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Abstract—One of the key challenges in Internet of Things
(IoT) networks is to connect many different types of au-
tonomous devices while reducing their individual power con-
sumption. This problem is exacerbated by two main factors:
a) the fact that these devices operate in and give rise to a
highly dynamic and unpredictable environment where existing
solutions (e.g., water-filling algorithms) are no longer relevant;
and b) the lack of sufficient information at the device end. To
address these issues, we propose a regret-based formulation
that accounts for arbitrary network dynamics: this allows us
to derive an online power control scheme which is provably
capable of adapting to such changes, while relying solely on
strictly causal feedback. In so doing, we identify an important
tradeoff between the amount of feedback available at the trans-
mitter side and the resulting system performance: if the device
has access to unbiased gradient observations, the algorithm’s
regret after T stages is O(T−1/2) (up to logarithmic factors); on
the other hand, if the device only has access to scalar, utility-
based information, this decay rate drops to O(T−1/4). The above
is validated by an extensive suite of numerical simulations in
realistic channel conditions, which clearly exhibit the gains
of the proposed online approach over traditional water-filling
methods.

Index Terms—IoT networks, online exponential learning,
imperfect and scarce feedback

I. Introduction

THE emerging Internet of things (IoT) paradigm is pro-
jected to connect billions of wireless “things” (wireless

sensors, wearables, biochip transponders, etc.) in a vast
network with drastically different requirements between
components (e.g. in terms of throughput and power char-
acteristics) [3]. Following Moore’s prediction on silicon
integration, the wireless surroundings of IoT networks are
expected to exhibit massive device densities with high
interference levels. An orthogonal spectrum allocation is
therefore energetically inefficient, as an unrealistic number
of bands or subcarriers would be required to accommodate
all devices. The usage of new access protocols such as

A. Marcastel, E. V. Belmega and I. Fijalkow are with ETIS, Université
Paris Seine, Université Cergy-Pontoise, ENSEA, CNRS, Cergy-Pontoise,
France. P. Mertikopoulos is with Univ. Grenoble Alpes, CNRS, Inria, LIG,
Grenoble, France.

This research was supported in part by the Orange Lab Research Chair
on IoT within the University of Cergy-Pontoise, by the French National
Research Agency (ANR) project ORACLESS (ANR–16–CE33–0004–01),
by the ELIOT ANR-18-CE40-0030 and FAPESP 2018/12579-7 project,
and by ENSEA, Cergy-Pontoise, France. Part of this work was presented
in VTC2016-Fall [1] and GLOBECOM 2016 [2].

non-orthogonal multiple access (NOMA) [4] is considered
instead, in which interference mitigation becomes critical.
For this reason, and also given that the autonomous wireless
devices have stringent battery limitations, optimizing the
power consumption emerges as one of the key ingredients
for achieving a “speed of thought” user experience at the
application level [5].

A major challenge that arises here is that IoT networks
are characterized by an unprecedented degree of temporal
variability – due itself to the unique mobility attributes
of modern wearable devices, intermittent user activity, ap-
plication diversity etc. As such, IoT networks cannot be
treated as static (or stationary) systems, implying in turn
that conventional optimization techniques that target a fixed
state, for instance via water-filling type of algorithms, are no
longer relevant. The main limitation of classical approaches
is their lack of robustness to strictly causal – no look-ahead
– channel state information, which is inevitable in dynamic,
unpredictable environments. Therefore, power optimization
in dynamic IoT networks calls for a different toolbox that
is provably capable of adapting to unpredictable changes in
the network.

Motivated by its prolific success in the fields of machine
learning and artificial intelligence [6, 7], we propose in
this paper a regret-based formulation of power optimiza-
tion which allows us to consider arbitrary variations in
the network. The core component of this approach is that,
instead of targeting a specific network state, it aims to derive
an online power allocation policy whose performance over
time is as close as possible to that of the best fixed policy
in hindsight (even though computing the latter requires
non-causal knowledge of the system parameters and their
evolution ahead of time). Owing to this straightforward
and flexible definition, regret minimization has become the
leading paradigm for online decision making in uncertain,
dynamic environments, ranging from online ad auctions
[8, 9] and recommender systems [10] to throughput and
energy efficiency optimization problems in wireless com-
munications [11, 12].

A critical performance limitation in the above is the
fact that wireless devices in IoT networks typically receive
limited and/or corrupted feedback from their environment
[13]. To name but an example, channel state information
(CSI) is usually acquired by the access point (AP) using
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pilot transmissions that are subsequently fed back to each
device. Since IoT networks bring together massive numbers
of devices, the signaling overhead increases to the point
where it cannot be distributed over multiple frequency bands
in an efficient manner (due to spectrum scarcity) [14, 15].
Therefore, to reduce the impact of this overhead, the amount
of information fed back to wireless devices must be reduced
as much as possible, and the resulting estimation errors
must be likewise taken into account. The same kind of
problem has been underlined in cooperative multi-user net-
works [16], in which the global network optimum objective
leads to massive signaling; and in massive multiple-input
and multiple-output (MIMO) systems [17–20], in which the
increase in the number of antennas leads to a prohibitive
amount of required CSI. Instead, in IoT networks, it is not
the number of antennas but the large number of connected
devices that create this bottleneck.

A. Summary of contributions and paper outline

In the field of online learning, the challenges that re-
sult from incomplete and/or imperfect feedback have been
studied extensively in the context of the so-called multi-
armed bandit problems [6]. These problems are inherently
discrete in nature, so the lessons learned from this literature
do not apply to the power allocation framework studied here
(a continuous, multi-dimensional problem in itself). Never-
theless, by leveraging ideas originating in the well-known
exponential weights algorithm for multi-armed bandits [6],
we derive an online power allocation policty based on ex-
ponentiated gradient descent (EGD), and which comprises
two basic steps: a) tracking the gradient of the users’ power
minimization objective in a dual, unconstrained space; and
b) using a judiciously designed exponential function to
map the output of this step to a feasible power allocation
profile and keep going. Thanks to this two-step, primal-
dual approach, we are then able to derive concrete regret
minimization guarantees for the online power minimization
problem, irrespective of the network’s dynamics.

To establish a benchmark, we begin with the full infor-
mation or the first-order feedback case, where each wireless
device is assumed to have perfect feedback on the gradient
of its individual power minimization objective. In this case,
the proposed power allocation policy is shown in Section III
to enjoy a O(T−1/2) regret guarantee, meaning that the algo-
rithm’s performance over a horizon of T transmission cycles
is no more than O(T−1/2) away from the best fixed policy in
hindsight. Importantly, unless rigid statistical hypotheses are
made for the underlying IoT network (such as assuming that
it evolves following a stationary ergodic process), this guar-
antee cannot be improved; however, we show in Section IV
that it can still be attained even if the feedback received by
each device is imperfect and/or otherwise corrupted by non-
systematic measurement errors and observational noise.

In addition to providing a comparison baseline, the full
information case also allows us to compare the performance

of the proposed algorithm to that of classical water-filling
algorithms [21–23] and highlight the difficulties encoun-
tered by the latter when the network evolves dynamically
over time and only a strictly causal (with no look-ahead)
feedback information is available at the transmitter.

On the other hand, if the only information received by
each device is the observed value of their power minimiza-
tion objective (the so-called zeroth-order feedback setting),
these bounds change significantly. Lacking any sort of
vector-valued, gradient-based feedback, we rely on simul-
taneous stochastic approximation techniques [6, 7], to build
an estimator for the gradient: importantly, this estimator is
potentially biased, but its bias can be controlled by tuning a
certain sampling parameter. By jointly optimizing the value
of this parameter and that of the original algorithm’s step-
size, we then show that the proposed policy still leads to no
regret, but now at a slower rate of O(T−1/4).

In Section VI, we validate our theoretical analysis via nu-
merical experiments and highlight highly dynamic networks
with realistic, unpredictable channel conditions. Classical
water-filling algorithms are very sensitive to unpredictable
changes in the network and are outperformed by our pro-
posed online algorithms in terms of power consumption and
achieved rate. Concerning the impact of available feedback,
our numerical results also illustrate a compromise between
the amount and/or quality of the feedback information and
the algorithms’ performance (measured here in terms of
the time needed to attain a no-regret state). The zeroth-
order feedback case requires only the knowledge of a scalar
at each iteration (the value of the objective function) as
opposed to a vector (the gradient), but the average time
required to reach a no-regret state is higher.

B. Related works

Regarding resource allocation in static IoT environments,
several problems have been studied [24–26]. In [24] the au-
thors study the resource allocation for machine to machine
(M2M) communications using cooperative game theoretic
tools in which the machines want to maximize their own
rate. In [25], the authors study the problem of clustering and
power allocation for both uplink and downlink in NOMA
systems. Similar to [24], each device aims at maximizing its
own rate. To solve this problem, the authors used classical
optimization tools. In [26], the problem of power control
for mutual interference avoidance is studied by using also
classical optimization tools. In all these works, the network
is assumed to remain static over time and the devices are
required to have perfect feedback information. Here, we
relax both assumptions by taking into account the inherent
dynamics of an IoT network and the impact of feedback
imperfections and scarcity.

In (non-IoT) wireless networks, there exists a wide re-
source allocation literature essentially concerned with either
static [21–23, 27, 28] or stochastic [16, 20, 29–35] opti-
mization problems, to cite but a few. In these works, the
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underlying network is assumed to remain static or to evolve
following a stationary random process. Their main aim is to
derive efficient algorithms, based on classical optimization,
stochastic optimization, or on machine learning tools, that
converge to an optimal fixed or steady state. These works
are inherently different from the present paper, in which
we squarely focus on arbitrarily dynamic networks (the
network can even evolve in a non-stationary way). In such
unpredictable networks, there is no fixed solution state to
converge to, so the very notion of convergence as a perfor-
mance metric needs to be rethought from the ground up.

Adaptive allocation policies based on online optimiza-
tion tools have been recently proposed but in quite different
settings and problems [11, 12, 36–38]. In [36], the authors
proposed a multi-armed bandit formulation of the channel
selection problem and derived an online channel selec-
tion algorithm using upper confidence bound techniques;
a similar approach has also been used in the context of
beam-alignment for millimeterWave communications [37].
In [38], an adversarial multi-armed bandit formulation is
proposed to tackle an access point association problem in
hybrid indoor LiFi-WiFi communication systems exploiting
the exponential weights algorithm. For IoT networks, the
recent work [39] acknowledges the high potential of the
online learning framework and then focuses on multi-armed
bandits for mobile computation offloading problems at the
edge layer. However, in our setting, the agents’ decisions
are not taken within a stochastic environment (so upper
confidence bounds are not applicable) and all variables are
continuous as opposed to discrete (so multi-armed bandits
are not suitable).

Regarding physical-layer resource allocation problems,
the authors of [11, 12] studied dynamic MIMO systems
from the point of view of online throughput and energy
efficiency maximization. By contrast, our focus here is the
power minimization problem in IoT networks, which is
inherently different. Specifically, in the online throughput
maximization problem in [11], the opportunistic devices
have to always transmit at full available power, which is not
power-efficient and the proposed learning algorithm does
not apply to the problem at hand. The energy efficiency (de-
fined as the ratio between the achieved rate and the overall
power consumption) maximization problem in [12] is non-
convex and is cast into a convex problem by performing
a suitable variable change, which results into a specific
exponential learning algorithm that also does not apply here.
However, the learning algorithms in these works rely on
the availability of gradient information which amounts to
a (typically large) matrix worth of feedback; by contrast,
the algorithm provided in this paper only requires a single
readily available scalar as feedback at the device end.

To the best of our knowledge, our paper is the first in the
IoT literature to take into account the network’s inherent
dynamics and its unpredictable temporal variability when
designing power-efficient allocation policies. Furthermore,

Rx1

D11
D12

D13

D14

Rx2

D21
D22

Figure 1: System composed of six transmit devices (D11, D12, etc.) and
two receivers (Rx1, Rx2). The blue and green arrows represent the direct
links while the red (double-lined) ones are interfering links.

it is among the first works in the resource allocation litera-
ture in multi-user wireless networks, proposing an adaptive
algorithm relying only on a single scalar feedback informa-
tion (the sole past experienced objective value).

II. Model and Problem Formulation
We consider a system composed of M transmitters and N

receivers communicating over S orthogonal subcarriers or
sub-bands as illustrated in Fig. 1: each device transmits to
only one intended receiver, but a given receiver may decode
several incoming signals.

Since we aim at devising a distributed policy that needs
no central controller, we can focus on one particular
transmitting-receiving pair. The received signal for the (ar-
bitrarily chosen) focal device becomes:

ys(t) = hs(t)xs(t) +
∑

j
hs

j(t)xs
j(t) + zs(t), (1)

where s ∈ {1, . . . , S } is the subcarrier index; xs(t) is the
transmitted signal; hs(t) is the channel gain between the
focal transmitter and its intended receiver; xs

j is the trans-
mitted signal of device j; hs

j(t) is the interfering channel gain
between transmitter j and the focal receiver; and zs(t) is the
received noise of the focal device.

We also define the effective channel gain vector w(t) =

(ws(t)), where ws(t) represents the effective gain in subcar-
rier s and is given by

ws(t) =
gs(t)

σ2 +
∑

j gs
j(t)ps

j(t)
, ∀s, (2)

where σ2 is the variance of the noise zs(t), ps
j(t) is the trans-

mitted power by the user j in subcarrier s, gs
j(t) = |hs

j(t)|
2

and gs(t) = |hs(t)|2.
The above expression implies that the receiver employs

single-user decoding (SUD), meaning that, when decoding
a transmitted signal, the other incoming signals are treated
as noise. This consideration is relevant in distributed and
energy-limited networks, such as IoT networks, in which the
receivers may not be able to decode the interfering signals
(e.g., may not know the codebooks of the interferers). Also,
the receivers may not afford to sequentially process and
decode their incoming signals (via successive interference
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cancellation) and the transmitting devices may not be coor-
dinated (and may not know their decoding order).

The aim of IoT networks is to interconnect many different
types of devices in a distributed or self-optimizing way.
Since most of them are likely to be small devices like
sensors, phones, or isolated devices that operate solely on
limited batteries, reducing the power consumption is a key
challenge in IoT networks [40, 41]. In this work, the main
objective is to minimize the power consumption of the
focal device taking into account its quality of service (QoS)
requirements. These requirements are performance targets,
which depend on the specific application, for example: a)
minimum rate per device (i.e., the rate of the focal device
has to be higher than a given threshold Rmin); b) minimum
SINR per device; c) minimum network sum-rate. Such QoS
requirements differ from physical hard constraints (e.g., the
transmit power positivity constraints) in that they cannot
be ideally guaranteed - always at 100% - in practical com-
munication systems and some outage has to be generally
tolerated.

In view of the above, the trade-off between power mini-
mization and QoS requirements will be modeled via the loss
function:

Lt(p) =

S∑
s=1

ps + λ
[
Rmin − Rt(p)

]+ (3)

where p = (p1, . . . , pS ) represents the power allocation vec-
tor of the focal device with components ps,∀s representing
the power allocated to the s-th subcarrier. The first term
in the objective is the overall power consumption and the
second term is a soft-constraint (or penalty) term, which
is activated whenever the minimum target rate Rmin is not
achieved. Finally, Rt(p) denotes the well-known Shannon
rate:

Rt(p) =

S∑
s=1

log(1 + ws(t)ps) (4)

and [x]+ , max{x, 0}, meaning that no penalty is applied
when the achieved rate is greater than the threshold Rt(p) ≥
Rmin. Although we choose a linear penalty function for its
relevance to communications [28, 42, 43] (and to simplify
the presentation), our results carry over the more general
class of concave functions, e.g., logarithmic penalties [44].
The parameter λ can also be interpreted as the unit-cost for
each bps/Hz under the QoS target Rmin and, as we will see
in Section VI, it also represents a sensitivity parameter that
has to be carefully tuned to adjust the flexibility regarding
the minimum rate constraint violations or outages. Indeed,
higher values of λ lead to less QoS outages, but at the cost
of incurring a higher power consumption.

To sum up, the online optimization problem under study

can be stated as:

minimize Lt(p(t))
over p(t) = (p1(t), . . . , pS (t))
subject to p j(t) ≥ 0, ∀ j ∈ {1, . . . , S }∑S

s=1 ps(t) ≤ Pmax .

(5)

The minimization variable is the power allocation vector
of the focal device across the available frequency subcarri-
ers, p(t), and both constraints are physical ones. The first
constraint guarantees that the transmit power of the focal
device, in each subcarrier j, is always positive. The second
constraint comes from the power supply limitation and
implies that the total power of the focal device that is spread
over the subcarriers is bounded from above by the maximum
transmit power of the device.

Concerning the above objective function Lt(p), notice
that it may vary in a non-stationary and unpredictable way
such that the focal device cannot determine a priori (before
the transmission takes place) its instantaneous or dynamic
optimal power allocation p∗(t) that minimizes this objective
at each time t. Nevertheless, we assume that the device
receives some feedback after each transmission, such as the
past experienced objective value or its past gradient. The
idea in online optimization is to exploit this strictly causal
feedback information to build a dynamic and adaptive power
allocation policy p(t) that minimizes as much as possible the
time-varying objective function Lt(p(t))1.

The major novelty in the above formulation relative to
more classical power allocation problems lies in its dynamic
nature and the fact that we make no assumptions on the
network dynamics. Notice that, the objective function in (3)
depends on the network dynamics via the second penalty
term. Indeed, the achieved rate Rt(p(t)) depends on the
varying wireless channels and also on the power allocation
policies of the other devices via the effective channel gains
in (2). Classical approaches leading to water-filling type of
algorithms [21–23] rely both on static (or stationary) chan-
nel models and on strong assumptions on the information
available at the transmitter before the transmission takes
place (e.g., perfect channel state information in the form
of the SINR in each subcarrier). In highly dynamic and
distributed IoT networks, such assumptions are too stringent
and no longer hold.

On that account, the aim of this work is twofold: to ex-
plicitly take into account the device mobility, their network
connectivity patterns and behaviour, which may be com-
pletely arbitrary and unpredictable; and to greatly reduce the
information required at the transmitter.

In order to evaluate the performance of a given online

1Going back to our model of the QoS requirement, another motivation
for including it into the objective function in (3), as opposed to imposing a
hard constraint, is that the latter would result in an arbitrarily time-varying
and unpredictable feasible set at the decision instant. This issue is highly
non-trivial and open in online optimization, which would require going
well beyond the standard regret minimization framework and, hence, falls
out of the scope of this work.
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policy p(t), the most commonly used notion is that of the
regret [6, 7, 11, 12], which compares its performance in
terms of loss with a benchmark policy. Now, comparing
any policy p(t), built using outdated feedback information,
with the instantaneous or dynamic optimal solution p∗(t)
is obviously too ambitious. Instead, the notion of regret
compares the policy p(t) to a less ambitious benchmark:
the fixed strategy that minimizes the overall objective over a
given transmission horizon T :

Reg(T ) ,
T∑

t=1

Lt(p(t)) −min
q∈P

T∑
t=1

Lt(q), (6)

where P ,
{
p ∈ �S

∣∣∣ ps ≥ 0,∀s,
∑S

s=1 ps ≤ Pmax

}
denotes

the feasible set. Otherwise stated, the regret measures the
performance gap between a power allocation policy p(t) and
the best mean optimal solution over a fixed horizon T . If the
regret is negative, then the dynamic policy p(t) outperforms
the best mean optimal solution overall. To quantify this, the
policy p(t) is said to lead to no-regret if

lim sup
T→∞

1
T

Reg(T ) ≤ 0. (7)

A no-regret policy p(t) is asymptotically optimal and per-
forms at least as good as the best fixed strategy on average
(when T grows large).

Notice that although the best mean optimal solution is
less ambitious than p∗(t) (minimizing the objective function
at each t) its computation requires the same non-causal
knowledge of the system parameters and the evolution of
the objective throughout the time horizon T before the trans-
mission takes place, or in hindsight. Therefore, the design
of dynamic policies that reach no-regret while relying on
strictly causal and local information is a remarkable and
desirable goal. Moreover, in the particular case of a static
network composed of a single transmit device, the online
optimization problem in (5) reduces to a classic convex
optimization problem. A no-regret online policy p(t) in
this case implies the convergence of the average policy:
p(t) , 1

T
∑T

t=1 p(t) to the solution set of the relevant opti-
mization problem [45]. In conclusion, given the IoT network
dynamics and unpredictability, our focus in the following is
precisely to develop no-regret online policies for the online
optimization problem defined in (5).

III. First-Order feedback
In the resource allocation problem under study, the focal

device has to choose in which of the available subcarriers to
transmit, how much of the available power to consume and
how to split this amount over the chosen subcarriers, all this
based on the strictly causal feedback information. This is
reminiscent of the well-known multi-armed bandit problem
in sequential online learning [7]: there, at each instant, the
player chooses an action (or an arm) out of several possibil-
ities and receives a reward as a result. Outside the so-called
“stochastic” case (where each arm’s payoff is determined

OXL algoritm: Online Exponential Learning Algorithm
Initialization: y(0)← 0; t ← 0.
Repeat

. Pre-transmission phase: update transmit powers
p(t)← Q(y(t)) defined in (OXL)
. Transmit at p(t)
. Post-transmission phase: receive gradient feedback v(t)
Update scores y(t + 1)← y(t) − µ(t) v(t)
t ← t + 1
until transmission ends

by a fixed probability distribution), the most widely used
algorithmic scheme is the exponential (or multiplicative)
weights algorithm [7], where payoffs are aggregated over
time and the optimizer selects an arm with a probability
proportional to the exponential of these scores. In what
follows, we derive the necessary machinery to extend this
idea to the continuous optimization problem at hand and de-
rive an exponentiated gradient descent algorithm for power
minimization in this context.

In our setup, we begin by assuming that each device has
access to some feedback mechanism that provides the first-
order gradient information v(t) = ∇Lt(p(t)) at the end of
each transmission. Our proposed algorithm can be summa-
rized in two steps. First, the device tracks the past gradient of
its objective without taking account the power constraints.
Second, the device maps the first step into the feasible set P
using a well chosen exponential map as follows:

y(t) = y(t − 1) − µ v(t),
ps(t) = Qs(y(t)) , Pmax

exp (ys(t))

1 +
∑S

i=1 exp (yi(t))
, (OXL)

where µ is the step-size parameter. We denote by Q(y(t)) =

(Q1(t), . . . ,QS (t)) the exponential vector field that maps the
updated score y(t) into the feasible set.

Essentially, the online exponential learning algorithm de-
tailed above, tracks the cumulative negative gradient of the
convex loss function and then maps the result to the feasible
set. The exponential mapping step could be replaced by
an Euclidean projection and the resulting algorithm would
be an online gradient descent [46] algorithm. We chose
the exponential mapping because of its reduced complexity
relative to a projected gradient descent algorithm that would
require an additional (possibly costly) projection step. In-
deed, from (OXL) it is easy to see that the updates are easy to
compute and that they meet the contraints. More precisely,
the complexity of each iteration t is linear in the problem
dimensionality S , the number of subcarriers over which the
focal device transmits. Hence, given that S is not expected
to grow large for a specific IoT device (transmitting on a
small subset of the total number of subcarriers available to
the entire IoT network), the OXL algorithm is particularly
appealing for distributed, device-centric IoT networks.

We will now study the evolution of the regret of the
dynamic power allocation policy (OXL) to show that it
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holds the no-regret property. To that end, let V denote an
upper bound on the gradient feedback v(t) in the sense that
||v(t)||2 ≤ V . We then have the following result (for a proof,
see Appendix A):

Theorem 1. If the OXL algorithm is run with a constant
step-size µ then, it enjoys the regret bound:

Reg(T ) ≤
Pmax log(1 + S )

µ
+
µPmaxTV

2
. (8)

Tuning the step-size µ: The step-size µ plays an im-
portant role in the exploration vs. exploitation tradeoff and,
hence, in the ability of OXL algorithm to reach the no
regret state, as we will see in the following. Intuitively,
small values of µ imply that the subcarriers are almost
equally explored and the gradient information is not ex-
ploited enough. High values of µ imply that only the best
performing carriers w.r.t. past gradients are exploited and
highly potential carriers, which have not performed well in
the past, are rooted out too soon.

Notice that the above upper bound grows linearly with T ,
which may lead to a non-zero average regret. Nevertheless,
this bound is a convex function of the step-size µ and, hence,
can be minimized w.r.t. µ by setting the first-order derivative
to zero. The resulting optimal step-size is

µ∗ =
√

2 log(1 + S )/(TV), (9)

which then yields the sub-linear optimal bound

Reg(T ) ≤ Pmax
√

2TV log(1 + S ). (10)

Therefore, by carefully choosing the step-size µ, OXL algo-
rithm leads to no regret:
lim supT→∞

1
T Reg(T ) = 0.

Corollary 1. If the OXL algorithm is run for a known
horizon T using the optimal step-size µ∗ in (9), then it leads
to no regret and the average regret Reg(T )/T decays as
O(T−1/2).

The resulting regret bound in (10) depends on the system
parameters: the total power Pmax, the number of subcarriers
S , an upper bound on the gradient norm V , but also on the
transmission horizon T , which the device does not neces-
sarily know in advance. To avoid this limitation, we use the
doubling trick [47]: the algorithm is run repeatedly starting
with a unit-size window (number of iterations) and then
doubling the window size at each new run until transmission
ends. Hence, each widow size is known and the device can
compute the corresponding optimal step µ∗ (by replacing
T with the window size in (9)). The bound in Corollary 1
applies in each window and the following result is proven in
Appendix B.

Proposition 1. If the OXL algorithm is run when the trans-
mission time T is unknown by using the doubling trick with
an optimal step-size for each window until the transmission

Size

Window

|

1

0
|

2

1
|

4

2
| | |

T Tm = 2m

m = dlog2 T e
|

Figure 2: Illustration of the windows in the doubling trick.

ends (as in Figure 2), the regret enjoys the following bound:

Reg(T ) ≤
2

√
2 − 1

Pmax
√

2TV log(1 + S ). (11)

Hence, OXL algorithm leads to no-regret and the average
regret Reg(T )/T decays as O(T−1/2).

We observe that not knowing the horizon T in advance
results only in a small loss in the regret bound (in the
multiplying constant).

IV. Imperfect gradient feedback

In this section, we relax the assumption of perfect gra-
dient feedback and we consider that the focal device has
access only to an imperfect gradient estimate, denoted by
ṽ(t), which meets the following conditions

�[ṽ(t)] = ∇Lt(p(t)),

�[||ṽ(t)||2] ≤ Ṽ ,
(12)

where the expectation is taken over the randomness of the
estimator. These conditions are not very restrictive as they
require the absence of systematic errors and a bounded
variance, as such, they are satisfied by all common error
distributions (Gaussian, log-normal, etc) [12]. For example,
the common error model: ṽ(t) = ∇Lt(p(t)) + z, where
z ∼ N (0, σ2

z I) [48] satisfies the above conditions.
Under these assumptions, the transmit powers in OXL

algorithm are updated in function of ṽ instead of the actual
gradient v (via the internal score y(t)). Thus, the online
policy p(t) depends on the randomness of the estimator,
which implies that the regret in (6) will also depend on this
randomness. To take this into account, we study the average
regret �[Reg(T )], where the expectation is taken over the
randomness of the estimator. The no-regret property can be
easily extended to the average regret as follows: a power
allocation policy p(t) leads to no regret (on average) if

lim sup
T→∞

1
T
�[Reg(T )] ≤ 0. (13)

A different possibility would be to study the probability that
the regret in (6) falls bellow zero, but we leave this as a non-
trivial open issue for future investigation.

Our first result, proved in Appendix C, concerns the case
in which the transmission horizon T is known.

Theorem 2. If the OXL algorithm is run for T iterations
with a constant step-size µ and an imperfect gradient esti-
mation defined in (12), the average regret is bounded by:

�[Reg(T )] ≤
Pmax log(1 + S )

µ
+
µ

2
PmaxTṼ . (14)
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We observe that the upper bound above is somewhat
similar to the one in Theorem 1 and can also be minimized
with respect to the step-size µ for the same reasons. The
optimal step-size is

µ∗ =

√
2 log(1 + S )/(TṼ), (15)

which provides the optimal bound

�[Reg(T )] ≤ Pmax

√
2TṼ log(1 + S ). (16)

Therefore, using this optimal step-size leads to no regret
even if the device only has access to imperfect gradient
observations.

Corollary 2. If the OXL algorithm is run for a known
transmission time T with an imperfect gradient feedback
and the optimal step-size µ∗ in (15), then the no-regret prop-
erty holds and the average regret �[Reg(T )]/T decreases in
O(T−1/2).

The above result implies that unbiased errors in the
gradient estimation do not impact greatly the evolution of
the regret in expectation. This result should be contrasted
to the corresponding one in the perfect gradient case. First,
in the perfect gradient case, there is no randomness and the
regret results are deterministic. Here, because of the random
errors in the estimated gradient the above results hold only
in expectation. Second, the obtained upper bounds depend
on Ṽ , which is an upper bound on the second order statistics
of the estimation over the entire time horizon (as opposed
to the Lipschitz constant V). This means that the variance
of the errors negatively impact the expected regret; higher
variance errors result in higher expected regret.

Finally, if the device does not know in advance the
transmission horizon T , the doubling trick described in Sec.
III requires the knowledge of Ṽ (to compute the optimal
step-size). This may not be realistic in an unpredictable,
time-varying and possibly non-stationary environment. To
avoid this additional requirement, we take a variable step-
size approach as in [6, 7, 49] and focus on the schedule

µ(t) = α/
√

t, (17)

with parameter α > 0. Using this variable step-size, we
obtain the following result (for a proof, see Appendix D):

Theorem 3. If the OXL algorithm is run with imperfect
gradient feedback for an unknown horizon T and using the
variable step-size µ(t) = αt−1/2, then the average regret is
bounded by

�[Reg(T )]
T

≤
Pmax log(1 + S )

α
√

T
+

PmaxṼα(1 + log T )

2
√

T
. (18)

Consequently, the device’s average regret �[Reg(T )]/T
vanishes as O(log(T )T−1/2), i.e. OXL algorithm leads to no
regret.

We remark the loss in the decay rate of the regret resulting

from the lack of knowledge of Ṽ . This means that, with
scarcer available knowledge, the device will reach the no
regret state at a slower rate. Nevertheless, this loss is only
logarithmic and even without the knowledge of T and re-
lying on an imperfect and unbiased gradient feedback, the
OXL algorithm is able to reach no regret.

V. Zeroth-order Feedback

In this section, our objective is to reduce even further the
amount of required information to be fed back to the trans-
mitting device. Instead of receiving a vector as feedback
- the gradient or its unbiased estimation - the devices are
now assumed to know only the value of the experienced
objective function. This means that only a single scalar
worth of information is needed at the transmitting device – a
major advantage in feedback-limited and dynamic networks,
where the acquisition of non-causal and complete channel
state information (not to mention other network parameters)
is a tall order. To the best of our knowledge, the proposed
algorithm is the first adaptive power allocation algorithm
for multiple-carrier, multiple-user networks requiring scalar
feedback. Classic resource allocation algorithms such as
water-filling policies require at least one quality indicator
per subcarrier (e.g., the SINR value in each subcarrier), and,
hence a (possibly large) vector worth of feedback.

To develop an online policy p(t) that leads to no regret, we
modify the exponential mapping step in Sec. III and propose
a novel learning algorithm that only requires zeroth-order
feedback. To this aim, the first obstacle is to estimate the
gradient of the objective based only on its value – in other
words to do “gradient descent without a gradient” [50]. The
main idea that we exploit here is the simultaneous stochas-
tic approximation technique, which randomly samples the
objective function in a neighbourhood of the power policy
p(t) to obtain a (potentially biased) estimate of the gradient
at this point [6, 7, 50].

For simplicity, we illustrate this technique on a particular
directional derivative of Lt(p) along the unit vector x (recall
that the gradient is a collection of directional derivatives),
denoted by ∇xLt(p):

∇xLt(p) = lim
δ→0

Lt(p + δx) − Lt(p − δx)
2δ

, (19)

which we want to estimate based on the single function
value Lt(p). To do so, we randomly sample the objective
function around the point p in the direction x by drawing
a Bernoulli distributed random variable u ∈ {−1,+1} with
equal probability. We can compute the expectation of these
samples w.r.t. the randomness of u:

�
[
Lt(p + δux)u

]
=

Lt(p + δx) − Lt(p − δx)
2

. (20)

From (19) and (20), we observe that

�

[
Lt(p + δux)u

δ

]
≈ ∇xLt(p). (21)
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Since the above is satisfied with equality only in the limit
when δ → 0, the quantity Lt(p + δux)u/δ represents an
approximation (possibly biased) of the directional derivative
of Lt(p) with respect to x.

Now, in order to build a gradient estimate, the idea is
to uniformly sample the objective function along a vector
u(t) drawn from the S-dimensional Euclidean sphere of of
radius δ. Extending the above to the space of dimension S ,
the estimator becomes:

ṽ(t) =
S
δ

Lt(p̃(t))u(t), (22)

where p̃(t) = p(t) + δu(t) and u(t) is uniformly taken over
the unit Euclidean sphere: {u ∈ �S | ||u(t)||2 = 1} [6]. More
details are provided in Appendix E.

In [6, 7, 50], this estimator is proposed without account-
ing for the fact that the random sample point p̃(t) = p(t) +

δu(t) can fall outside of the feasible set. In our power allo-
cation problem, using the same procedure would imply that
the transmit power vector p̃(t) is allowed to go outside P .
However, our power constraints are physical ones: transmit
power positivity, maximum available power budget, which
means that any violations are prohibited.

One of the major contributions of this work is to introduce
a novel learning algorithm that exploits the gradient esti-
mation above, while guaranteeing that the transmit powers
always lie in the feasible set. For this, we define a modified
and shrunk feasible set Pδ such that, for any pδ(t) ∈ Pδ, we
have pδ(t) + δu(t) ∈ P:

Pδ =

pδ ∈ �
S

∣∣∣∣∣∣∣ ps
δ ≥ δ,

S∑
s=1

ps
δ ≤ Pmax −

√
S δ

 . (23)

Having defined this new feasible set, the suitable exponen-
tial map that guarantees that pδ(t) + δu(t) always lies in this
set is

ps
δ(t) , δ + Pmax (1 −Cδ)

exp(ys(t))
1 +

∑S
i=1 exp(yi(t))

, (EXPδ)

where Cδ = δ
Pmax

(S +
√

S ). Using (EXPδ), we introduce a
novel exponential mapping: Qδ(y(t)) , (p1

δ(t), . . . , pS
δ (t)).

From the definition of Pδ and (EXPδ), we can deduce the
following conditions restricting the choice of the δ parame-
ter

0 < δ ≤
Pmax

S +
√

S
≤

Pmax
√

S
. (24)

Summing up all ingredients, our novel algorithm can be
summarized by the following three steps:

ṽ(t) =
S
δ

Lt(p̃(t))u(t),

y(t + 1) = y(t) − µ ṽ(t)
pδ(t) = Qδ(y(t)),

(OXL0)

where ṽ(t) represents the biased estimate of the gradient.
For implementation details, see OXL0 algorithm below. Al-
though OXL0 requires an additional step (i.e., the computa-

OXL0 algorithm: Online Exponential Learning Algorithm
with zeroth-order Feedback
Parameters: µ > 0; 0 < δ ≤ Pmax/(S +

√
S ).

Initialization: y(0)← 0; t ← 0.
Repeat

. Pre-transmission phase:
Update pδ(t)← Qδ(y(t)) defined in (EXPδ)
Draw a random u(t) uniformly from the unit-sphere
. Transmit at p̃(t)← pδ(t) + δu(t)
. Post-transmission phase: receive scalar feedback Lt(p̃(t))
Compute the gradient estimation ṽ(t) = S

δ
Lt(p̃(t)) u(t)

Update scores y(t + 1)← y(t) − µ(t) ṽ(t)
t ← t + 1
until transmission ends

tion of the gradient estimation ṽ(t)) compared with OXL, the
complexity of each iteration remains linear in the problem
dimensionality S .

In Appendix E, we prove that the regret can be bounded
as follows:

Theorem 4. If the OXL0 algorithm is run with constant
parameters δ and µ then the average regret is bounded by:

�[Reg(T )] ≤
Pmax log(1 + S )

2µ
+ µTS 2

(B
δ

+ K
)2

+ KTδ
(
3 + Pmax

(
S + 2

√
S
))
. (25)

where K is the Lipschitz constant and B the maximum value
of the objective function Lt(·).

Tuning the parameters µ and δ: The step-size µ im-
pacts the sensitivity of the algorithm to variations in the
power policy. When µ is large, a small variation in the
score y(t) results in a large variation in the power allocation.
These large variations, can create oscillations in the power
allocation policy pδ(t) and the time required to reach no
regret increases as a result. At the opposite, a small µ leads to
smaller variations in the power allocation, which also imply
a long time for the regret to reach zero. Hence, there is a
compromise and µ has to be carefully tuned to minimize the
time to reach the no regret state.

The parameter δ represents the sampling radius of the
device around the power policy pδ(t). When tuning δ, there
is also a trade-off to be made between the precision of the
gradient estimate and its variance. By reducing δ, the device
reduces the distance to pδ(t) and the estimator gains in
precision. But since the device only has access to one value
of this estimate, reducing δ also increases the variability of
the estimator (21).

The bound (25) can be further optimized, but because of
the additional constraint δ ≤ Pmax/S +

√
S , the resulting

optimal bound will not be in closed-form. Having a slightly
sub-optimal but closed-form expression will prove to be
very useful in the sequel (when the time horizon T is
unknown). For this, we choose δ∗ = Pmax

(S +
√

S )T 1/4 that always
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meets the constraint and that decays optimally with respect
to T . Then, we optimize the resulting bound in (25) only
w.r.t to µ. The optimal µ∗ is obtained by setting to zero the
first-order derivative of the bound with respect to µ:

µ∗ =

√
Pmax log(1 + S )

2T

[
S

( B
δ∗

+ K
)]−1

. (26)

Then, introducing δ∗ and µ∗ in (25) yields the bound

�[Reg(T )] ≤ U1 T 3/4 + U2 T 1/2, (27)

where

U1 = S B
(
S +
√

S
) √

2 log(1 + S )
Pmax

(28)

+ K
(
3 + Pmax

(
S + 2

√
S
)) Pmax

S +
√

S
,

U2 =
√

2Pmax log(1 + S ) S K. (29)

Notice that the optimal bound w.r.t. δ and µ is also a function
O(T 3/4) and, hence, our particular choice of δ∗(T ) above
does not incur a large loss in terms of regret minimization
rate and has the advantage of providing a closed-form ex-
pression of the upper bound.

Corollary 3. If the OXL0 algorithm is run for a known
transmission horizon T and with the parameters δ∗ and µ∗

in (26), then it leads to no regret and the average regret
�[Reg(T )]/T vanishes as O(T−1/4).

As in the previous sections, this result relies on the
fact that the devices know their transmission horizon T in
advance. To remove this requirement, the device can use
the doubling trick or a time varying step-size. Since the
time varying step-size generally involves a loss in the decay
rate of the regret (see Sec. IV), we next investigate whether
the information required by the doubling trick is readily
available or not.

To do so, we have to determine specific values for the
constants B and K in (26). A short calculation shows that
they depend only on readily available system parameters:

B = S Pmax + λRmin,

K = 1 + 2λRmin.
(30)

From (30) and (26) we conclude that the device is able to
compute the parameters µ∗ and δ∗. This implies that, if the
time horizon T is not known in advance, the device can use
the doubling trick described in Sec. III.

Proposition 2. Assuming that the OXL0 algorithm is run
when T is unknown by using the doubling trick with the
parameters µ∗m and δ∗m chosen as above in each window of
size Tm, then the expected regret is bounded by

�[Reg(T )] ≤
2
√

2
23/4 − 1

U1 T 3/4 +
2

√
2 − 1

U2 T 1/2, (31)

with U1 and U2 defined in (27). This means that the
OXL0 algorithm leads to no regret and the average regret

�[Reg(T )]/T decreases at O(T−1/4).

The proof follows similarly to the proof of Proposition 1
and is omitted. Importantly, reducing the available feedback
results in a slower decay rate of the regret; the average regret
vanishes as O(T−1/4) with zeroth-order feedback, whereas
it vanishes as O(log(T )T−1/2) with imperfect gradient feed-
back and as O(T−1/2) with perfect gradient feedback. Never-
theless, even under extremely limited feedback information
- requiring a single sample of the objective function instead
of its gradient - our proposed learning procedure (OXL0
algorithm) achieves no-regret, irrespective of the evolution
the network over time and despite the fact that its governing
dynamics are unknown at the device end.

VI. Numerical experiments

Our goal in this section is to illustrate the performance
guarantees of our learning algorithms in highly dynamic
networks with realistic fading channel conditions, and with
various degrees of (strictly causal, no look-ahead) feedback
available at the device end, ranging from perfect gradient
information to the bare-bones observation of the achieved
loss. We start by comparing the OXL algorithm (full infor-
mation) to classical approaches based on water-filling [21–
23], suitably adapted to the setting at hand.

At each device, the benchmark water-filling is imple-
mented so that the overall power consumption is minimized
under the minimum rate constraint Rmin. If the obtained
solution does not meet the maximum power constraint, two
possibilities are considered: a) the device remains silent - the
energy-driven solution labeled WF0; b) the device transmits
anyway by splitting the overall power budget uniformly over
the S subcarriers - the rate-driven solution labeled WFPmax.

We consider at first a simple setting composed of a pair
of transmit-receive devices N = M = 1 communicating
over four subcarriers (S = 4). The system parameters are:
σ2 = 0.1, Pmax = 1.5 W, Rmin = 3 bps/Hz and λ = 1; the
channel gains are generated randomly as follows: hs(t+1) =

αhs(t) + (1 − α)εs(t) with i.i.d. variables εs(t) ∼ N (0, σ2
ε)

and σ2
ε = 10. This particular model allows us to control

the temporal correlation of the channels via the parameter
α ∈ [0, 1] in between the extremes: the static channel case
for α = 1 (completely predictable); and the i.i.d. Rayleigh-
fading case for α = 0 (unpredictable).

For a fair comparison, we assume that the transmitting
device only has access to a strictly causal feedback at each
time instant. Fig. 3 illustrates the performance in terms of
the relative outage defined as:

Out = [1 − R(p)/Rmin]+, (32)

of WF0 (Fig. 3(a)) and OXL algorithm (Fig. 3(b)). The
performance is averaged over 100 realizations of the channel
gains and for three different values of the time-correlation
factor α ∈ {0.2, 0.5, 0.8}. We remark that WF0 exhibits a
high sensitivity to the temporal correlation of the channels:
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Number of users M = 10
Number of subcarriers S = 4

Central frequency fc = 2 GHz
Bandwidth 10 MHz

Maximum power [0.5, 2] W
Minimum rate [0.5, 3] bps/Hz

λ [0.5, 10]

Table I: Network parameters.

lower α (less predictable channel conditions), the worse the
performance of WF-based algorithms. This is explained by
the fact that water-filling algorithms perform well assuming
that the SINR in each carrier is perfectly known ahead of the
transmission (in the static channel case). Hence, the absence
of look-ahead (non-causal) information negatively impacts
the performance of classical water-filling algorithms. By
contrast, the OXL algorithm consistently outperforms WF0
in terms of relative outage and is significantly more robust
w.r.t. the channel dynamics. We find this feature of OXL to
be particularly promising and appealing for applications to
IoT networks, where the system changes constantly (and un-
predictably), rendering conventional WF-based techniques
obsolete.

The simple channel model above allowed us to highlight
the impact of the channel dynamics and of having strictly
causal feedback information on the system parameters. To
validate the performance of OXL in more realistic environ-
ments, we consider in what follows a network composed
of multiple interfering devices, in which the different chan-
nels are generated according to the commonly used COST-
HATA model [51] that includes pathloss, fast fading and
shadowing effects [47]. The speed of the devices is chosen
arbitrarily between 0 km/h and 130 km/h so as to account for
a wide spectrum of wireless mobile devices (smartphones,
wearable, pedestrian, vehicle etc.). The minimum rate re-
quirement Rmin, the available power budget Pmax, and the
rate vs. power tradeoff parameter λ also differ from one
device to another.

Fig. 4 illustrates the comparison in terms of the rate
vs. power consumption between OXL algorithm and both
water-filling algorithms (Fig. 4(b) in the multiple device
setting composed of M = 10 interfering devices over S = 4
subcarriers and communicating to the same receiver N = 1.
The plotted curves are averaged over 100 realizations of
the COST-HATA channel gains. We assume that all devices
employ the same algorithms but with different parameters
(for the OXL algorithm case).

We first note that classical water-filling is more rigid
in terms of the rate vs. power tradeoff: either the device
remains silent (WF0) or transmits with full power whenever
its minimum rate constraint is incompatible with its power
budget (WFPmax). The parameter λ allows the device using
OXL algorithm to smoothly tune its rate vs. power operating
point depending on the target application. By increasing λ,
the power consumption increases but the relative outage de-
creases. When all devices employ a rate-driven water-filling
WFPmax a cascading effect emerges due to the fact that all

devices are forced to transmit at full power (ps = Pmax/S ),
which generates high network interference and, hence, has a
deleterious effect on the algorithm’s performance. We then
see that both water-filling algorithms perform equally poorly
in terms of relative outage when compared with the OXL
algorithm (caused by their lack of robustness to strictly
causal feedback information).

The next two goals of this section are: a) to validate
our theoretical results in terms of regret, which evaluates
both how close and how fast the proposed online algorithms
reach the optimal fixed target state; and b) to investigate the
effects of reducing the feedback information on the regret
decay rate of the proposed methods.

Fig. 5 illustrates the vanishing regret of both our pro-
posed algorithms, OXL (with perfect and imperfect gradient
feedback) and OXL0 (with a scalar feedback). Moreover, it
also illustrates the impact of having a scarce or imperfect
feedback and the impact of the problem dimensionality S .
Fig. 5(a) confirms that having an imperfect gradient feed-
back does not influence significantly the regret decay rate,
as anticipated by our theoretical results. However, this is no
longer true when the only information available at the device
end is a single scalar. The average regret of the OXL0 algo-
rithm decays slower compared with OXL algorithm (though
the latter cannot be applied with zeroth-order feedback).
Finally, Fig. 5(b) illustrates the average regret of OXL0 al-
gorithm for different values of the problem’s dimensionality
S ∈ {1, 2, 4}. In all cases, the average regret decays to zero;
however if the number of available subcarriers increases,
the variance of the estimator ṽ(t) increases commensurately.
Therefore the quality of the estimator decreases, which
results in a reduced decay rate of the average regret.

VII. Conclusions

In this paper, we derived two adaptive algorithms (namely
OXL and OXL0) for solving power allocation problems
in highly dynamic and unpredictable IoT networks based
on online optimization tools and exponential learning. A
key contribution lies in the fact that the proposed OXL0
algorithm only requires the observation of a loss value at
the device end. This algorithm is the first power allocation
policy over multiple subcarriers which relies on a single
scalar, as opposed to a vector worth of information con-
taining the SINR values in all subcarrier required by classic
water-filling algorithms.

Our simulations validate our theoretical expectations by
showing that water-filling algorithms are highly sensitive to
outdated feedback information and, hence, are not robust
to rapid and unpredictable changes in the network. The
proposed OXL algorithm outperforms classic water-filling
algorithms in all investigated settings in which the network
dynamics is not known at the device end. The impact of
feedback scarcity is then assessed: the zeroth-order feed-
back algorithm is the slowest to reach no regret, followed
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Figure 3: Performance comparison between WF0 and OXL algorithm in a time-varying setting, in which the transmitting device has access to strictly
causal information. OXL algorithm outperforms WF0 in terms of relative outage irrespective from the channel dynamics. WF0 is negatively impacted by
the outdated feedback information: the more unpredictable the channel gains, the higher the outage.
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Figure 4: Performance comparison between OXL algorithm and water-filling for an arbitrary device. Water-filling algorithms are rigid in terms of the
rate vs. power tradeoff, while OXL algorithm allows for a more smooth tuning via the parameter λ and for better performance both in terms of relative
outage and power consumption. The rate-driven WFPmax exhibits a cascading effect in the network and forces all devices to transmit at full power resulting
in poor performance. The energy-driven WF0 results in poor performance in terms of relative outage.

by the first algorithm in the imperfect gradient feedback case
and then by the same algorithm in the perfect gradient case.

Appendix

A. First order feedback: known horizon T

For simplicity of presentation in the remaining appen-
dices, we focus on the regret w.r.t. an arbitrary fixed policy
q ∈ P defined as Regq(T ) ,

∑T
t=1 Lt(p(t)) −

∑T
t=1 Lt(q), and

derive upper-bounds that are independent from q and, hence,
also hold for the regret in (6) (or for its expectation).

The first step to prove Theorem 1 is to bound the regret
based on the convexity of Lt(q) as follows

Regq(T ) ≤
T∑

t=1

〈v(t)|p(t) − q〉 , (33)

where q ∈ P is an arbitrarily chosen power allocation.

Using the fact that y(t + 1) = y(t)−µv(t) and y(1) = 0, we
obtain

Regq(T ) ≤
T∑

t=1

〈v(t)|p(t)〉 +
1
µ
〈y(T + 1)|q〉 . (34)

Then, we define a potential function f ∗(y(t)) = Pmax log(1 +∑S
s=1 exp(ys(t))), which is used to show that the exponenti-

ation step in (OXL) is equivalent to p(t) = ∇ f ∗(y(t)). Also,
the second order Taylor approximation of f ∗(y(t)) yields

f ∗(y(t + 1)) ≤ f ∗(y(t)) − µ 〈v(t)|∇ f ∗(y(t))〉 +
µ2

2
Pmax‖v(t)‖22.

(35)
Combining the above inequality with equation (34) and
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Figure 5: Impact of feedback amount and problem dimensionality. Both proposed algorithms, OXL and OXL0, exhibit a vanishing regret, as anticipated
by our theoretical results. The average regret of OXL0 algorithm, relying only on the scalar value of the objective function, decays slower than the average
regret of OXL algorithm with perfect or imperfect gradient feedback. Having to estimate the gradient of dimension S using the scalar value of the objective
impacts the decay rate of the average regret of OXL0 algorithm: the higher the problem dimensionality S , the slower the average regret.

given that p(t) = ∇ f ∗(y(t)), we obtain:

Regq(T ) ≤
1
µ

[
f ∗(0) − f ∗(y(T + 1))

]
+
µ

2
Pmax

T∑
t=1

‖v(t)‖22

+
1
µ
〈y(T + 1)|q〉 . (36)

By using Fenchel’s inequality [52] we get

f ∗(y) + f (q) ≥ 〈y|q〉 , ∀ y,q (37)

where f (q) is the convex conjugate of f ∗(y) defined as
f (q) = supy∈� 〈y|q〉 − f ∗(y). We can then substitute
〈y(T + 1)|q〉 − f ∗(y(T + 1)) by f (q) in (36) and obtain

Regq(T ) ≤
1
µ

[
f (q) + Pmax log(1 + S )

]
+
µ

2
PmaxVT. (38)

We can show that f (q) ≤ 0 for all q ∈ P by using a variable
change (x = q/Pmax) combined with Jensen’s inequality for
convex functions and the regret bound reduces to

Reg(T ) ≤
Pmax log(1 + S )

µ
+
µ

2
PmaxTV (39)

The optimal step-size is then obtained by minimizing the
above bound.

B. First order feedback: unknown horizon T

OXL algorithm is run with the optimal step µ∗(Tm) de-
fined in (9) in each window. Then, the regret in window m
of size Tm = 2m, denoted by R̃eg(Tm), can be bounded as in
(10):

R̃eg(Tm) ≤ Pmax
√

2TmV log(1 + S ). (40)

For a time horizon T , the number of widows equals
dlog2(T )e, where dxe is the ceiling function. The overall

regret can be bounded by the sum of all windows’ regrets:

Reg(T ) ≤
dlog2(T )e∑

m=0

Pmax
√

2TmV log(1 + S ). (41)

The result then follows by a geometric series argument.

C. Imperfect gradient feedback: known horizon T

From the convexity of the objective function, we can write

�[Regq(T )] ≤ �

 T∑
t=1

〈∇Lt(p(t))|p(t) − q〉
 . (42)

The idea is to link the above bound to the estimate ṽ(t). By
definition, we have that ∇Lt(p(t)) = �[ṽ(t)|ṽ(t− 1), ..., ṽ(1)].
By the law of total expectation, the following equality holds

�

 T∑
t=1

〈∇Lt(p(t))|p(t) − q〉
 = �

 T∑
t=1

〈ṽ(t)|p(t) − q〉
 . (43)

The term inside the expectation on the RHS can be bounded
as in (34) and, similarly to the proof of Therorem 1, we
obtain

�[Reg(T )] ≤ �

Pmax log(1 + S )
µ

+
µ

2
Pmax

T∑
t=1

‖ṽ(t)‖22

 .
(44)

Given that �
[
‖ṽ(t)‖22

]
≤ Ṽ , the result follows.

D. Imperfect gradient feedback: unknown horizon T

To bound the regret assuming a variable step-size µ(t), we
will consider the following weighted regret

WRegq(T ) , �

 T∑
t=1

µ(t) (Lt(p(t) − Lt(q))

 , (45)
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where µ(t) is the variable step-size in (17). Using a similar
approach as in the proof of Theorem 3, we obtain

WRegq(T ) ≤ Pmax log(1 + S ) +
Pmax

2
Ṽ

T∑
t=1

µ2(t). (46)

To bound the regret, we use the summability criterion
of Hardy [53], which allows us to compare weighted sums
– here, �[Regq(T )] and WRegq(T ). In particular, note that
the step-size sequence µ(t) = αt−1/2 satisfies the conditions
µ(t) ≥ µ(t + 1); and

∑T
t=1 µ(t)/µ(T ) = O(T ). Therefore, by

Theorem 14 in [53], we obtain
�[Regq(T )]

T
∼

WRegq(T )∑T
t=1 µ(t)

≤
Pmax
√

T

[
log(1 + S )

α
+
αṼ(1 + log T )

2

]
. (47)

E. Zeroth-order feedback: known horizon T

To prove Theorem 4, we introduce first some properties.
Consider the following expectation of the objective function
[7]

L̃t(p) ∆
= �u∈B

[
Lt(p + δu)

]
, (48)

where u is a random vector drawn uniformly on the unit
Euclidean ball B =

{
u ∈ �s| ||u||2 ≤ 1

}
and the expectation

is taken over the randomness of u. We can show that L̃t(·) is
a biased estimator of Lt(·) and

|Lt(p) − L̃t(p)| ≤ Kδ, ∀p, (49)

where K is the Lipschitz constant of the objective function.
An important property of L̃t(p) is that its gradient relies on
the values of the objective function as follows

∇L̃t(p) = �u∈S

[S
δ

Lt(p + uδ)u
]
, (50)

where u is drawn for the unit Euclidean sphere S ={
u ∈ �S | ||u||2 = 1

}
.

Another useful property is that the new exponential map-
ping step in (EXPδ), which is adapted to the modified set
Pδ, can be written equivalently as:

pδ(t) = arg max
q∈Pδ

{〈y(t)|q〉 − h(q)} ,

h(q) ,
S∑

s=1

(qs − δ) log(qs − δ) +

C − S∑
s=1

qs

 log

C − S∑
s=1

qs

 ,
(51)

with C = Pmax − δ
√

S .
The first step to prove Theorem 4 is to compare Lt(pδ(t) +

δu), the incurred loss at time t, to Lt(pδ(t)) by using that Lt(·)
is a K-Lipschitz function:

�[Regq(T )] ≤ �

 T∑
t=1

Lt(pδ(t)) − Lt(q)

 + KTδ
(
1 + PmaxS̃

)
,

with S̃ = S + 2
√

S . The second step is to compare Lt(pδ(t))
and Lt(q) to L̃t(pδ(t)) and L̃t(q) respectively.

�[Regq(T )] ≤ �

 T∑
t=1

L̃t(pδ(t)) − L̃t(q)

 + KTδ
(
3 + PmaxS̃

)
.

Since L̃t(p) is convex w.r.t. p we have:

�

 T∑
t=1

L̃t(pδ(t)) − L̃t(q)

 ≤ �  T∑
t=1

〈∇L̃t(pδ(t))|pδ(t) − q〉

 .
We can write ∇L̃t(pδ(t)) = �[ṽ(t)|u(1), ...,u(t − 1)], where
ṽ(t) is the estimation defined in (22) and where the expecta-
tion is taken over the randomness of u. Using this property
and the law of total expectation, the bound on the expected
regret becomes:

�

 T∑
t=1

〈∇L̃t(pδ(t))|pδ(t) − q〉

 ≤ �  T∑
t=1

〈ṽ(t)|pδ(t) − q〉

 .
By using (51), we can bound the sum

∑T
t=1 〈ṽ(t)|q〉 and

obtain

�

 T∑
t=1

〈ṽ(t)|pδ(t) − q〉
 ≤ �  T∑

t=1

〈v(t)|pδ(t + 1) − pδ(t)〉
 +

H
2µ
,

where H = minp∈Pδ
h(p). We use again (51) and the Cauchy-

Schwartz inequality to bound the sum of
〈v(t)|pδ(t + 1) − pδ(t)〉 and, by combining all the above, we
find

�[Reg(T )] ≤
H
2µ

+µTS 2
(B
δ

+ K
)2

+KTδ
(
3 + Pmax

(
S + 2

√
S
))
.

where B = maxt,p Lt(p). Finally, Theorem 4 follows by
finding that H = Pmax log(1 + S ).
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