;, and the transmission
time for the generated channel samples should not exceed ¢..

Next, we define the completion time C' of the distributed
CGAN approach as the expected number of iterations to finish
the learning process, multiplied by the duration of each learn-
ing iteration [32]. Here, the criterion of learning completion
is fiG = f, Vi, i.e., the generator G; of each UAV i learns
the entire channel distribution f of the distributed network. To
facilitate the analysis, we consider a fixed size for each UAV’s
dataset, i.e. S; = --- = S; = 5, and a homogeneous UAV
communication network, where N7 = --- = Ny = N, so as to
guarantee a synchronous learning speed. Meanwhile, we define
€ € [0,1) to be the training error of the local discriminator at
each UAV, where the value of e represents the percentage that
a generated sample from G; does not follow the distribution
of real data, but the discriminator D; does not distinguish
this failure. Then, the probability that the learning process
completes after T’ iterations can be derived as follows.

Theorem 1. Given the UAV network structure G, the proba-
bility pg(T) that the generator G; of each UAV i learns the
entire channel distribution f after T iterations will be given
by:

0 0<T <™,

[(1—e)n)™ _ max
A+ Nn)™=1 T =™,

pg(T) = {

for 1" < T < 1 pg(T) = pg(I™™) +
T i—1 max
(1 = e)n)’
1-— -
i:l“‘;+1 |:]’Ha" < (1 + N'I])J71 >:|

and for T > 1™, pg(T) = pg(I" — 1)+
11

Sl (- )

where [ = [max 4 jmin = maxy ez lu,v IS the length

loop’ .
of the maximum shortest-path in G, l{gglg is the length of the

[(1 = e)m)™
(14 Nnp)i=t’

= (1= )™

[(1—on™ {
vt 1l (1+ Np)i—1

(14 Np)i—t

110,

k=1th—1 1=t

lmax
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shortest loop-path with the same starting UAV as ™, and
~(T) > 1 is an acceleration coefficient.

Proof. See Appendix A. O

Theorem 1 shows that the number of iterations need for
learning completion is always greater than or equal to the
maximum shortest-path length {™** in G. Meanwhile, the com-
pletion probability pg(T') for each iteration T will decrease
as {™™ becomes larger. Therefore, to optimize the learning
speed in the UAV network, it is necessary to minimize the
maximum length of shortest paths among all UAVs. Next,
based on Theorem 1, the number of iterations 7g € N +, which
is required for the distributed CGAN learning to complete with
a confidence level p; € (0,1), is given by

pg(Tg — 1) < pr < pg(Tg). (10)

Hence, after T iterations, the generator of each UAV is
expected to learn the entire channel distribution with a proba-
bility p.. Meanwhile, we define ¢, to be the upper-bound time
for each UAV to achieve a training error of its discriminator
that is no larger than e. Then, given the network structure G,
the overall expected time to complete the distributed CGAN
learning is [32]

CG) = (t- +t.) Tg. (11)

Consequently, in the distributed UAV network with limited
communication resources, the objective for the cooperative
mmWave channel modeling is to form an optimal A2A com-
munication network G, such that the expected completion time
of the distributed CGAN learning is minimized, i.e.,

min Cc(9) (12a)

st Y Py < Pay, Vi€L (12b)
ei; €EE

Pijhij/o® > 1, Ve €&, (12¢)

nSip/Rij < tr, Vei; €&, (12d)

3E;; CE, Vi, jeT, (12¢)

I<[€]< B, (12f)

where Pj.x 1S the maximum transmit power for A2A com-
munications, and p is the data size for each channel sample.
Here, (12b) limits the maximum transmit power Pp,s for
each UAV, (12¢) and (12d) set thresholds for the received
SNR and the transmission time of each A2A communication
link, (12e) requires a strongly connected network in G such
that each local channel dataset can be learned by all the
other UAVs via the distributed CGAN framework, and (12f)
avoids the interference over A2A communication links. Here,
it is worthy noting that our goal is not to find the shortest
paths in the graph G, but to identify the optimal topology
G*, such that G* yields a minimal value, among all possible
topologies, of the maximum shortest-path between any two
UAVs. However, in order to solve (12), a central controller
is required to optimize the communication structure based on
path loss between each UAV pair. But, in a distributed UAV
network, such a centralized entity is often not available, which
makes (12) very challenging to solve. To solve this problem in
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a distributed manner, we must equivalently disassemble (12)
into a set of sub-problems for each UAV, which will be detailed
in the following section. Once (12) is solved, we subsequently
derive the NE for the distributed learning in (9).

IV. OPTIMAL LEARNING FOR DISTRIBUTED CGANS

In this section, we aim to jointly solve the optimization
problems in (9) and (12) to enable an efficient channel model-
ing approach using the distributed CGAN framework. First, we
derive the optimal structure G* for the UAV communication
network that minimizes the expected iterations for learning
completion in (12). Next, given the UAV network topology G*,
we analytically derive the optimal distributed CGAN solution
(G¥, D) for each UAV 1.

A. Optimal network structure for A2ZA UAV communications

In order to optimally solve (12) in a distributed manner
without a central controller, we first consider a simple scenario,
where constraint (12f) is simplified as

I=|E<B, (13)

i.e., the number of A2A communication links equals to the
number of UAVs. Then, based on constraints (12e) and (13),
we derive the property of the UAV network structure as
follows.

Theorem 2. Under constraint (13), the strongly connected
network must have a ring structure, i.e., N; = O; = 1, N; N
/\/‘J‘:[Z), and(’)iﬂ(’)j :(Z), V’L,]GIandl#]

Proof. See Appendix B. O

Theorem 2 shows that, given constraints (12e) and (13), the
network structure of the UAV communication system must be
a ring, where each UAV receives the channel sample from
one UAV, and sends its generated data to another UAV. Based
on Theorems 1 and 2, we can equivalently reformulate (12)
into a set of distributed optimization problems, such that the
objective of each UAV i is to choose the optimal single UAV
O; = {o;} to whom UAV i sends its generated channel
samples, so as to minimize the learning completion time over
its maximum shortest-path while satisfying constraints (12b)-
(12d), i.e.,

Jin "G + €0, (14a)
s.t. Pio, < Prax, (14b)
Piohio, [0? > T, (14c)
nSip/Rio, < tr, (144d)

where Z_; is the set of UAVs except for i, G + e; ,, is the
graph structure generated by adding an edge e;,, to G, and
[ is the maximum shortest-path from UAV i to any other
UAVs. We define the set of feasible UAVs to whom UAV i can
send its generated channel samples while satisfying constraints
(14b)-(14d) as

Ji ={j € I_i|Pij < Puax, Pijhij/0® > 7,0S;ip/Rij < t;}.

15)
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Then, the necessary condition for a feasible solution to (14)
is provided next.

Proposition 1 (Necessary condition). Under constraint (13), a
feasible UAV network structure G exists, only if Ule Ji=71
and Vi, J; # 0 hold.

Proof. See Appendix C. O

Proposition 1 shows that if the union of feasible sets does
not cover all UAVs, the UAV network cannot form a strongly
connected graph, and then, a feasible solution to (14) does
not exist. Based on Proposition 1 and Theorem 2, we derive
the sufficient condition for the optimal network structure as
follows.

Proposition 2 (Sufficient condition). Under constraint (13),
given that UiI:1 Ji =T and J; # 0 hold for all i € I, the
optimal UAV network structure is G = (Z,€), where €& C
{eijlieT,je Ty and (G )=1—-1,VieT

Proof. See Appendix D. O

Consequently, under constraints (12b)-(12e) and (13), the
optimal UAV network G’ that minimizes the expected iter-
ations for learning completion has a ring structure with a
communication link set & C {e;;|i € Z,j € J;}. The proof
of Proposition 2 in Appendix D has shown that G is not only
the optimal solution to the simplified problem (14), but also
a feasible solution to our original problem (12). Note that,
the solution in Proposition 2 requires that O; = 1, while the
original constraint (12f) allows the value of O; to be greater
than one, i.e., the number of edges can be greater than or
equal to the number of UAVs. Given that the total number of
UAV communication edges is || = ), O;, constraint (12f)
is equivalent to ZieI O; < B. Next, we derive the optimal
solution for the UAV network structure given that O; > 1.

To find the optimal topology G* that solves (12), we
first start with the feasible solution G, where the strongly
connected property in (12e) is satisfied. Then, more commu-
nication edges need to be added to g’ to reduce C(G). Here,
similarly to (15), we define another feasible set for each UAV
¢ that satisfies (12b) - (12d) and (12f) as

Ji

je i Z Pij < Prax, Pijhij /o > 1,0Sip/Rij <t ¢,
jeIL
(16)
where jio - j C J;,and jio is a subset that contains any O;
components of J;. Note that, when O; = 1, J; = jz = Z-O.
Based on the feasible set in (16), we derive the necessary
conditions for the optimal solution to (12) as follows.

Corollary 1 (Necessary condition). The optimal network
structure G* (Z,€) that maximizes the probability of
learning completion in (12) requires that G C G* and
& = {eij|Vi € I,¥j € TP}

Proof. See Appendix E.

O

Corollary 1 shows that the optimal network structure G*
must include the feasible solution G in its topology. Mean-
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while, the edge set of G* consists of the feasible set of each
UAV 1 with exact O; components. Based on Corollary 1, the
formation approaches for the edge set jio and the optimal
UAV network G* is summarized in Algorithm 1. The proposed
network formation algorithm has a complexity of Q(I9%) for
each UAV 4, where O is the big-O notation. This complexity
is reasonable because the number of available RBs O; in
distributed UAV networks is usually small. Meanwhile, our
proposed network formation algorithm is distributed, because
each UAV only needs to know its A2A channel information
to other UAVs, and then, it can optimize the overall network
structure by removing extra UAVs within its own feasible set.

B. Optimal learning solution for the distributed CGAN frame-
work

Given the optimal network structure G*, based on [19,
Proposition 1 and Theorem 1]', the optimal generator G} of
each UAV 7 will follow the distribution

G* b G
fo =1 =mifi+ Z miif5 s

JEN;

a7)

where under each AoA-AoD condition, the generator’s distri-
bution f&* of UAV i equals to the mixture of the channel
distribution f; from its local dataset and the generator’s distri-
bution ij of all incoming UAVs j € N;. In this case, during
each learning iteration, the discriminator will receive two
portions of the channel samples with the same information,
from its locally generated samples of G, and from the mixture
source of S; and {G,}vjcn,. As a result, the discriminator
cannot distinguish the generated samples from the real data,
and, thus, it will output 1 and O with an equal probability of
0.5. Consequently, given the optimal generator G, the output
of the optimal discriminator will be

b
D?:%:
1P+

Once the local adversarial training of each UAV i converges
to (G}, Dy), the distributed information sharing process in
the UAV network converges to a unique NE [19], and the
generator of each UAV ¢ has learned the entire distribution
of mmWave channels, ie., G¥ ~ f&° = f. Next, each
UAV i can explicitly obtain the channel distribution f of
the trained generative model, based on the channel samples
from its optimal generator GG;. The data-driven approach to
identify the optimal distributed CGAN solution (G}, D) has
been summarized in Algorithm 1.

Here, we note that the proposed distributed CGAN approach
has a communication load £ = Tg » ;.7 15:pO; = TgnSpB,
which includes all data transmissions within the UAV network
before learning completion. Given that 7 has been minimized
in the optimal topology G*, Algorithm 1 also guarantees a min-
imal communication load for the proposed learning scheme.
We can further adjust the communication overhead of our

1

5 (18)

! Although [19] does not account for the conditional learning, by treating the
condition as an additional part of learning input, the analytical results in [19]
can be extended to support the solution to our distributed CGAN approach
[28].
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Algorithm 1 Network formation with distributed CGAN
learning for mmWave channel modeling

UAV Network Formation:
1. Each UAV 7 measures channel information h;; for j € Z_;, and

broadcasts the feasible UAV set j“

2. If Ule Ji =T and |J;| > O, go to step 3; otherwise, UAVs
adjust their locations, and go back to step 1; A
3. Start with the network graph G where £ = {e;;li € Z,j € Ji};

4. For each UAV i with |7;| > O,
Remove one edge e;; from £ where
j = minjeg; (G — eij) = 17*(9),,
while guaranteeing (Uycr_, Jk) U (Ji — j) =T, and
3TE € (Ji = 3), Eego P < Pous;
Until |7;| = O; for all i € Z.
Distributed CGAN learning:
A. Initialize G; and D; for each UAV i € Z;
B. Repeat: Parallel for all ¢ € Z:

a. Sample u AoA-AoD conditions: ¢(1>, .-
and u random inputs: 2, ... | 2" ~ £

b. Generate u channel samples G;(z™M ™), - - |
Gi(z™ ™) from the generator of UAV i;

c. Send 7,;u generated sample to each outgoing UAV o € O;,
and receive N; portions of 7;;u data samples {35.1) oMY, -
{s;mju>|¢(”if“>} from incoming UAVs in A;;

c. Samg)le m;u real channel data from local dataset:
{8100}, {87 ¢} ~ S

d. Update ¢ via mini-batch stochastic gradient ascent:
VouV(Di(05)) =

2 Voa [ log(Di(s(”|™)))+
Soroy log(1 — Di(Gi(2M]¢™))+
ng/\f,; ZZ;’f log(Di(sgk)W(k)))]

e. Update 6 via mini-batch stochastic gradient descent:

Vo V(Gi(67)) = 1V 0 i log(1 — Di(Gil=M)|9)));

T u

Until convergence to the NE.

: 7¢)(u) ~ Z/[[viL

>

distributed CGAN scheme, by adapting the value of 1 to meet
a large range of wireless transmission constraints. Meanwhile,
the complexity of the local adversarial training for each UAV
is similar to the original CGAN framework in [28]. Thus, the
complexity of our distributed learning approach is around 7g-
times of the original model. Furthermore, compared with the
FL-CGAN scheme [31], where one central agent averages the
parameters of the generator and discriminator of each UAV
and send back the parameter update, our proposed approach
supports a more flexible structure that is fully distributed.
Indeed, the use of an FL-GAN scheme requires a central
controller which is not available in a UAV network. The
training process of FL-CGAN yields communication overhead
proportional to the model size, which forbids the use of
large-sized models given limited communication resources.
However, our proposed approach allows each UAV to employ
its own neural network (NN) architecture that can be different
from other UAVs. Meanwhile, different from the prior art in
[31] where a multi-discriminators GAN (MD-GAN) frame-
work is developed with one centralized generator and multiple,
distributed discriminators, our proposed approach enables a
synchronous learning for all UAVs, thus, improving time effi-
ciency. More importantly, the experimental results in [19] have
shown that the distributed GAN learning outperforms both
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the FL-GAN and MD-GAN systems, in terms of modeling
accuracy and communication efficiency.

V. SIMULATION RESULTS AND ANALYSIS

For our simulations, unless state otherwise, we consider an
airborne network with I = 4 UAVs using B = 4 RBs to
provide wireless service within a geographic area of 400 x
100 m?2. Each UAV has a mmWave channel dataset that covers
one of the regions without overlap, i.e., a residential area, a
city park [33], an urban environment [21], and a suburban area
[15]. With regards to simulation parameters, we set M = 256,
N =64, K = 81, f = 30 GHz, wp, = 2 MHz, Py =
40 dBm, 0?2 = —174 dBm/Hz, ¢ = 0.1, p, = 99%, 7 =
10 dB, t, = 0.01s, p = 11, n = 0.5, and S; = 1000 for
each UAV i. We implement a NN with four convolution layers
for the discriminator, and another NN with four transposed
convolution layers for the generator.

A. Completion time of the distributed CGAN learning

Fig. 3 shows the number of required iterations to complete
the distributed CGAN learning, given different numbers of
available RBs and UAVs, respectively. The probability of
learning completion in each iteration is used as the metric to
evaluate the learning rate of the proposed algorithm. First, as
shown in Fig. 3a, given a fixed number of UAVs [ = 4, as the
number of RBs B increases from 4 to 12, the learning speed of
the proposed approach increases. When B = 4, each UAV can
send its generated channel samples in each iteration to only
one neighboring UAV. In this case, because of the limitation
on the number of A2A communication links available, the
efficiency of sharing channel sample is low, and the distributed
learning algorithm requires a long time to complete. As B
increases, more A2A communication links are available. When
B = 12, each UAVs can send generated channel samples to
three UAVs in each iteration, which forms a fully connected
system, i.e., each UAV connects with all the other UAVs for
information sharing in the distributed system. Thus, the local
data of each UAV can be shared efficiently throughout the
learning framework, thus leading to a fast completion rate of
Tg = 6 epochs.

Moreover, Fig. 3a shows that the learning process has three
distinct stages. For example, when B = 4, the maximum
shortest-path length for a four-UAVs network is [ = 3.
Thus, during the learning iterations 7' < 3, the probability of
learning completion is always zero. Meanwhile, the minimum
length of the loop path is zlggjg = 4. Therefore, at iteration
T =l + ;‘ggl; = 7, the generated channel samples of each
UAV begin to spread in the loop paths that connect all the
UAVs in the distributed network. Thus, the learning rate after
T = 7 becomes faster. A similar behavior can be observed
for B = 8 when the learning rate starts to increase faster at
T =5, and for B = 12, the rate dramatically increases from
T=23.

>The number of iterations is not for the local CGAN training within each
UAV, but for the number of times that the generated channel samples is
transmitted to the neighbors by each UAV in the distributed airborne system.
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Fig. 3: Given more RBs for A2A communication, the proposed distributed CGAN approach yields a higher learning rate, but

this rate decreases for a larger network with more UAVs.

Next, we show the relationship between the learning speed
and the number of UAVs in Fig. 3b, for a fixed number of
RBs. In a larger network, due to a longer path length in the
distributed learning system, the number of iterations required
to complete the channel modeling process also increases. In
particular, at the beginning of the learning period, a large UAV
network will experience a long and inefficient data exchange
stage, which leads to a slow completion speed. Meanwhile,
by comparing Figs. 3a and 3b, we can see that for I = 4 and
B = 4, the distributed learning algorithm completes learning
at Tg = 19, while for I = 12 and B = 12, the required
completion iterations is Tz > 60. Although in both cases
each UAV has one RB for channel information sharing, a
large UAV network size results in a much slower learning rate.
Therefore, when the number of UAVs increases, guaranteeing
an efficient channel modeling approach requires increasing the
total number of RBs, as well as the average number of RBs
per UAV.

Fig. 4 shows the learning rates of the distributed CGAN,
for different sizes of shared data samples 1 and for different
values of discriminator error € at each UAV, respectively. Note
that, in each iteration, each UAV i sends 15; generated channel
samples to its neighboring UAVs in O;. As shown in Fig. 4a,
when 7 becomes larger, the number of shared samples in each
iteration increases, and, thus, the learning rate of the proposed
distributed CGAN approach becomes faster. However, a larger
size of the generated samples usually yields a longer transmis-
sion time. Therefore, in order to guarantee a fixed transmission
duration t,, a larger n will require a better A2A channel
state, or a larger A2A transmit power, so as to improve the
transmission rate for A2A communications. Next, in Fig. 4b,
we evaluate the effect of discriminator’s error € in each local
CGAN model to the overall learning time of the distributed
learning framework. As the training error threshold € increases
from 0.01 to 0.2, the learning time of the distributed CGAN
approach increases from T = 17 to 20. By comparing with
Figs. 3 and 4a, the effect of the local training error € on the
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learning rate is very limited. Therefore, we can conclude that
our proposed learning framework has a high tolerance to the
local training error per UAV. Meanwhile, a high tolerance of
the training error enables each UAV to choose different NN
structures, based on its own computational ability and on-
board energy, for its local CGAN learning. Thus, our approach
supports a very flexible distributed structure for each learning
agent.

B. Learning results for A2A mmWave channel modeling

In this section, we evaluate the learning performance of
our proposed distributed CGAN approach compared with
four baselines: a stand-alone CGAN model per UAV without
information sharing, a centralized CGAN scheme based on
raw channel data from all UAVs, an FL-CGAN, and an MD-
CGAN distributed learning scheme. After the CGAN training
is completed, we calculate an empirical PDF for the learned
channel distribution, by sampling a large number of channel
data from the local generator G; at each UAV i. To evaluate
the modeling performance of different CGAN approaches, the
criterion of Jensen-Shannon divergence (JSD) is applied to
count the average distance between the real channel distribu-
tion and the learned distribution in each generator, i.e., JSD =
ez Do {Gi(s) log g%((;))) + F(s)log (%)}, where
I is the total number of UAVs, s is the generated channel
samples, and F' is the empirical PDF of the entire channel
dataset. Here, a lower value of JSD indicates a higher learning
accuracy. Fig. 5a shows that the modeling accuracy of the
proposed distributed CGAN approach outperforms the local
CGAN, MD-CGAN, and FL-CGAN baselines. First, given
more UAVs in the system, each UAV covers a smaller service
area, and the local generator distribution only applies to a
limited spatial domain. Thus, the modeling accuracy of the
local learning scheme decreases for a larger network size.
However, using the distributed learning approach, each UAV
can learn the A2G channel property over a larger location
domain from the generated samples of other UAVs. Thus, the
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Fig. 4: Given more generated samples and a smaller training error, the proposed distributed CGAN approach yields a larger

learning rate.
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Fig. 5: Our proposed distributed CGAN approach yields the highest modeling accuracy, and the lowest communication load,

compared with the distributed and local baseline schemes.

modeling accuracy for all three distributed approaches stays
the same for different network sizes. Given that our proposed
distributed CGAN scheme does not require a central agent
to aggregate information, it leads to a more robust structure
compared with MD-CGAN and FL-CGAN, and it yields a
higher modeling accuracy among all the distributed CGAN
approaches. However, due to a limited training time and the
inevitable training error at each UAV, the overall distributed
CGAN learning of the airborne network may converge to a
local optimum. This explains the performance gap between
the proposed distributed learning scheme and the centralized
raw data sharing method. To mitigate this gap, a deeper
NN framework and a longer training time ¢. are needed to
decrease the training error for the local CGAN at each UAV.
However, those would come at the expense of additional delay
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or computations.

In Fig. 5b, we show the relationship between the communi-
cation overhead per iteration and the number of available RBs
in the distributed learning network. Note that, the local CGAN
does not involve any data sharing, thus it is not shown in the
figure. Meanwhile, in the centralized CGAN scheme, all of
the raw channel samples for each UAV will be shared to all
the other agents in the first iteration. Thus, the total number
of iterations for the centralized CGAN scheme is only one.
Fig. 5b shows that our proposed distributed CGAN yields the
lowest overhead compared with all baselines. For the MD-
CGAN method, in each iteration, a central agent sends the
generated data sample to each UAV, and then, each UAV
sends the discriminator results back to the agent. This two-
directional communication yields a higher overhead, compared
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Fig. 6: Our proposed approach outperforms distributed and
local baseline schemes, as the number of UAVs increases.

with our proposed scheme where each UAV only sends its
generated samples to a dedicated set of UAVs in one direction.
The communication overhead of the FL-CGAN scheme is
proportional to the parameter size of the NN models in both the
generator and discriminator. For channel modeling tasks, it is
often the case that the size of the CGAN parameters are larger
than the size of generated samples in each iteration. Thus, the
FL-CGAN method results in the highest communication load
among all three distributed schemes.

C. Communication performance for online deployment

Fig. 6 shows the online performance of the proposed chan-
nel modeling approach and three baseline schemes. We run
each method for 1000 times, and the average transmission rate
of the UAV A2G communications is used as the performance
metric, with a downlink bandwidth of 50 MHz [34]. In order
to support online deployment using the trained CGAN model,
we first obtain an empirical PDF of the learned A2G channel
distribution from the generator at each UAV. Next, a maximum
a posteriori (MAP) estimator is used to determine the optimal
beamforming and combining vectors for the UAV and its
served UE, respectively, for the downlink transmissions. Given
more UAVs in the network, the average data rates of all
schemes naturally increase, due to an averagely smaller service
area for each UAV. Fig. 6 first shows that the proposed
distributed CGAN approach improves the average data rate
by around 10% and 15%, compared with the MD-CGAN and
FL-CGAN schemes, respectively. Meanwhile, the proposed
learning scheme yields a two-fold increase in the downlink
rate, compared with the local CGAN method. However, due to
training errors of mmWave A2G channel models, the proposed
method yields a lower data rate, compared with a perfect
channel state information (CSI) scheme. Meanwhile, due to
a limited data transmission capability between UAVs, the
proposed distributed approach yields a lower transmit rate,
compared with the centralized method. However, given that the
perfect CSI is often not available and the UAV network does
not have a central agent to build wireless links with each UAV

blisapieniteeldstbibirispn

tqatiosy IEdiStpeutiossienuiies HERE/

ireless Communications. Thjs is th thor's yersion which has no n fully edj nd
Shtent may c[}?gnée pqulor to QJmeIx? pu%ﬁgaplom &?tatlionvivn%ormat?onz&ggf 101 Yo99%?/98.2021.3103971, IEEE
N, eistsa' n informatjon: DOI 10.1109/TWC.2021.3103971

ommumca{lons

12

for data collection, the perfect-CSI scheme and centralized
method are not practical solutions.

VI. CONCLUSION

In this paper, we have proposed a novel framework for
mmWave channel modeling in a UAV cellular network. First,
the channel measurement approach has been developed to
collect the real-time information. In order to characterize
mmWave A2G links in a large spatial-temporal space with
different AoA-AoD directions, a cooperative learning frame-
work, based on the distributed CGAN, has been developed
for each UAV to learn the mmWave channel distribution from
other agents in a fully-distributed manner. We have derived
the necessary and sufficient conditions for the optimal network
topology that maximizes the learning rate, and characterized
the learning solution for the generator and discriminator per
UAV. Simulation results have shown that the learning rate
will increase by using more A2A communication RBs and
sharing more generated samples in each iteration. However,
a larger UAV network size and a higher training error will
increase learning time. The results also show that the proposed
CGAN approach yields a higher learning accuracy and a larger
average rate for UAV downlink communications, compared
with a local CGAN, MD-CGAN and FL-CGAN baseline
schemes.

APPENDIX A
PROOF OF THEOREM 1

In order to facilitate our analysis and derive a closed-form
expression of the probability of the learning completion for the
distributed learning framework, we assume that the sampling
process from each generator in each learning iteration is an
independent process, and each generated channel sample from
the same generator contains the same amount of channel
information. Thus, in terms of the channel information from
the local dataset, each channel sampling can be considered
as an i.i.d process. Next, a recursion approach is used to
prove Theorem 1. Let {4, u1,--- ,umx} be the ordered UAVs
on the maximum-length shortest-path. Then, we consider a
portion of channel information, whose size equals to exactly
the information amount that a single channel sample can
contain.

A. Single-time probability

First, we derive the probability that this portion of informa-
tion can be transmitted from the dataset S; of UAV i to the
generator of UAV wumax just at the 7T-th iteration.

1) T < I™*: In each iteration, any channel sample can only
be transmitted to the next-hop UAV. Thus, when T' < [™,
no information can be successfully delivered from UAV i to
UAV ymx through the shortest path, and the probability for
successful information delivery is zero.

2) M < T < M 4 l{gg;: During the first iteration
T = 1, UAV ¢ will send 1S generated channel samples
to UAV wuy. Thus, the probability for transmitting the con-
sidered portion of information from ¢ to wu; equals to the
sampling ratio 7. Meanwhile, given that the training error

izsielnr @pelittpsitnavetieda;

WY 1oty
Ja_lgc from IEEE Xplore. Restrictions apply.

icatiions/rights/imdkex himilfésmmooedrifdomatiomn.



1536-1276 (c) 2021 IEEE. Personal@@0RpHEmft®Eisonat,

content may change pri(}rrg% glggg g}lljsbgcr:l

for the local generator is e, there is only (1 — €) possibility
that the information can be accurately transmitted. Thus, the
probability that the considered portion of information can be
successfully transmitted from i to u; pi' = (1 — €)n. At the
same time, UAV u; receives generated samples from the other
N — 1 neighboring UAVs in A, and thus, the percentage
of UAV 4’s information in the dataset of UAV u; becomes
P =5 fl{fn = (11;13)77. Next, when 7' = 2, UAV u, generates
7S samples and sends them to UAV wus. Then, the probability
that UAV 7’s information will be gransmitted from uq to ug
becomes pff = npi™ = % Due to generated data
from other UAVs, the percentage of UAV 7’s information at
UAV uy will be reduced to pg* = 23— = (=01 This
process will continue, until the sample information is delivered
to UAV uma at T' = [™*, In this case, we can find the
probability that UAV ¢’s information arrives at UAV ume with
M hops will be pil, = % In summary, the rule is
that, at each iteration, the percentage of the previously owned
channel samples by each UAV gets reduced by ﬁ, due to
the arrival of generated samples from N neighboring UAVs.
Meanwhile, the percentage of channel samples will be reduced
by the sampling ratio and a training error of (1 — €)n for
each hop along the path. Consequently, the probability that a
portion of UAV ¢’s channel information can be successfully

delivered to UAV wma within the 7T-th learning iteration is

. 1_6 Lmax
Pit () = (o=
3) T > [™ +lf§g;): After T' > lﬁ}g;,, UAV i starts receiving

information of its own data distribution from its neighboring
UAVs in N, due to the existence of looping data flow. In
this case, the reduction of the information percentage in each
iteration will be higher than ﬁNT] Thus, an acceleration coef-
ficient y(T') > 1, where v(T — +00) = 1+ N7, will be added
in the iteration reduction ratio, and the probability of informa-

: s

tion delivery becomes pjn (T') = % H?:lmaxﬂlmm (%)
. oop

for T" > ll‘gg;,.

B. Cumulative probability

Next, we will derive the accumulative probability that the
considered portion of UAV ¢ has been successfully delivered
to UAV uma after T iterations.

1) T < I™*: Given that pii.(T) = 0, the accumulative
probability pg(T) = 0 for T' < ™.

2) T = [™*: Based on the above analysis, pg(I™*) =
. X 176 lmax
Pl (™) = (R =

3) M < <M l{gg‘;,: In this case, the accumulative
probability of successful information delivery can be calcu-
lated, based on the chain rule, where pg(T) = piha. (I™) +

in max \1,,in max T-1 in \1,i0
[1_plmax (l & )]plmax(l a +1)+ : .+H7, max [1_plmax (Z>]plmax (T)~

Consequently, we can derive pg(T) = pg (I™**)+

(- 85)
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4) T > ™ 4 l{gj)'; = [": When the loop data flow starts,
the probability becomes pg(T) = pg(I™ — 1)+

Rt )]

where (I — 1) = 1. This concludes our proof of Theorem
1.

T

>

i=ith

(=™

[ —an™
a1l (T4 Nyt

j—1
(1+Nn) k=lth—1 1=ith

APPENDIX B
PROOF OF THEOREM 2

Based on the definition of a strongly connected graph, each
vertex must have at least one in-degree and one out-degree.
Thus, according to (12e), a strongly connected structure re-
quires each UAV to at least have an incoming edge and an
outgoing edge, where N; > 1 and O; > 1. Meanwhile, given
(13), the number of ed%es equals to the number of UAVs, i.e.,
S N; =1 and Y.I_, O; = I. Therefore, we can derive
that N; = O; = 1, Vi € 7. Based on the observation that
each UAV has only an incoming edge and an outgoing edge,
the structure of the UAV network must form a ring, so as to
keep the strongly connection property, i.e., N; NN = (), and
0;N0O; =0, Yi,j €T and i # j. This concludes our proof
of Theorem 2.

APPENDIX C
PROOF OF PROPOSITION 1

We prove the necessary conditions in Proposition 1 by
contradiction. First, we assume that there exists a UAV ¢ € Z,
such that J; = (). Then, we have O; = 0, which contradicts
to the strong connected network requirement where O; > 1.
Next, if Zi:l Ji; C I, then, there exists at least one UAV
1, such that none of the other UAVs sends any generated
channel samples to it. Thus, for UAV i, N; = 0, which again
contradicts to the strong connected network requirement where
N; > 1. Consequently, Uf:l Ji; = T and Vi, J; # () must hold
to guarantee the existence of a strongly connected structure for
the optimal UAV network G*.

APPENDIX D
PROOF OF PROPOSITION 2

We first prove that Proposition 2 provides a feasible solution
to problems (12) and (14), and then, show its optimality to
problem (14). First, given that £ C {e;;|i € Z,j € J;}, all the
communication edges are formed based on the feasible UAV
sets. Thus, constraints (12b)-(12d), as well as (14b)-(14d),
naturally hold, according to the definition of the feasible set in
(15). Meanwhile, given that [*(G*) = I — 1 hold for i € Z,
the UAV network must have a ring structure, which leads to
a strongly connected graph that satisfies constraint (12e), and
guarantees an equal number of communication links to the
number of UAVs that satisfies constraint (12f). This concludes
the proof of a feasible solution. Next, based on Theorem 2, a
ring is the only possible structure for the UAV network, where
[m*(G*) always has a fixed value of I — 1. Given the fixed
value of [™*(G*), the learning rate will be constant, for any
ordered set of ring structures. Therefore, the feasible solution
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