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Abstract

In this work the dynamic compressive sensing (CS) problem ofrecovering sparse, correlated, time-

varying signals from sub-Nyquist, non-adaptive, linear measurements is explored from a Bayesian per-

spective. While there has been a handful of previously proposed Bayesian dynamic CS algorithms in the

literature, the ability to perform inference on high-dimensional problems in a computationally efficient

manner remains elusive. In response, we propose a probabilistic dynamic CS signal model that captures

both amplitude and support correlation structure, and describe an approximate message passing algorithm

that performs soft signal estimation and support detectionwith a computational complexity that is linear

in all problem dimensions. The algorithm, DCS-AMP, can perform either causal filtering or non-causal

smoothing, and is capable of learning model parameters adaptively from the data through an expectation-

maximization learning procedure. We provide numerical evidence that DCS-AMP performs within3 dB

of oracle bounds on synthetic data under a variety of operating conditions. We further describe the result

of applying DCS-AMP to two real dynamic CS datasets, as well as a frequency estimation task, to bolster

our claim that DCS-AMP is capable of offering state-of-the-art performance and speed on real-world

high-dimensional problems.

I. INTRODUCTION

In this work, we consider thedynamic compressive sensing(dynamic CS) problem, in which a

sparse, vector-valued time series is recovered from a second time series of noisy, sub-Nyquist, linear
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measurements. Such a problem finds application in, e.g., dynamic MRI [2], high-speed video capture [3],

and underwater channel estimation [4].

Framed mathematically, the objective of the dynamic CS problem is to recover the time series

{x(1), . . . ,x(T )}, wherex(t) ∈ CN is the signal at timestept, from a time series of measurements,

{y(1), . . . ,y(T )}. Eachy(t) ∈ CM is obtained from the linear measurement process,

y(t) = A(t)x(t) + e(t), t = 1, . . . , T, (1)

with e(t) representing corrupting noise. The measurement matrixA(t) (which may be time-varying or

time-invariant, i.e.,A(t) = A ∀ t) is known in advance, and is generally wide, leading to an underdeter-

mined system of equations. The problem is regularized by assuming thatx(t) is sparse (or compressible),1

having relatively few non-zero (or large) entries.

In many real-world scenarios, the underlying time-varyingsparse signal exhibits substantial temporal

correlation. This temporal correlation may manifest itself in two interrelated ways:(i) the support of the

signal may change slowly over time [2], [3], [5]–[8], and(ii) the amplitudes of the large coefficients

may vary smoothly in time.

In such scenarios, incorporating an appropriate model of temporal structure into a recovery technique

makes it possible to drastically outperform structure-agnostic CS algorithms. From an analytical stand-

point, Vaswani and Lu demonstrate that the restricted isometry property (RIP) sufficient conditions for

perfect recovery in the dynamic CS problem are significantlyweaker than those found in the traditional

single measurement vector (SMV) CS problem when accountingfor the additional structure [9]. In

this work, we take a Bayesian approach to modeling this structure, which contrasts those dynamic

CS algorithms inspired by convex relaxation, such as the Dynamic LASSO [5] and the Modified-CS

algorithm [9]. Our Bayesian framework is also distinct fromthose hybrid techniques that blend elements

of Bayesian dynamical models like the Kalman filter with moretraditional CS approaches of exploiting

sparsity through convex relaxation [2], [10] or greedy methods [11].

In particular, we propose a probabilistic model that treatsthe time-varying signal support as a set of

independent binary Markov processes and the time-varying coefficient amplitudes as a set of independent

Gauss-Markov processes. As detailed in Section II, this model leads to coefficient marginal distributions

that are Bernoulli-Gaussian (i.e., “spike-and-slab”). Later, in Section V, we describe a generalization of

the aforementioned model that yields Bernoulli-Gaussian-mixture coefficient marginals with an arbitrary

1Without loss of generality, we assumex(t) is sparse/compressible in the canonical basis. Other sparsifying bases can be

incorporated into the measurement matrixA
(t) without changing our model.
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number of mixture components. The models that we propose thus differ substantially from those used in

other Bayesian approaches to dynamic CS, [12] and [13]. In particular, Sejdinović et al. [12] combine a

linear Gaussian dynamical system model with a sparsity-promoting Gaussian-scale-mixture prior, while

Shahrasbi et al. [13] employ a particular spike-and-slab Markov model that couples amplitude evolution

together with support evolution.

Our inference method also differs from those used in the alternative Bayesian dynamic CS algorithms

[12] and [13]. In [12], Sejdinović et al. perform inferencevia a sequential Monte Carlo sampler [14].

Sequential Monte Carlo techniques are appealing for their applicability to complicated non-linear, non-

Gaussian inference tasks like the Bayesian dynamic CS problem. Nevertheless, there are a number of

important practical issues related to selection of the importance distribution, choice of the resampling

method, and the number of sample points to track, since in principle one must increase the number of

points exponentially over time to combat degeneracy [14]. Additionally, Monte Carlo techniques can be

computationally expensive in high-dimensional inferenceproblems. An alternative inference procedure

that has recently proven successful in a number of applications is loopy belief propagation (LBP) [15].

In [13], Shahrasbi et al. extend the conventional LBP methodproposed in [16] for standard CS under a

sparse measurement matrixA to the case of dynamic CS under sparseA(t). Nevertheless, the confinement

to sparse measurement matrices is very restrictive, and, without this restriction, the methods of [13], [16]

become computationally intractable.

Our inference procedure is based on the recently proposed framework of approximate message passing

(AMP) [17], and in particular its “turbo” extension [18]. AMP, an unconventional form of LBP, was

originally proposed for standard CS with a dense measurement matrix [17], and its noteworthy properties

include:(i) a rigorous analysis (asM,N → ∞ with M/N fixed, under i.i.d. sub-GaussianA) establishing

that its solutions are governed by a state-evolution whose fixed points are optimal in several respects [19],

and(ii) extremely fast runtimes (as a consequence of the fact that itneeds relatively few iterations, each

requiring only one multiplication byA and its transpose). The turbo-AMP framework originally proposed

in [18] offers a way to extend AMP to structured-sparsity problems such as compressive imaging [20],

joint communication channel/symbol estimation [21], and—as we shall see in this work—the dynamic

CS problem.

Our work makes several contributions to the existing literature on dynamic CS. First and foremost, the

DCS-AMP algorithm that we develop offers an unrivaled combination of speed (e.g., its computational

complexity grows only linearly in the problem dimensionsM , N , andT ) and reconstruction accuracy, as

we demonstrate on both synthetic and real-world signals. Ours is the first work to exploit the speed and
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accuracy of loopy belief propagation (and, in particular, AMP) in the dynamic CS setting, accomplished

by embedding AMP within a larger Bayesian inference algorithm. Second, we propose an expectation-

maximization [22] procedure to automatically learn the parameters of our statistical model, as described

in Section IV, avoiding a potentially complicated “tuning”problem. The ability to automatically calibrate

algorithm parameters is especially important when workingwith real-world data, but is not provided by

many of the existing dynamic CS algorithms (e.g., [2], [5], [9]–[12]). In addition, our learned model

parameters provide a convenient and interpretable characterization of time-varying signals in a way

that, e.g., Lagrange multipliers do not. Third, DCS-AMP provides a unified means of performing both

filtering, where estimates are obtained sequentially usingonly past observations, and smoothing, where

each estimate enjoys the knowledge of past, current, and future observations. In contrast, the existing

dynamic CS schemes can support either filtering, or smoothing, but not both.

A. Notation

Boldfaced lower-case letters, e.g.,a, denote column vectors, while boldfaced upper-case letters, e.g.,

A, denote matrices. The lettert is strictly used to index a timestep,t = 1, 2, . . . , T , the lettern is

strictly used to index the coefficients of a signal,n = 1, . . . , N , and the letterm is strictly used to index

the measurements,m = 1, . . . ,M . The superscript(t) indicates a timestep-dependent quantity, while a

superscript without parentheses, such ask, indicates a quantity whose value changes according to some

algorithmic iteration indexk. Subscript notations such asx(t)n are used to denote thenth element of the

vectorx(t), while set subscript notation, e.g.,x(t)
S , denotes the sub-vector ofx(t) consisting of indices

contained inS. Themth row of the matrixA is denoted byaT
m, anM -by-M identity matrix is denoted

by IM , and a length-N vector of ones is given by1N . Finally, CN (a; b,C) refers to the circularly

symmetric complex normal distribution that is a function ofthe vectora, with meanb and covariance

matrix C.

II. SIGNAL MODEL

We assume that the measurement process can be accurately described by the linear model of (1). We

further assume thatA(t) ∈ CM×N , t = 1, . . . , T, are measurement matrices known in advance, whose

columns have been scaled to be of unit norm.2 We model the noise as a stationary, circularly symmetric,

additive white Gaussian noise (AWGN) process, withe(t) ∼ CN (0, σ2eIM ) ∀ t.

2Our algorithm can be generalized to supportA
(t) without equal-norm columns, a time-varying number of measurements,

M (t), and real-valued matrices/signals as well.
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As noted in Section I, the sparse time series,{x(t)}Tt=1, often exhibits a high degree of correlation

from one timestep to the next. In this work, we model this correlation through a slow time-variation

of the signal support, and a smooth evolution of the amplitudes of the non-zero coefficients. To do so,

we introduce two hidden random processes,{s(t)}Tt=1 and {θ(t)}Tt=1. The binary vectors(t) ∈ {0, 1}N

describes the support ofx(t), denotedS(t), while the vectorθ(t) ∈ CN describes the amplitudes of the

active elements ofx(t). Together,s(t) andθ(t) completely characterizex(t) as follows:

x(t)n = s(t)n · θ(t)n ∀n, t. (2)

Therefore,s(t)n = 0 setsx(t)n = 0 andn /∈ S(t), while s(t)n = 1 setsx(t)n = θ
(t)
n andn ∈ S(t).

To model slow changes in the supportS(t) over time, we model thenth coefficient’s support across

time, {s(t)n }Tt=1, as a Markov chain defined by two transition probabilities:p
10
,Pr{s(t)n =1|s

(t−1)
n =0},

and p
01

, Pr{s(t)n = 0|s
(t−1)
n = 1}, and employ independent chains acrossn = 1, . . . , N . We further

assume that each Markov chain operates in steady-state, such that Pr{s(t)n = 1} = λ ∀n, t. This steady-

state assumption implies that these Markov chains are completely specified by the parametersλ andp
01

,

which together determine the remaining transition probability p
10

= λp
01
/(1 − λ). Depending on how

p
01

is chosen, the prior distribution can favor signals that exhibit a nearly static support across time, or

it can allow for signal supports that change substantially from timestep to timestep. For example, it can

be shown that1/p
01

specifies the average run length of a sequence of ones in the Markov chains.

The second form of temporal structure that we capture in our signal model is the correlation in active

coefficient amplitudes across time. We model this correlation through independent stationary steady-state

Gauss-Markov processes for eachn, wherein{θ(t)n }Tt=1 evolves in time according to

θ(t)n = (1− α)
(

θ(t−1)
n − ζ

)

+ αw(t)
n + ζ, (3)

whereζ ∈ C is the mean of the process,w(t)
n ∼ CN (0, ρ) is an i.i.d. circular white Gaussian perturbation,

and α ∈ [0, 1] controls the temporal correlation. At one extreme,α = 0, the amplitudes are totally

correlated, (i.e.,θ(t)n = θ
(t−1)
n ), while at the other extreme,α = 1, the amplitudes evolve according to an

uncorrelated Gaussian random process with meanζ.

At this point, we would like to make a few remarks about our signal model. First, due to (2), it is

clear thatp
(

x
(t)
n |s

(t)
n , θ

(t)
n

)

= δ
(

x
(t)
n − s

(t)
n θ

(t)
n

)

, whereδ(·) is the Dirac delta function. By marginalizing

out s(t)n andθ(t)n , one finds that

p(x(t)n ) = (1− λ)δ(x(t)n ) + λ CN (x(t)n ; ζ, σ2), (4)
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whereσ2 ,
αρ
2−α is the steady-state variance ofθ(t)n . Equation (4) is a Bernoulli-Gaussian or “spike-

and-slab” distribution, which is an effective sparsity-promoting prior due to the point-mass atx(t)n = 0.

Second, we observe that the amplitude random process,{θ(t)}Tt=1, evolves independently from the sparsity

pattern random process,{s(t)}Tt=1. As a result of this modeling choice, there can be significanthidden

amplitudesθ(t)n associated with inactive coefficients (those for whichs
(t)
n = 0). Consequently,θ(t)n should

be viewed as the amplitude ofx(t)n conditionedon s(t)n = 1. Lastly, we note that higher-order Markov

processes and/or more complex coefficient marginals could be considered within the framework we

propose, however, to keep development simple, we restrict our attention to first-order Markov processes

and Bernoulli-Gaussian marginals until Section V, where wedescribe an extension of the above signal

model that yields Bernoulli-Gaussian-mixture marginals.

III. T HE DCS-AMP ALGORITHM

In this section we will describe the DCS-AMP algorithm, which efficiently and accurately estimates the

marginal posterior distributions of{x(t)n }, {θ(t)n }, and{s(t)n } from the observed measurements{y(t)}Tt=1,

thus enabling both soft estimation and soft support detection. The use of soft support information is

particularly advantageous, as it means that the algorithm need never make a firm (and possibly erroneous)

decision about the support that can propagate errors acrossmany timesteps. As mentioned in Section I,

DCS-AMP can perform either filtering or smoothing.

The algorithm we develop is designed to exploit the statistical structure inherent in our signal model.

By defining ȳ to be the collection of all measurements,{y(t)}Tt=1 (and definingx̄, s̄, and θ̄ similarly),

the posterior joint distribution of the signal, support, and amplitude time series, given the measurement

time series, can be expressed using Bayes’ rule as

p(x̄, s̄, θ̄|ȳ) ∝
T
∏

t=1

(

M
∏

m=1

p(y(t)m |x(t))

N
∏

n=1

p(x(t)n |s(t)n , θ
(t)
n )p(s(t)n |s(t−1)

n )p(θ(t)n |θ(t−1)
n )

)

, (5)

where∝ indicates proportionality up to a constant scale factor,p(s
(1)
n |s

(0)
n ) , p(s

(1)
n ), andp(θ(1)n |θ

(0)
n ) ,

p(θ
(1)
n ). By inspecting (5), we see that the posterior joint distribution decomposes into the product of

many distributions that only depend on small subsets of variables. A graphical representation of such

decompositions is given by thefactor graph, which is an undirected bipartite graph that connects the pdf

“factors” of (5) with the random variables that constitute their arguments [23]. In Table I, we introduce

the notation that we will use for the factors of our signal model, showing the correspondence between

the factor labels and the underlying distributions they represent, as well as the specific functional form

assumed by each factor. The associated factor graph for the posterior joint distribution of (5) is shown
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TABLE I: The factors, underlying distributions, and functional forms associated with our signal model
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Fig. 1: Factor graph representation of the joint posterior distribution of (5).

in Fig. 1, labeled according to Table I. Filled squares represent factors, while circles represent random

variables.

As seen in Fig. 1, all of the variables needed at a given timestep can be visualized as lying in a plane,

with successive planes stacked one after another in time. Wewill refer to these planes as “frames”. The

temporal correlation of the signal supports is illustratedby the h(t)n factor nodes that connect thes(t)n

variable nodes between neighboring frames. Likewise, the temporal correlation of the signal amplitudes

is expressed by the interconnection ofd
(t)
n factor nodes andθ(t)n variable nodes. For visual clarity, these

factor nodes have been omitted from the middle portion of thefactor graph, appearing only at indices

n = 1 andn = N , but should in fact be present for all indicesn = 1, . . . , N . Since the measurements

{y
(t)
m } are observed variables, they have been incorporated into the g(t)m factor nodes.
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The algorithm that we develop can be viewed as an approximateimplementation of belief propagation

(BP) [24], a message passing algorithm for performing inference on factor graphs that describe proba-

bilistic models. When the factor graph is cycle-free, belief propagation is equivalent to the more general

sum-product algorithm [23], which is a means of computing the marginal functions that result from

summing (or integrating) a multivariate function over all possible input arguments, with one argument

held fixed, (i.e., marginalizing out all but one variable). In the context of BP, these marginal functions are

the marginal distributions of random variables. Thus, given measurements̄y and the factorization of the

posterior joint distributionp
(

x̄, s̄, θ̄
∣

∣ȳ
)

, DCS-AMP computes (approximate) posterior marginals ofx
(t)
n ,

s
(t)
n , and θ(t)n . In “filtering” mode, our algorithm would therefore return,e.g.,p

(

x
(t)
n

∣

∣{y(t)}tt=1

)

, while

in “smoothing” mode it would returnp
(

x
(t)
n

∣

∣{y(t)}Tt=1

)

. From these marginals, one can compute, e.g.,

minimum mean-squared error (MMSE) estimates. The factor graph of Fig. 1 contains many short cycles,

however, and thus the convergence of loopy BP cannot be guaranteed [23].3 Despite this, loopy BP has

been shown to perform extremely well in a number of differentapplications, including turbo decoding

[29], computer vision [30], and compressive sensing [16]–[18], [20], [31]–[33].

A. Message scheduling

In loopy factor graphs, there are a number of ways to schedule, or sequence, the messages that are

exchanged between nodes. The choice of a schedule can impactnot only the rate of convergence of the

algorithm, but also the likelihood of convergence as well [34]. We propose a schedule (an evolution of

the “turbo” schedule proposed in [18]) for DCS-AMP that is straightforward to implement, suitable for

both filtering and smoothing applications, and empiricallyyields quickly converging estimates under a

variety of diverse operating conditions.

Our proposed schedule can be broken down into four distinct steps, which we will refer to using

the mnemonics(into), (within), (out), and (across). At a particular timestept, the (into) step involves

passing messages that provide current beliefs about the state of the relevant support variables,{s
(t)
n }Nn=1,

and amplitude variables,{θ(t)n }Nn=1, laterally into the dashed AMP box within framet. (Recall Fig. 1.)

The (within) step makes use of these incoming messages, together with theobservations available in

that frame,{y(t)m }Mm=1, to exchange messageswithin the dashed AMP box of framet, thus generating

estimates of the marginal posteriors of the signal variables {x
(t)
n }Nn=1. Using these posterior estimates,

3However, it is worth noting that in the past decade much work has been accomplished in identifying specific situations under

which loopy BPis guaranteed to converge, e.g., [19], [25]–[28].
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the (out) step propagates messagesout of the dashed AMP box, providing updated beliefs about the state

of {s(t)n }Nn=1 and{θ(t)n }Nn=1. Lastly, the(across) step involves transmitting messagesacrossneighboring

frames, using the updated beliefs about{s
(t)
n }Nn=1 and{θ(t)n }Nn=1 to influence the beliefs about{s(t+1)

n }Nn=1

and{θ(t+1)
n }Nn=1

(

or {s(t−1)
n }Nn=1 and{θ(t−1)

n }Nn=1

)

.

The procedures for filtering and smoothing both start in the same way. At the initialt = 1 frame, steps

(into), (within) and(out) are performed in succession. Next, step(across) is performed to pass messages

from {s
(1)
n }Nn=1 and{θ(1)n }Nn=1 to {s

(2)
n }Nn=1 and{θ(2)n }Nn=1. Then at framet = 2 the same set of steps are

executed, concluding with messages propagating to{s
(3)
n }Nn=1 and{θ(3)n }Nn=1. This process continues until

steps(into), (within) and(out) have been completed at the terminal frame,T . At this point, DCS-AMP

has completed what we call a single forward pass. If the objective was to perform filtering, DCS-

AMP terminates at this point, since only causal measurements have been used to estimate the marginal

posteriors. If instead the objective is to obtain smoothed,non-causal estimates, then information begins

to propagate backwards in time, i.e., step(across) moves messages from{s(T )n }Nn=1 and {θ
(T )
n }Nn=1 to

{s
(T−1)
n }Nn=1 and{θ(T−1)

n }Nn=1. Steps(into), (within), (out), and(across) are performed at frameT − 1,

with messages bound for frameT − 2. This continues until the initial frame is reached. At this point

DCS-AMP has completed what we term as a single forward/backward pass. Multiple such passes, indexed

by the variablek, can be carried out until a convergence criterion is met or a maximum number of passes

has been performed.

B. Implementing the message passes

We now provide some additional details as to how the above four steps are implemented. To aid our

discussion, in Fig. 2 we summarize the form of the messages that pass between the various factor graph

nodes, focusing primarily on a single coefficient indexn at an intermediate framet. Directed edges

indicate the direction that messages are moving. In the(across) phase, we only illustrate the messages

involved in a forward pass for the amplitude variables, and leave out a graphic for the corresponding

backward pass, as well as graphics for the support variable(across) phase. Note that, to be applicable at

frameT , the factor noded(t+1)
n and its associated edge should be removed. The figure also introduces

the notation that we adopt for the different variables that serve to parameterize the messages. We use the

notationνa→b(·) to denote a message passing from nodea to a connected nodeb. For Bernoulli message

pdfs, we show only the non-zero probability, e.g.,
⇀

λ
(t)

n = νh(t)
n →s(t)n

(s
(t)
n = 1).

To perform step(into), the messages from the factorsh(t)n and h(t+1)
n to s

(t)
n are used to set↼π(t)n ,

the message froms(t)n to f
(t)
n . Likewise, the messages from the factorsd(t)n andd(t+1)

n to θ
(t)
n are used
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CN (θ
(t+1)
n ;

⇀

η
(t+1)
n ,

⇀

κ
(t+1)
n )

CN (θ
(t)
n ;

⇀

η
(t)
n ,

⇀

κ
(t)
n )

↼

π
(t)
n

⇀

π
(t)
n

CN (θn;
⇀

ξ
(t)
n ,

⇀

ψ
(t)
n )

CN (θn;
⇀

ξ
(t)
n ,

⇀

ψ
(t)
n )

CN (θ
(t)
n ;

↼

ξ
(t)
n ,

↼

ψ
(t)
n )

CN (x
(t)
n ;φi

nt, c
i
t)

Only require message
means, {µi+1

nt }, and
variances, {vi+1

nt }

(into) (within)

(out) (across)

AMP

Fig. 2: A summary of the four message passing phases, including message notation and form. See the pseudocode of Table II

for the precise message update computations.

to determine the message fromθ(t)n to f
(t)
n . When performing filtering, or the first forward pass of

smoothing, no meaningful information should be conveyed from theh(t+1)
n andd(t+1)

n factors. This can

be accomplished by initializing
(↼

λ
(t)

n ,
↼

η(t)n ,
↼

κ(t)n
)

with the values(12 , 0,∞).

In step(within), messages must be exchanged between the
{

x
(t)
n

}N

n=1
and

{

g
(t)
m

}M

m=1
nodes. WhenA(t)

is not a sparse matrix, this will imply a dense network of connections between these nodes. Consequently,

the standard sum-product algorithm would require us to evaluate multi-dimensional integrals of non-

Gaussian messages that grow exponentially in number in bothN and M . This approach is clearly

infeasible for problems of any appreciable size, and thus weturn to a simplification known asapproximate

message passing(AMP) [17], [31].

At a high-level, AMP can be viewed as a simplification of loopyBP, employing central limit theorem

arguments to approximate the sum of many non-Gaussian random variables as a Gaussian. Through

a series of principled approximation steps (which become exact for sub-GaussianA matrices in the

large-system limit [19]), AMP produces an iterative thresholding algorithm that requires onlyO(MN)

operations, dominated by matrix-vector products, to obtain posteriors on the
{

x
(t)
n

}N

n=1
variable nodes.

The specifics of the iterative thresholding algorithm will depend on the signal prior under which AMP

is operating [31], but it is assumed that the joint prior decouples into independent (but not necessarily

i.i.d.) priors on each coefficientx(t)n . See Appendix A for additional background on AMP.
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By viewing νf (t)
n →x(t)

n
(·) as a “local prior”4 for x(t)n , we can readily apply an off-the-shelf AMP

algorithm (e.g., [31], [35], [36]) as a means of performing the message passes within the portions of

the factor graph enclosed within the dashed boxes of Fig. 1 (only one such box is visible). The use of

AMP with decoupled local priors within a larger message passing algorithm that accounts for statistical

dependencies between signal coefficients was first proposedin [18], and further studied in [20], [21],

[32], [37], [38]. Here, we exploit this powerful “turbo” inference approach to account for the strong

temporal dependencies inherent in the dynamic CS problem.

The local prior for our signal model is a Bernoulli-Gaussian, namely

νf (t)
n →x(t)

n
(x(t)n ) = (1−

↼

π(t)n )δ(x(t)n ) +
↼

π(t)n CN (x(t)n ;
↼

ξ(t)n ,
↼

ψ(t)
n ).

The appropriate AMP message update equations for this localprior follow a straightforward extension

of the derivations outlined in [18], which considered the special case of a zero-mean Bernoulli-Gaussian

prior. The specific AMP updates for our model are given by (A4)-(A8) in Table II.

After employing AMP to manage the message passing between the
{

x
(t)
n

}N

n=1
and

{

g
(t)
m

}M

m=1
nodes

in step(within), messages must be propagated out of the dashed AMP box of frame t (step(out)) and

either forward or backward in time (step(across)). While step(across) simply requires a straightforward

application of the sum-product message computation rules,step(out) imposes several difficulties which

we must address. For the remainder of this discussion, we focus on a novel approximation scheme

for specifying the messageνf (t)
n →θ(t)n

(·). Our objective is to arrive at a message approximation that

introduces negligible error while still leading to a computationally efficient algorithm. A Gaussian message

approximation is a natural choice, given the marginally Gaussian distribution ofθ(t)n . As we shall soon

see, it is also a highly justifiable choice.

A routine application of the sum-product rules to thef (t)n -to-θ(t)n message would produce the following

expression:

νexact
f (t)
n →θ(t)n

(θ(t)n ) , (1−
↼

π(t)n )CN (0;φint, c
i
t) +

↼

π(t)n CN (θ(t)n ;φint, c
i
t). (6)

Unfortunately, the termCN (0;φint, c
i
t) prevents us from normalizingνexact

f (t)
n →θ(t)n

(θ
(t)
n ), because it is constant

with respect toθ(t)n . Therefore, the distribution onθ(t)n represented by (6) is improper. To provide intuition

into why this is the case, it is helpful to think ofνf (t)
n →θ(t)n

(θ
(t)
n ) as a message that conveys information

4The AMP algorithm is conventionally run with static, i.i.d.priors for each signal coefficient. When utilized as a sub-component

of a larger message passing algorithm on an expanded factor graph, the signal priors (from AMP’s perspective) will be changing

in response to messages from the rest of the factor graph. We refer to these changing AMP priors aslocal priors.
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about the value ofθ(t)n based on the values ofx(t)n ands(t)n . If s(t)n = 0, then by (2),x(t)n = 0, thus making

θ
(t)
n unobservable. The constant term in (6) reflects the uncertainty due to this unobservability through

an infinitely broad, uninformative distribution forθ(t)n .

To avoid an improper pdf, we modify how this message is derived by regarding our assumed signal

model, in whichs(t)n ∈ {0, 1}, as a limiting case of the model withs(t)n ∈ {ε, 1} asε→ 0. For any fixed

positiveε, the resulting messageνf (t)
n →θ

(t)
n
(·) is proper, given by

νmod
f (t)
n →θ(t)n

(θ(t)n ) = (1− Ω(
↼

π(t)n )) CN (θ(t)n ; 1εφ
i
nt,

1
ε2 c

i
t) + Ω(

↼

π(t)n ) CN (θ(t)n ;φint, c
i
t), (7)

where

Ω(π) ,
ε2π

(1− π) + ε2π
. (8)

The pdf in (7) is that of a binary Gaussian mixture. If we consider ε ≪ 1, the first mixture component

is extremely broad, while the second is more “informative,”with meanφin and variancecin. The relative

weight assigned to each component Gaussian is determined bythe termΩ(
↼

π
(t)
n ). Notice that the limit of

this weighting term is the simple indicator function

lim
ε→0

Ω(π) =











0 if 0 ≤ π < 1,

1 if π = 1.

(9)

Since we cannot setε = 0, we instead fix a small positive value, e.g.,ε = 10−7. In this case, (7)

could then be used as the outgoing message. However, this presents a further difficulty: propagating

a binary Gaussian mixture forward in time would lead to an exponential growth in the number of

mixture components at subsequent timesteps. This difficulty is a familiar one in the context of switched

linear dynamical systems based on conditional Gaussian models, since such models are not closed under

marginalization [39]. To avoid the exponential growth in the number of mixture components, we collapse

our binary Gaussian mixture to a single Gaussian component,an approach sometimes referred to as a

Gaussian sum approximation [40], [41]. This can be justifiedby the fact that, forε ≪ 1, Ω(·) behaves

nearly like the indicator function in (9), in which case one of the two Gaussian components will typically

have negligible mass.

To carry out the Gaussian sum approximation, we propose the following two schemes. The first is to

simply choose a thresholdτ that is slightly smaller than1 and, using (9) as a guide, threshold↼

π(t)n to

choose between the two Gaussian components of (7). The resultant message is thus

νf (t)
n →θ

(t)
n
(θ(t)n ) = CN (θ(t)n ;

⇀

ξ(t)n ,
⇀

ψ(t)
n ), (10)
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with
⇀

ξ
(t)
n and

⇀

ψ
(t)
n chosen according to

(⇀

ξ(t)n ,
⇀

ψ(t)
n

)

=







(

1
εφ

i
n,

1
ε2 c

i
n

)

,
↼

π
(t)
n ≤ τ

(

φin, c
i
n

)

,
↼

π
(t)
n > τ

. (11)

The second approach is to perform a second-order Taylor series approximation of− log νmod
f (t)
n →θ(t)n

(θ
(t)
n )

with respect toθ(t)n . The resultant quadratic form inθ(t)n can be viewed as the logarithm of a Gaussian

kernel with a particular mean and variance, which can be usedto parameterize a single Gaussian message,

as described in [32]. The latter approach has the advantage of being parameter-free. Empirically, we find

that this latter approach works well when changes in the support occur infrequently, e.g.,p
01
< 0.025,

while the former approach is better suited to more dynamic environments.

In Table II we provide a pseudo-code implementation of our proposed DCS-AMP algorithm that gives

the explicit message update equations appropriate for performing a single forward pass. The interested

reader can find an expanded derivation of the messages in [42]. The primary computational burden of

DCS-AMP is computing the messages passing between the{x
(t)
n } and {g

(t)
m } nodes, a task which can

be performed efficiently using matrix-vector products involving A(t) and A(t)H
. The resulting overall

complexity of DCS-AMP is thereforeO(TMN) flops (flops-per-pass) when filtering (smoothing).5 The

storage requirements areO(N) andO(TN) complex numbers when filtering and smoothing, respectively.

IV. L EARNING THE SIGNAL MODEL PARAMETERS

The signal model of Section II is specified by the Markov chainparametersλ, p
01

, the Gauss-Markov

parametersζ, α, ρ, and the AWGN varianceσ2e . It is likely that some or all of these parameters will require

tuning in order to best match the unknown signal. To this end,we develop an expectation-maximization

(EM) [22] algorithm that works together with the message passing procedure described in Section III-A

to learn all of the model parameters in an iterative fashion from the data.

The EM algorithm is appealing for two principal reasons. First, the EM algorithm is a well-studied and

principled means of parameter estimation. At every EM iteration, the likelihood is guaranteed to increase

until convergence to a local maximum occurs [43]. For multimodal likelihoods, local maxima will, in

general, not coincide with the global maximum, but a judicious initialization of parameters can help in

ensuring the EM algorithm reaches the global maximum [43]. The second appealing feature of the EM

5When they exist, fast implicitA(t) operators can provide significant computational savings inhigh-dimensional problems.

Implementing a Fourier transform as a fast Fourier transform (FFT) subroutine, for example, would drop DCS-AMP’s complexity

from O(TMN) to O(TN log2 N).
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% Define soft-thresholding functions:

Fnt(φ; c) , (1 + γnt(φ; c))−1
(↼
ψ

(t)
n φ+

↼
ξ
(t)
n c

↼
ψ

(t)
n +c

)

(D1)

Gnt(φ; c) , (1 + γnt(φ; c))−1
( ↼
ψ

(t)
n c

↼
ψ

(t)
n +c

)

+ γnt(φ; c)|Fnt(φ; c)|2 (D2)

F′
nt(φ; c) ,

∂
∂φ

Fnt(φ, c) = 1
c

Gnt(φ; c) (D3)

γnt(φ; c) ,
(

1−
↼
π
(t)
n

↼
π
(t)
n

)(↼
ψ

(t)
n +c
c

)

× exp
(

−
[↼
ψ

(t)
n |φ|2+

↼
ξ
(t) ∗

n cφ+
↼
ξ
(t)
n cφ∗−c|

↼
ξ
(t)
n |2

c(
↼
ψ

(t)
n +c)

])

(D4)

% Begin passing messages . . .
for t = 1, . . . , T :

% Execute the (into) phase . . .

↼
π(t)
n =

⇀
λ
(t)

n ·
↼
λ
(t)

n

(1−
⇀
λ
(t)

n )·(1−
↼
λ
(t)

n )+
⇀
λ
(t)

n ·
↼
λ
(t)

n

∀n (A1)

↼

ψ
(t)
n =

⇀
κ
(t)
n ·

↼
κ
(t)
n

⇀
κ
(t)
n +

↼
κ
(t)
n

∀n (A2)

↼

ξ
(t)
n =

↼

ψ
(t)
n ·

(⇀
η
(t)
n

⇀
κ
(t)
n

+
↼
η
(t)
n

↼
κ
(t)
n

)

∀n (A3)

% Initialize AMP-related variables . . .

∀m : z1mt = y
(t)
m ,∀n : µ1nt = 0, and c1t = 100 ·

∑N
n=1 ψ

(t)
n

% Execute the (within) phase using AMP . . .

for i = 1, . . . , I, :

φint =
∑M
m=1A

(t) ∗
mn z

i
mt + µint ∀n (A4)

µi+1
nt = Fnt(φint; c

i
t) ∀n (A5)

vi+1
nt = Gnt(φint; c

i
t) ∀n (A6)

ci+1
t = σ2e + 1

M

∑N
n=1 v

i+1
nt (A7)

zi+1
mt = y

(t)
m − a

(t) T
m µi+1

t +
zimt

M

∑N
n=1 F′

nt(φ
i
nt; c

i
t) ∀m (A8)

end

x̂
(t)
n = µI+1

nt ∀n % Store current estimate of x(t)n (A9)

% Execute the (out) phase . . .
⇀
π
(t)
n =

(

1 +
( ↼

π
(t)
n

1−
↼
π
(t)
n

)

γnt(φInt; c
I+1
t )

)−1
∀n (A10)

(
⇀

ξ
(t)
n ,

⇀

ψ
(t)
n ) =







(φIn/ε, c
I+1
t /ε2),

↼
π
(t)
n ≤ τ

(φIn, c
I+1
t ), o.w.

∀n (ε≪ 1) (A11)

% Execute the (across) phase forward in time . . .
⇀

λ
(t+1)
n =

p
10

(1−
⇀
λ
(t)
n )(1−

⇀
π
(t)
n )+(1−p

01
)
⇀
λ
(t)
n

⇀
π
(t)
n

(1−
⇀
λ
(t)
n )(1−

⇀
π
(t)
n )+

⇀
λ
(t)
n

⇀
π
(t)
n

∀n (A12)

⇀
η
(t+1)
n = (1 − α)

( ⇀
κ
(t)
n

⇀
ψ

(t)
n

⇀
κ
(t)
n +

⇀
ψ

(t)
n

)(⇀
η
(t)
n

⇀
κ
(t)
n

+
⇀
ξ
(t)
n

⇀
ψ

(t)
n

)

+ αζ ∀n (A13)

⇀
κ
(t+1)
n = (1 − α)2

( ⇀
κ
(t)
n

⇀
ψ

(t)
n

⇀
κ
(t)
n +

⇀
ψ

(t)
n

)

+ α2ρ ∀n (A14)

end

TABLE II: DCS-AMP steps for filtering mode, or the forward portion of a single forward/backward pass in smoothing mode.

See Fig. 2 to associate quantities with the messages traversing the factor graph.

algorithm lies in the fact that its expectation step leverages quantities that have already been computed

in the process of executing DCS-AMP, making the EM procedurecomputationally efficient.

We let Γ , {λ, p
01
, ζ, α, ρ, σ2e} denote the set of all model parameters, and letΓk denote the set

of parameter estimates at thekth EM iteration. The objective of the EM procedure is to find parameter
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estimates that maximize the data likelihoodp(ȳ|Γ). Since it is often computationally intractable to perform

this maximization, the EM algorithm incorporates additional “hidden” data and iterates between two steps:

(i) evaluating the conditional expectation of the log likelihood of the hidden data given the observed data,

ȳ, and the current estimates of the parameters,Γk, and(ii) maximizing this expected log likelihood with

respect to the model parameters. For all parameters except the noise variance,σ2e , we usēs andθ̄ as the

hidden data, while forσ2e we usex̄.

Before running DCS-AMP, the model parameters are initialized using any available prior knowledge.

If operating in smoothing mode, DCS-AMP performs an initialforward/backward pass, as described

in Section III-A. Upon completing this first pass, estimatesof the marginal posterior distributions are

available for each of the underlying random variables. Additionally, belief propagation can provide

pairwise joint posterior distributions, e.g.,p
(

s
(t)
n , s

(t−1)
n |ȳ

)

, for any variable nodes connected by a common

factor node [44]. With these marginal, and pairwise joint, posterior distributions, it is possible to produce

closed-form solutions for performing steps(i) and(ii) above. We adopt a Gauss-Seidel scheme, performing

coordinate-wise maximization, e.g.,

λk+1 = argmax
λ

Es̄,θ̄|ȳ

[

log p(ȳ, s̄, θ̄;λ,Γk\{λk})
∣

∣ȳ; Γk
]

.

The EM procedure is performed after each forward/backward pass, leading to a convergent sequence of

parameter estimates. If operating in filtering mode, the procedure is similar, however the EM procedure

is run after each recovered timestep using only causally available posterior estimates.

In Table III, we provide the EM update equations for each of the parameters of our signal model,

assuming DCS-AMP is operating in smoothing mode. A completederivation of each update can be

found in [42].

V. INCORPORATINGADDITIONAL STRUCTURE

In Sections II - IV we described a signal model for the dynamicCS problem and summarized a

message passing algorithm for making inferences under thismodel, while iteratively learning the model

parameters via EM. We also hinted that the model could be generalized to incorporate additional, or

more complex, forms of structure. In this section we will elaborate on this idea, and illustrate one such

generalization.

Recall that, in Section II, we introduced hidden variabless̄ andθ̄ in order to characterize the structure

in the signal coefficients. An important consequence of introducing these hidden variables was that they

made each signal coefficientx(t)n conditionally independent of the remaining coefficients inx̄, givens(t)n
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% Define key quantities obtained from AMP-MMV at iteration k:

E
[

s
(t)
n

∣

∣ȳ
]

=

(⇀
λ
(t)
n

⇀
π
(t)
n

↼
λ
(t)
n

)

(⇀
λ
(t)
n

⇀
π
(t)
n

↼
λ
(t)
n +(1−

⇀
λ
(t)
n )(1−

⇀
π
(t)
n )(1−

↼
λ
(t)
n )

) (Q1)

E
[

s
(t)
n s

(t−1)
n

∣

∣ȳ
]

= p
(

s
(t)
n = 1, s

(t−1)
n = 1

∣

∣ȳ
)

(Q2)

ṽ
(t)
n , var{θ(t)n |ȳ} =

(

1
⇀
κ
(t)
n

+ 1
⇀
ψ

(t)
n

+ 1
↼
κ
(t)
n

)−1

(Q3)

µ̃
(t)
n , E[θ(t)n |ȳ] = ṽ

(t)
n ·

(

⇀
η
(t)
n

⇀
κ
(t)
n

+
⇀
ξ
(t)
n

⇀
ψ

(t)
n

+
↼
η
(t)
n

↼
κ
(t)
n

)

(Q4)

v
(t)
n , var

{

x
(t)
n

∣

∣ȳ
}

% See (A6) of Table II

µ
(t)
n , E

[

x
(t)
n

∣

∣ȳ
]

% See (A5) of Table II

% EM update equations:

λk+1 = 1
N

∑N
n=1 E

[

s
(1)
n

∣

∣ȳ
]

(E1)

pk+1
01

=
∑T

t=2

∑N
n=1 E

[

s
(t−1)
n

∣

∣

ȳ

]

−E
[

s
(t)
n s

(t−1)
n

∣

∣

ȳ

]

∑
T
t=2

∑
N
n=1 E

[

s
(t−1)
n

∣

∣

ȳ

] (E2)

ζk+1 =
(

N(T−1)

ρk
+ N

(σ2)k

)−1 (
1

(σ2)k

∑N
n=1 µ̃

(1)
n

+
∑T
t=2

∑N
n=1

1
αkρk

(

µ̃
(t)
n − (1 − αk)µ̃

(t−1)
n

)

)

(E3)

αk+1 = 1
4N(T−1)

(

b−
√

b2 + 8N(T − 1)c
)

(E4)

where:

b , 2
ρk

∑T
t=2

∑N
n=1 Re

{

E[θ
(t)
n

∗
θ
(t−1)
n |ȳ]

}

−Re{(µ̃
(t)
n − µ̃

(t−1)
n )∗ζk} − ṽ

(t−1)
n − |µ̃

(t−1)
n |2

c , 2
ρk

∑T
t=2

∑N
n=1 ṽ

(t)
n + |µ̃

(t)
n |2 + ṽ

(t−1)
n + |µ̃

(t−1)
n |2

−2Re
{

E[θ
(t)
n

∗
θ
(t−1)
n |ȳ]

}

ρk+1 = 1
(αk)2N(T−1)

∑T
t=2

∑N
n=1 ṽ

(t)
n + |µ̃

(t)
n |2

+(αk)2|ζk|2 − 2(1 − αk)Re
{

E[θ
(t)
n

∗
θ
(t−1)
n |ȳ]

}

−2αkRe
{

µ̃
(t)∗
n ζk

}

+ 2αk(1 − αk)Re
{

µ̃
(t−1)∗
n ζk

}

+(1− αk)(ṽ
(t−1)
n + |µ̃

(t−1)
n |2) (E5)

(σ2e )
k+1 = 1

TM

(

∑T
t=1 ‖y

(t) −Aµ(t)‖2 + 1
T
Nv(t)

)

(E6)

TABLE III: EM update equations for the signal model parameters of Section II.

and θ(t)n . This conditional independence served an important algorithmic purpose since it allowed us to

apply the AMP algorithm, which requires independent local priors, within our larger inference procedure.

One way to incorporate additional structure into the signalmodel of Section II is to generalize our

choices ofp(s̄) andp(θ̄). As a concrete example, pairing the temporal support model proposed in this

work with the Markovian model of wavelet tree inter-scale correlations described in [20] through a

more complex support prior,p(s̄), could enable even greater undersampling in a dynamic MRI setting.

Performing inference on such models could be accomplished through the general algorithmic framework

proposed in [38]. As another example, suppose that we wish toexpand our Bernoulli-Gaussian signal

model to one in which signal coefficients are marginally distributed according to a Bernoulli-Gaussian-
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mixture, i.e.,

p(x(t)n ) = λ
(t)
0 δ(x(t)n ) +

D
∑

d=1

λ
(t)
d CN (x(t)n ; ζd, σ

2
d),

where
∑D

d=0 λ
(t)
d = 1. Since we still wish to preserve the slow time-variations inthe support and

smooth evolution of non-zero amplitudes, a natural choice of hidden variables is{s̄, θ̄1, . . . , θ̄D}, where

s
(t)
n ∈ {0, 1, . . . ,D}, andθ(t)d,n ∈ C, d = 1, . . . ,D. The relationship betweenx(t)n and the hidden variables

then generalizes to:

p(x(t)n |s(t)n , θ
(t)
1,n, . . . , θ

(t)
D,n) =







δ(x
(t)
n ), s

(t)
n = 0,

δ(x
(t)
n − θ

(t)
d,n), s

(t)
n = d 6= 0.

To model the slowly changing support, we specifyp(s̄) using a(D + 1)-state Markov chain defined

by the transition probabilitiesp0d , Pr{s(t)n = 0|s
(t−1)
n = d} and pd0 , Pr{s(t)n = d|s

(t−1)
n = 0}, d =

1, . . . ,D. In this work, we assume that state transitions cannot occurbetween active mixture components,

i.e., Pr(s(t)n = d|s
(t−1)
n = e) = 0 when d 6= e 6= 0.6 For each amplitude time-series we again use

independent Gauss-Markov processes to model smooth evolutions in the amplitudes of active signal

coefficients, i.e.,

θ
(t)
d,n = (1− αd)

(

θ
(t−1)
d,n − ζd

)

+ αdw
(t)
d,n + ζd,

wherew(t)
d,n ∼ CN (0, ρd).

As a consequence of this generalized signal model, a number of the message computations of Sec-

tion III-B must be modified. For steps(into) and (across), it is largely straightforward to extend the

computations to account for the additional hidden variables. For step(within), the modifications will

affect the AMP thresholding equations defined in (D1) - (D4) of Table II. Details on a Bernoulli-Gaussian-

mixture AMP algorithm can be found in [33]. For the(out) step, we will encounter difficulties applying

standard sum-product update rules to compute the messages{νf (t)
n →θ(t)d,n

(·)}Dd=1. As in the Bernoulli-

Gaussian case, we consider a modification of our assumed signal model that incorporates anε ≪ 1

term, and use Taylor series approximations of the resultantmessages to collapse a(D+1)-ary Gaussian

mixture to a single Gaussian. More information on this procedure can be found in [42].

6By relaxing this restriction on active-to-active state transitions, we can model signals whose coefficients tend to enter the

support set at small amplitudes that grow larger over time through the use of a Gaussian mixture component with a small

variance that has a high probability of transitioning to a higher variance mixture component.
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VI. EMPIRICAL STUDY

We now describe the results of an empirical study of DCS-AMP.7 The primary performance metric that

we used in all of our experiments, which we refer to as the time-averaged normalized MSE (TNMSE),

is defined as

TNMSE(x̄, ˆ̄x) ,
1

T

T
∑

t=1

‖x(t) − x̂(t)‖22
‖x(t)‖22

,

wherex̂(t) is an estimate ofx(t).

Unless otherwise noted, the following settings were used for DCS-AMP in our experiments. First,

DCS-AMP was run as a smoother, with a total of5 forward/backward passes. The number of inner

AMP iterationsI for each (within) step wasI = 25, with a possibility for early termination if the

change in the estimated signal,µit, fell below a predefined threshold from one iteration to the next, i.e.,

1
N ‖µit − µi−1

t ‖2 < 10−5. Equation (A9) of Table II was used to producex̂(t), which corresponds to an

MMSE estimate ofx(t) under DCS-AMP’s estimated posteriorsp(x(t)n |ȳ). The amplitude approximation

parameterε from (7) was set toε = 10−7, while the thresholdτ from (11) was set toτ = 0.99. In our

experiments, we found DCS-AMP’s performance to be relatively insensitive to the value ofε provided

thatε≪ 1. The choice ofτ should be selected to provide a balance between allowing DCS-AMP to track

amplitude evolutions on signals with rapidly varying supports and preventing DCS-AMP from prematurely

gaining too much confidence in its estimate of the support. Wefound that the choiceτ = 0.99 works

well over a broad range of problems. When the estimated transition probability p
01
< 0.025, DCS-AMP

automatically switched from the threshold method to the Taylor series method of computing (10), which

is advantageous because it is parameter-free.

When learning model parameters adaptively from the data using the EM updates of Table III, it

is necessary to first initialize the parameters at reasonable values. Unless domain-specific knowledge

suggests a particular initialization strategy, we advocate using the following simple heuristics: The initial

sparsity rate,λ1, active mean,ζ1, active variance,(σ2)1, and noise variance,(σ2e)
1, can be initialized

according to the procedure described in [33,§V].8 The Gauss-Markov correlation parameter,α, can be

initialized as

α1 = 1−
1

T − 1

T−1
∑

t=1

|y(t) Hy(t+1)|

λ1(σ2)1| tr{A(t)A(t+1)H}|
. (12)

7Code for reproducing our results is available at http://www.ece.osu.edu/∼schniter/turboAMPdcs.

8For problems with a high degree of undersampling and relatively non-sparse signals, it may be necessary to threshold the

value forλ1 suggested in [33] so that it does not fall below, e.g.,0.10.

http://www.ece.osu.edu/~schniter/turboAMPdcs
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The active-to-inactive transition probability,p
01

, is difficult to gauge solely from sample statistics involving

the available measurements,ȳ. We usedp1
01

= 0.10 as a generic default choice, based on the premise

that it is easier for DCS-AMP to adjust to more dynamic signals once it has a decent “lock” on the static

elements of the support, than it is for it to estimate relatively static signals under an assumption of high

dynamicity.

A. Performance across the sparsity-undersampling plane

Two factors that have a significant effect on the performanceof any CS algorithm are the sparsity

|S(t)| of the underlying signal, and the number of measurementsM . Consequently, much can be learned

about an algorithm by manipulating these factors and observing the resulting change in performance. To

this end, we studied DCS-AMP’s performance across the sparsity-undersampling plane [45], which is

parameterized by two quantities, thenormalized sparsity ratio, β , E[|S(t)|]/M , and theundersampling

ratio, δ ,M/N . For a given(δ, β) pair (withN fixed at1500), sample realizations of̄s, θ̄, andē were

drawn from their respective priors, and elements of a time-varyingA(t) were drawn from i.i.d. zero-mean

complex circular Gaussians, with all columns subsequentlyscaled to have unitℓ2-norm, thus generating

x̄ and ȳ.

As a performance benchmark, we used the support-aware Kalman smoother. In the case of linear

dynamical systems with jointly Gaussian signal and observations, the Kalman filter (smoother) is known

to provide MSE-optimal causal (non-causal) signal estimates [46]. When the signal is Bernoulli-Gaussian,

the Kalman filter/smoother is no longer optimal. However, a lower bound on the achievable MSE can

be obtained using the support-aware Kalman filter (SKF) or smoother (SKS). Since the classical state-

space formulation of the Kalman filter does not easily yield the support-aware bound, we turn to an

alternative view of Kalman filtering as an instance of message passing on an appropriate factor graph

[47]. For this, it suffices to use the factor graph of Fig. 1 with {s
(t)
n } treated as fixed, known quantities.

Following the standard sum-product algorithm rules results in a message passing algorithm in which all

messages are Gaussian, and no message approximations are required. Then, by running loopy Gaussian

belief propagation until convergence, we are guaranteed that the resultant posterior means constitute the

MMSE estimate of̄x [25, Claim 5].

To quantify the improvement obtained by exploiting temporal correlation, signal recovery was also

explored using the Bernoulli-Gaussian AMP algorithm (BG-AMP) independently at each timestep (i.e.,

ignoring temporal structure in the support and amplitudes), accomplished by passing messages only within
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Fig. 3: A plot of the TNMSE (in dB) of (from left) the SKS, DCS-AMP, EM-DCS-AMP, and BG-AMP across the

sparsity-undersampling plane, for temporal correlation parametersp01 = 0.05 andα = 0.01.

the dashed boxes of Fig. 1 usingp
(

x
(t)
n

)

from (4) as AMP’s prior.9

In Fig. 3, we present four plots from a representative experiment. The TNMSE across the (loga-

rithmically scaled) sparsity-undersampling plane is shown for (working from left to right) the SKS,

DCS-AMP, EM-DCS-AMP (DCS-AMP with EM parameter tuning), and BG-AMP. In order to allow

EM-DCS-AMP ample opportunity to converge to the correct parameter values, it was allowed up to300

EM iterations/smoothing passes, although it would quite often terminate much sooner if the parameter

initializations were reasonably close. The results shown were averaged over more than300 independent

trials at each(δ, β) pair. For this experiment, signal model parameters were setat N = 1500, T = 25,

p
01

= 0.05, ζ = 0, α = 0.01, σ2 = 1, and a noise variance,σ2e , chosen to yield a signal-to-noise

ratio (SNR) of 25 dB. (M,λ) were set based on specific(δ, β) pairs, andp
10

was set so as to keep

the expected number of active coefficients constant across time. It is interesting to observe that the

performance of the SKS and (EM-)DCS-AMP are only weakly dependent on the undersampling ratioδ.

In contrast, the structure-agnostic BG-AMP algorithm is strongly affected. This is one of the principal

benefits of incorporating temporal structure; it makes it possible to tolerate more substantial amounts of

undersampling, particularly when the underlying signal isless sparse.

B. Performance vsp
01

andα

The temporal correlation of our time-varying sparse signalmodel is largely dictated by two parameters,

the support transition probabilityp
01

and the amplitude forgetting factorα. Therefore, it is worth inves-

tigating how the performance of (EM-)DCS-AMP is affected bythese two parameters. In an experiment

9Experiments were also run that compared performance against Basis Pursuit Denoising (BPDN) [48] with genie-aided

parameter tuning (solved using the SPGL1 solver [49]). However, this was found to yield higher TNMSE than BG-AMP, and

at higher computational cost.
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Fig. 4: TNMSE (in dB) of (from left) the SKS, DCS-AMP, and EM-DCS-AMP as a function of the model parametersp01 and

α, for undersampling ratioδ = 1/3 and sparsity ratioβ = 0.45. BG-AMP achieved a TNMSE of−5.9 dB across the plane.

similar to that of Fig. 3, we tracked the performance of (EM-)DCS-AMP, the SKS, and BG-AMP across

a plane of(p
01
, α) pairs. The active-to-inactive transition probabilityp

01
was swept linearly over the

range[0, 0.15], while the Gauss-Markov amplitude forgetting factorα was swept logarithmically over the

range[0.001, 0.95]. To help interpret the meaning of these parameters, we note that the fraction of the

support that is expected to change from one timestep to the next is given by2 p
01

, and that the Pearson

correlation coefficient between temporally adjacent amplitude variables is1− α.

In Fig. 4 we plot the TNMSE (in dB) of the SKS and (EM-)DCS-AMP as a function of the percentage

of the support that changes from one timestep to the next (i.e., 2p
01
× 100) and the logarithmic value of

α for a signal model in whichδ = 1/5 andβ = 0.60, with remaining parameters set as before. Since

BG-AMP is agnostic to temporal correlation, its performance is insensitive to the values ofp
01

andα.

Therefore, we do not include a plot of the performance of BG-AMP, but note that it achieved a TNMSE

of −5.9 dB across the plane. For the SKS and (EM-)DCS-AMP, we see thatperformance improves with

increasing amplitude correlation (moving leftward). Thisbehavior, although intuitive, is in contrast to the

relationship between performance and correlation found inthe MMV problem [32], [50], primarily due

to the fact that the measurement matrix is static for all timesteps in the classical MMV problem, whereas

here it varies with time. Since the SKS has perfect knowledgeof the support, its performance is only

weakly dependent on the rate of support change. DCS-AMP performance shows a modest dependence on

the rate of support change, but nevertheless is capable of managing rapid temporal changes in support,

while EM-DCS-AMP performs very near the level of the noise whenα < 0.10.
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C. Recovery of an MRI image sequence

While the above simulations demonstrate the effectivenessof DCS-AMP in recovering signals generated

according to our signal model, it remains to be seen whether the signal model itself is suitable for

describing practical dynamic CS signals. To address this question, we tested the performance of DCS-

AMP on a dynamic MRI experiment first performed in [51]. The experiment consists of recovering

a sequence of10 MRI images of the larynx, each256 × 256 pixels in dimension. (See Fig. 5.) The

measurement matrices were never stored explicitly due to the prohibitive sizes involves, but were instead

treated as the composition of three linear operations,A = MFW T. The first operation,W T, was

the synthesis of the underlying image from a sparsifying 2-D, 2-level Daubechies-4 wavelet transform

representation. The second operation,F , was a 2-D Fourier transform that yielded the k-space coefficients

of the image. The third operation,M , was a sub-sampling mask that kept only a fraction of the available

k-space data.

Since the image transform coefficients are compressible rather than sparse, the SKF/SKS no longer

serves as an appropriate algorithmic benchmark. Instead, we compare performance against Modified-CS

[9], as well as timestep-independent Basis Pursuit.10 As reported in [9], Modified-CS demonstrates that

substantial improvements can be obtained over temporally agnostic methods.

Since the statistics of wavelet coefficients at different scales are often highly dissimilar (e.g., the

coarsest-scale approximation coefficients are usually much less sparse than those at finer scales, and are

also substantially larger in magnitude), we allowed our EM procedure to learn different parameters for

different wavelet scales. UsingG1 to denote the indices of the coarsest-scale “approximation” coefficients,

and G2 to denote the finer-scale “wavelet” coefficients, DCS-AMP was initialized with the following

parameter choices:λG1
= 0.99, λG2

= 0.01, p
01

= 0.01, ζG1
= ζG2

= 0, αG1
= αG2

= 0.05, ρG1
= 105,

ρG2
= 104, andσ2e = 0.01, and run in filtering mode withI = 10 inner AMP iterations.

We note that our initializations were deliberately chosen to be agnostic, but reasonable, values. In

particular, observing that the coarsest-scale approximation coefficients of a wavelet decomposition are

almost surely non-zero, we initialized the associated group’s sparsity rate atλG1
= 0.99, while the finer

scale detail coefficients were given an arbitrary sparsity-promoting rate ofλG2
= 0.01. The choices ofα

andρ were driven by an observation that the variance of coefficients across wavelet scales often differs by

10Modified-CS is available at http://home.engineering.iastate.edu/∼luwei/modcs/index.html. Basis Pursuit was solved using the

ℓ1-MAGIC equality-constrained primal-dual solver (chosen since it is used as a subroutine within Modified-CS), available at

http://users.ece.gatech.edu/∼justin/l1magic/.

http://home.engineering.iastate.edu/~luwei/modcs/index.html
http://users.ece.gatech.edu/~justin/l1magic/
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Algorithm TNMSE (dB) Runtime

Basis Pursuit -17.22 47 min

Modified-CS -34.30 7.39 hrs

DCS-AMP (Filter) -34.62 8.08 sec

TABLE IV: Performance on dynamic MRI dataset from [51] with increased sampling rate at initial timestep.

Algorithm TNMSE (dB) Runtime

Basis Pursuit -16.83 47.61 min

Modified-CS -17.18 7.78 hrs

DCS-AMP (Filter) -29.51 7.27 sec

TABLE V: Performance on dynamic MRI dataset from [51] with identical sampling rate at every timestep.

an order-of-magnitude. The noise variance is arguably the most important parameter to initialize properly,

since it balances the conflicting objectives of fitting the data and adhering to the assumed signal model.

Our rule-of-thumb for initializing this parameter was thatit is best to err on the side of fitting the data

(since the SNR in this MRI data collection was high), and thuswe initialized the noise variance with a

small value.

In Table IV we summarize the performance of three different estimators: timestep-independent Basis

Pursuit, which performs independentℓ1 minimizations at each timestep, Modified-CS, and DCS-AMP

(operating in filtering mode). In this experiment, per the setup described in [51], the initial timestep was

sampled at50% of the Nyquist rate, i.e.,M = N/2, while subsequent timesteps were sampled at16% of

the Nyquist rate. Both Modified-CS and DCS-AMP substantially outperform Basis Pursuit with respect

to TNMSE, with DCS-AMP showing a slight advantage over Modified-CS. Despite the similar TNMSE

performance, note that DCS-AMP runs in seconds, whereas Modified-CS takes multiple hours. In Fig. 5,

we plot the true images along with the recoveries for this experiment, which show severe degradation

for Basis Pursuit on all but the initial timestep.

In practice, it may not be possible to acquire an increased number of samples at the initial timestep.

We therefore repeated the experiment while sampling at16% of the Nyquist rate at every timestep.

The results, shown in Table V, show that DCS-AMP’s performance degrades by about5 dB, while

Modified-CS suffers a14 dB reduction, illustrating that, when the estimate of the initial support is poor,

Modified-CS struggles to outperform Basis Pursuit.
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Fig. 5: Frames1, 2, 5, and10 of the dynamic MRI image sequence of (from top to bottom): thefully sampled dataset, Basis

Pursuit, Modified-CS, and DCS-AMP, with increased samplingrate at initial timestep.

D. Recovery of a CS audio sequence

In another experiment using real-world data, we used DCS-AMP to recover an audio signal from

sub-Nyquist samples. In this case, we employ the Bernoulli-Gaussian-mixture signal model proposed

for DCS-AMP in Section V. The audio clip is a7 second recording of a trumpet solo, and contains a

succession of rapid changes in the trumpet’s pitch. Such a recording presents a challenge for CS methods,

since the signal will be only compressible, and not sparse. The clip, sampled at a rate of11 kHz, was

divided intoT = 54 non-overlapping segments of lengthN = 1500. Using the discrete cosine transform

(DCT) as a sparsifying basis, linear measurements were obtained using a time-invariant i.i.d. Gaussian

sensing matrix.

In Fig. 6 we plot the magnitude of the DCT coefficients of the audio signal on a dB scale. Beyond the

temporal correlation evident in the plot, it is also interesting to observe that there is a non-trivial amount

of frequency correlation (correlation across the index[n]), as well as a large dynamic range. We performed

recoveries using four techniques: BG-AMP, GM-AMP (a temporally agnostic Bernoulli-Gaussian-mixture

AMP algorithm withD = 4 Gaussian mixture components), DCS-(BG)-AMP, and DCS-GM-AMP (the

Bernoulli-Gaussian-mixture dynamic CS model described inSection V, withD = 4). For each algorithm,

EM learning of the model parameters was performed using straightforward variations of the procedure

described in Section IV, with model parameters initializedautomatically using simple heuristics described
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Fig. 6: DCT coefficient magnitudes (in dB) of an audio signal.

Undersampling Rate

δ = 1
2

δ = 1
3

δ = 1
5

A
lg

or
it

hm

BG-AMP -16.88 (dB)| 09.11 (s) -11.67 (dB)| 08.27 (s) -08.56 (dB)| 06.63 (s)

GM-AMP (D = 4) -17.49 (dB)| 19.36 (s) -13.74 (dB)| 17.48 (s) -10.23 (dB)| 15.98 (s)

DCS-BG-AMP -19.84 (dB)| 10.20 (s) -14.33 (dB)| 08.39 (s) -11.40 (dB)| 6.71 (s)

DCS-GM-AMP (D = 4) -21.33 (dB) | 20.34 (s) -16.78 (dB) | 18.63 (s) -12.49 (dB) | 10.13 (s)

TABLE VI: Performance on audio CS dataset (TNMSE (dB)| Runtime (s)) of two temporally independent algorithms,

BG-AMP and GM-AMP, and two temporally structured algorithms, DCS-BG-AMP and DCS-GM-AMP.

in [33]. Moreover, unique model parameters were learned at each timestep (with the exception of support

transition probabilities). Furthermore, since our model of hidden amplitude evolutions was poorly matched

to this audio signal, we fixedα = 1.

In Table VI we present the results of applying each algorithmto the audio dataset for three different

undersampling rates,δ. For each algorithm, both the TNMSE in dB and the runtime in seconds are pro-

vided. Overall, we see that performance improves at each undersampling rate as the signal model becomes

more expressive. While GM-AMP outperforms BG-AMP at all undersampling rates, it is surpassed by

DCS-BG-AMP and DCS-GM-AMP, with DCS-GM-AMP offering the best TNMSE performance. Indeed,

we observe that one can obtain comparable, or even better, performance with an undersampling rateδ = 1
5

using DCS-BG-AMP or DCS-GM-AMP, with that obtained using BG-AMP with an undersampling rate

δ = 1
3 .
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E. Frequency Estimation

In a final experiment, we compared the performance of DCS-AMPagainst techniques designed to

solve the problem of subspace identification and tracking from partial observations (SITPO) [52], [53],

which bears similarities to the dynamic CS problem. In subspace identification, the goal is to learn the

low-dimensional subspace occupied by multi-timestep datameasured in a high ambient dimension, while

in subspace tracking, the goal is to track that subspace as itevolves over time. In the partial observation

setting, the high-dimensional observations are sub-sampled using a mask that varies with time. The

dynamic CS problem can be viewed as a special case of SITPO, wherein the time-t subspace is spanned

by a subset of the columns of an a priori known matrixA(t). One problem that lies in the intersection

of SITPO and dynamic CS is frequency tracking from partial time-domain observations.

For comparison purposes, we replicated the “direction of arrival analysis” experiment described in [53]

where the observations at timet take the form

y(t) = Φ
(t)V (t)a(t) + e(t), t = 1, 2, . . . , T (13)

whereΦ(t) ∈ {0, 1}M×N is a selection matrix with non-zero column indicesQ(t) ⊂ {1, . . . , N}, V (t) ∈

CN×K is a Vandermonde matrix of sampled complex sinusoids, i.e.,

V (t) , [v(ω
(t)
1 ), . . . ,v(ω

(t)
K )], (14)

with v(ω
(t)
k ) , [1, ej2πω

(t)
k , . . . , ej2πω

(t)
k (N−1)]T andω(t)

k ∈ [0, 1). a(t) ∈ RK is a vector of instantaneous

amplitudes, ande(t) ∈ RN is additive noise with i.i.d.N (0, σ2e) elements.11 Here,{Φ(t)}Tt=1 is known,

while {ω(t)}Tt=1 and {a(t)}Tt=1 are unknown, and our goal is to estimate them. To assess performance,

we report TNMSE in the estimation of the “complete” signal{V (t)a(t)}Tt=1.

We compared DCS-AMP’s performance against two online algorithms designed to solve the SITPO

problem: GROUSE [52] and PETRELS [53]. Both GROUSE and PETRELS return time-varying subspace

estimates, which were passed to an ESPRIT algorithm to generate time-varying frequency estimates (as

in [53]). Finally, time-varying amplitude estimates were computed using least-squares. For DCS-AMP,

we constructedA(t) using a2× column-oversampled DFT matrix, keeping only those rows indexed by

Q(t). DCS-AMP was run in filtering mode for fair comparison with the “online” operation of GROUSE

and PETRELS, withI = 7 inner AMP iterations.

11Code for replicating the experiment provided by the authorsof [53]. Unless otherwise noted, specific choices regarding

{ω(t)
k } and{a(t)} were made by the authors of [53] in a deterministic fashion, and can be found in the code.
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Problem Setup

N = 256, M = 30, K = 5 N = 256, M = 10, K = 5 N = 1024, M = 120, K = 20
A

lg
or

it
hm GROUSE -4.52 (dB) | 6.78 (s) 2.02 (dB) | 6.68 (s) -4.51 (dB) | 173.89 (s)

PETRELS -15.62 (dB) | 29.51 (s) 0.50 (dB) | 14.93 (s) -7.98 (dB) | 381.10 (s)

DCS-AMP -15.46 (dB)| 34.49 (s) -10.85 (dB) | 28.42 (s) -12.79 (dB) | 138.07 (s)

TABLE VII: Average performance on synthetic frequency estimation experiment (TNMSE (dB)| Runtime (s)) of GROUSE,

PETRELS, and DCS-AMP. In all cases,T = 4000, σ2
e = 10−6.

The results of performing the experiment for three different problem configurations are presented in

Table VII, with performance averaged over100 independent realizations. All three algorithms were given

the true value ofK. In the first problem setup considered, we see that GROUSE operates the fastest,

although its TNMSE performance is noticeably inferior to that of both PETRELS and DCS-AMP, which

provide similar TNMSE performance and complexity. In the second problem setup, we reduce the number

of measurements,M , from 30 to 10, leaving all other settings fixed. In this regime, both GROUSE and

PETRELS are unable to accurately estimate{ω
(t)
k }, and consequently fail to accurately recoverV (t)a(t),

in contrast to DCS-AMP. In the third problem setup, we increased the problem dimensions from the first

problem setup by a factor of4 to understand how the complexity of each approach scales with problem

size. In order to increase the number of “active” frequencies from K = 5 to K = 20, 15 additional

frequencies and amplitudes were added uniformly at random to the 5 deterministic trajectories of the

preceding experiments. Interestingly, DCS-AMP, which wasthe slowest at smaller problem dimensions,

becomes the fastest (and most accurate) in the higher-dimensional setting, scaling much better than either

GROUSE or PETRELS.

VII. C ONCLUSION

In this work we proposed DCS-AMP, a novel approach to dynamicCS. Our technique merges ideas

from the fields of belief propagation and switched linear dynamical systems, together with a computa-

tionally efficient inference method known as AMP. Moreover,we proposed an EM approach that learns

all model parameters automatically from the data. In numerical experiments on synthetic data, DCS-AMP

performed within3 dB of the support-aware Kalman smoother bound across the sparsity-undersampling

plane. Repeating the dynamic MRI experiment from [51], DCS-AMP slightly outperformed Modified-CS

in MSE, but required less than10 seconds to run, in comparison to more than7 hours for Modified-

CS. For the compressive sensing of audio, we demonstrated significant gains from the exploitation of

temporal structure and Gaussian-mixture learning of the signal prior. Lastly, we found that DCS-AMP can
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CN (ym; aT
x, σ2

e) xn p(xn)

Fig. 7: The factor graph representation of the decomposition of (16).

outperform recent approaches to Subspace Identification and Tracking from Partial Observations (SITPO)

when the underlying problem can be well-represented through a dynamic CS model.

APPENDIX A

THE BASICS OFBELIEF PROPAGATION AND AMP

In this appendix, we provide a brief primer on belief propagation and the Bayesian approximate

message passing (AMP) algorithmic framework proposed by Donoho, Maleki, and Montanari [31]. In

what follows, we consider the task of estimating a signal vector x ∈ CN from linearly compressed and

AWGN-corrupted measurements:

y = Ax+ e ∈ C
M . (15)

AMP can be derived from the perspective of loopy belief propagation (LBP) [23], a Bayesian inference

strategy that is based on a factorization of the signal posterior pdf, p(x|y), into a product of simpler

pdfs that, together, reveal the probabilistic structure inthe problem. Concretely, if the signal coefficients,

x, and noise samples,w, in (15) are jointly independent such thatp(x) =
∏N
n=1 p(xn) and p(y|x) =

∏M
m=1 CN (ym;a

T
mx, σ

2
e), then the posterior pdf factors as

p(x|y) ∝
M
∏

m=1

CN (ym;a
T
mx, σ

2
e)

N
∏

n=1

p(xn), (16)

yielding the factor graph in Fig. 7.

In belief propagation [24], messages representing beliefsabout the unknown variables are exchanged

amongst the nodes of the factor graph until convergence to a stable fixed point occurs. The set of beliefs

passed into a given variable node are then used to infer statistical properties of the associated random

variable, e.g., the posterior mode, or a complete posteriordistribution. The sum-product algorithm [23]

is perhaps the most well-known approach to belief propagation, wherein the messages take the form of
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probability distributions, and exact posteriors are guaranteed whenever the graph does not have cycles

(“loops”). For graphs with cycles, exact inference is knownto be NP-hard, and so LBP is not guaranteed to

produce correct posteriors. Still, it has shown state-of-the-art performance on a wide array of challenging

inference problems, as noted in Section III-B.

The conventional wisdom surrounding LBP says that accurateinference is possible only when the factor

graph is locally tree-like, i.e., the girth of any cycle is relatively large. With (15), this would require thatA

is an appropriately constructed sparse matrix, which precludes some of the most interesting CS problems.

In a remarkable departure from convention, Donoho, Maleki,Montanari, and Bayati demonstrated that

LBP-based compressive sensing is not only feasible [17], [31] for denseA matrices, but provably

accurate [19]. In particular, they established that, in thelarge-system limit (i.e., asM,N → ∞ with

M/N fixed) and under i.i.d. sub-GaussianA, the iterations of AMP are governed by a state-evolution

whose fixed point—when unique—yields the true posterior means. Beyond its theoretical significance,

AMP is important for its computational properties as well. As demonstrated in the original AMP work

[17], not only can LBP solve the compressive sensing problem(15), but it can do so much faster, and

more accurately, than other state-of-the-art methods, whether optimization-based, greedy, or Bayesian.

To accomplish this feat, [17], [31] proposed a specific set ofapproximations that become accurate in

the limit of large, denseA matrices, yielding algorithms that give accurate results using only≈ 2MN

flops-per-iteration, and relatively few iterations (e.g.,tens).

The specific implementation of any AMP algorithm will dependon the particular choices of likelihood

and prior, but ultimately amounts to an iterative, scalar soft-thresholding procedure with a carefully

chosen adaptive thresholding strategy. Deriving the appropriate thresholding functions for a particular

signal model can be accomplished by computing scalar sum-product, or max-sum, updates of a simple

form (see, e.g., [36, Table 1]).
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