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Abstract

In this work the dynamic compressive sensing (CS) problemeoévering sparse, correlated, time-
varying signals from sub-Nyquist, non-adaptive, linearameements is explored from a Bayesian per-
spective. While there has been a handful of previously ppeddayesian dynamic CS algorithms in the
literature, the ability to perform inference on high-dins@mal problems in a computationally efficient
manner remains elusive. In response, we propose a prdiabilynamic CS signal model that captures
both amplitude and support correlation structure, andri@san approximate message passing algorithm
that performs soft signal estimation and support deteatiibh a computational complexity that is linear
in all problem dimensions. The algorithm, DCS-AMP, can perf either causal filtering or non-causal
smoothing, and is capable of learning model parametergiadppfrom the data through an expectation-
maximization learning procedure. We provide numericatlence that DCS-AMP performs withihdB
of oracle bounds on synthetic data under a variety of opeyatbnditions. We further describe the result
of applying DCS-AMP to two real dynamic CS datasets, as wel equency estimation task, to bolster
our claim that DCS-AMP is capable of offering state-of-tmeperformance and speed on real-world

high-dimensional problems.

. INTRODUCTION

In this work, we consider thelynamic compressive sensiridynamic CS) problem, in which a

sparse, vector-valued time series is recovered from a getore series of noisy, sub-Nyquist, linear
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measurements. Such a problem finds application in, e.gardgnMRI [2], high-speed video capture [3],
and underwater channel estimation [4].

Framed mathematically, the objective of the dynamic CS lerabis to recover the time series

{z®, .. 2™ wherexz® ¢ CV is the signal at timestep, from a time series of measurements,
{y®, ..., y™}. Eachy® € CM is obtained from the linear measurement process,
y® = AOLO 4 O y—1 T, 1)

with e(®) representing corrupting noise. The measurement matfiX (which may be time-varying or
time-invariant, i.e., A®) = A V t) is known in advance, and is generally wide, leading to aretneter-
mined system of equations. The problem is regularized byrass) thatz(*) is sparse (or compressib&),
having relatively few non-zero (or large) entries.

In many real-world scenarios, the underlying time-varygmarse signal exhibits substantial temporal
correlation. This temporal correlation may manifest ftgeltwo interrelated ways(i) the support of the
signal may change slowly over time_| [2],] [3]./[5]+[8], affii) the amplitudes of the large coefficients
may vary smoothly in time.

In such scenarios, incorporating an appropriate modelrapteal structure into a recovery technique
makes it possible to drastically outperform structureesgic CS algorithms. From an analytical stand-
point, Vaswani and Lu demonstrate that the restricted isgn@operty (RIP) sufficient conditions for
perfect recovery in the dynamic CS problem are significawtdaker than those found in the traditional
single measurement vector (SMV) CS problem when accourfinghe additional structure_[9]. In
this work, we take a Bayesian approach to modeling this &trac which contrasts those dynamic
CS algorithms inspired by convex relaxation, such as theahio LASSO [5] and the Modified-CS
algorithm [9]. Our Bayesian framework is also distinct froinose hybrid techniques that blend elements
of Bayesian dynamical models like the Kalman filter with méaditional CS approaches of exploiting
sparsity through convex relaxation [2], [10] or greedy noeith [11].

In particular, we propose a probabilistic model that trehts time-varying signal support as a set of
independent binary Markov processes and the time-varyaedficient amplitudes as a set of independent
Gauss-Markov processes. As detailed in Sedtibn I, thisehtedds to coefficient marginal distributions
that are Bernoulli-Gaussian (i.e., “spike-and-slab”)tdrain Sectiori V, we describe a generalization of

the aforementioned model that yields Bernoulli-Gaussixture coefficient marginals with an arbitrary

without loss of generality, we assume®) is sparse/compressible in the canonical basis. Otheripagsbases can be

incorporated into the measurement matAX®) without changing our model.



number of mixture components. The models that we proposedtiier substantially from those used in
other Bayesian approaches to dynamic CS| [12] and [13]. tticpdar, Sejdinovic et al. [12] combine a
linear Gaussian dynamical system model with a sparsityaptimg Gaussian-scale-mixture prior, while
Shahrasbi et al[_[13] employ a particular spike-and-slalkiehamodel that couples amplitude evolution
together with support evolution.

Our inference method also differs from those used in therateve Bayesian dynamic CS algorithms
[12] and [13]. In [12], Sejdinovit et al. perform infereng@& a sequential Monte Carlo sampléer[14].
Sequential Monte Carlo techniques are appealing for thgti@ability to complicated non-linear, non-
Gaussian inference tasks like the Bayesian dynamic CS gmobiNevertheless, there are a number of
important practical issues related to selection of the ingyae distribution, choice of the resampling
method, and the number of sample points to track, since imciple one must increase the number of
points exponentially over time to combat degeneracy [14ldifionally, Monte Carlo techniques can be
computationally expensive in high-dimensional inferepeceblems. An alternative inference procedure
that has recently proven successful in a number of apphestis loopy belief propagation (LBF) [15].
In [13], Shahrasbi et al. extend the conventional LBP methaghosed in[[16] for standard CS under a
sparse measurement mateixto the case of dynamic CS under spass®. Nevertheless, the confinement
to sparse measurement matrices is very restrictive, artdouti this restriction, the methods of [13], [16]
become computationally intractable.

Our inference procedure is based on the recently propoaeatkfrvork of approximate message passing
(AMP) [17], and in particular its “turbo” extension [18]. AR} an unconventional form of LBP, was
originally proposed for standard CS with a dense measurematmix [17], and its noteworthy properties
include:(i) a rigorous analysis (a&/, N — oo with M/N fixed, under i.i.d. sub-Gaussiat) establishing
that its solutions are governed by a state-evolution whasel fpoints are optimal in several respeCts [19],
and(ii) extremely fast runtimes (as a consequence of the fact tinateitls relatively few iterations, each
requiring only one multiplication byd and its transpose). The turbo-AMP framework originallyposed
in [18] offers a way to extend AMP to structured-sparsityljemns such as compressive imaging![20],
joint communication channel/symbol estimation![21], aremb-we shall see in this work—the dynamic
CS problem.

Our work makes several contributions to the existing liéte on dynamic CS. First and foremost, the
DCS-AMP algorithm that we develop offers an unrivaled camaltion of speed (e.g., its computational
complexity grows only linearly in the problem dimensiah§ N, andT’) and reconstruction accuracy, as

we demonstrate on both synthetic and real-world signalss @Guthe first work to exploit the speed and



accuracy of loopy belief propagation (and, in particulakiR) in the dynamic CS setting, accomplished
by embedding AMP within a larger Bayesian inference alhamit Second, we propose an expectation-
maximization [22] procedure to automatically learn thegmaeters of our statistical model, as described
in Sectior 1V, avoiding a potentially complicated “tuningfoblem. The ability to automatically calibrate
algorithm parameters is especially important when workirity real-world data, but is not provided by
many of the existing dynamic CS algorithms (e.@!, [2], ["]{12]). In addition, our learned model
parameters provide a convenient and interpretable cleization of time-varying signals in a way
that, e.g., Lagrange multipliers do not. Third, DCS-AMP \pdes a unified means of performing both
filtering, where estimates are obtained sequentially usimy past observations, and smoothing, where
each estimate enjoys the knowledge of past, current, andefuidbservations. In contrast, the existing

dynamic CS schemes can support either filtering, or smogthiat not both.

A. Notation

Boldfaced lower-case letters, e.g., denote column vectors, while boldfaced upper-case &teg.,
A, denote matrices. The letteris strictly used to index a timestep,= 1,2,...,7T, the lettern is
strictly used to index the coefficients of a signal= 1,..., N, and the letter is strictly used to index
the measurementsy = 1,..., M. The superscript) indicates a timestep-dependent quantity, while a
superscript without parentheses, suct amdicates a quantity whose value changes according to some
algorithmic iteration index. Subscript notations such aéf) are used to denote the” element of the
vectorz(¥), while set subscript notation, e.gr:g), denotes the sub-vector af*) consisting of indices
contained inS. Them! row of the matrixA is denoted bya] , an M-by-M identity matrix is denoted
by I, and a lengthV vector of ones is given byt 5. Finally, CN(a; b, C) refers to the circularly
symmetric complex normal distribution that is a functiontibé vectora, with meand and covariance

matrix C.

II. SIGNAL MODEL

We assume that the measurement process can be accura@ipedy the linear model of{(1). We
further assume that) € CM*N ¢ = 1,....T, are measurement matrices known in advance, whose
columns have been scaled to be of unit nQrWe model the noise as a stationary, circularly symmetric,

additive white Gaussian noise (AWGN) process, with ~ CN (0,021 ) V t.

20ur algorithm can be generalized to suppat”’ without equal-norm columns, a time-varying number of measents,

M® | and real-valued matrices/signals as well.



As noted in Sectiofll |, the sparse time serigs{! T |, often exhibits a high degree of correlation
from one timestep to the next. In this work, we model this elation through a slow time-variation
of the signal support, and a smooth evolution of the amp#isudf the non-zero coefficients. To do so,
we introduce two hidden random processgs?)}” | and {6)}7_,. The binary vectors® e {0,1}V
describes the support af®), denotedS®, while the vectord® ¢ CV describes the amplitudes of the

active elements of(*). Together,s() and6) completely characterize®) as follows:

z® =0 .9 yp ¢, (2)

n n n

Therefore,s\) = 0 setsz = 0 andn ¢ S®, while s = 1 setsz!?) = 6" andn € S®.

To model slow changes in the supp&® over time, we model the!" coefficient’s support across
time, {sﬁf) VL, as a Markov chain defined by two transition probabilitigs:= Pr{s,(f): 1\3%‘1):0},
andp,, = Pr{sgf) = oysﬁf‘” = 1}, and employ independent chains acrass- 1,..., N. We further
assume that each Markov chain operates in steady-staie,tfmk:Pl{sgf) = 1} = A Vn,t. This steady-
state assumption implies that these Markov chains are aisiplspecified by the parametersandp,,,
which together determine the remaining transition prolitgbp,, = Ap,, /(1 — A). Depending on how
p,, 1S chosen, the prior distribution can favor signals thatileixla nearly static support across time, or
it can allow for signal supports that change substantiaitiynf timestep to timestep. For example, it can
be shown that /p,, specifies the average run length of a sequence of ones in thio¥eahains.

The second form of temporal structure that we capture in mpras model is the correlation in active
coefficient amplitudes across time. We model this cormefathrough independent stationary steady-state

Gauss-Markov processes for eam:,hwherein{Hff)};f:1 evolves in time according to
0 = (1= a) (0 = ¢ ) +aw) +¢, ©)

where( € C is the mean of the proceszsﬁf) ~ CN(0, p) is an i.i.d. circular white Gaussian perturbation,
and o € [0,1] controls the temporal correlation. At one extreme~= 0, the amplitudes are totally
correlated, (i.e.eﬁf) = 0,(f_1)), while at the other extremey = 1, the amplitudes evolve according to an
uncorrelated Gaussian random process with nmgan

At this point, we would like to make a few remarks about oumaigmodel. First, due td{2), it is
clear thatp(mﬁf)\sﬁf),eff)) = 5(x$f) — s£f>9£f>), whereé(-) is the Dirac delta function. By marginalizing

out st and 0, one finds that

p(aP) = (1= N)6@P) + AN (2);¢,0?), (4)

n



where g2 £ 52 is the steady-state variance @5(‘). Equation [(4) is a Bernoulli-Gaussian or “spike-
and-slab” distribution, which is an effective sparsityoting prior due to the point-mass aaff) =0.
Second, we observe that the amplitude random pro@éé%}f:l, evolves independently from the sparsity
pattern random procesés(") T . As a result of this modeling choice, there can be signifitadtien
amplitudeseﬁf) associated with inactive coefficients (those for Whﬁ% =0). Consequently?ﬁf) should

be viewed as the amplitude @ﬁf) conditionedon s,(f) = 1. Lastly, we note that higher-order Markov
processes and/or more complex coefficient marginals coala¢dnsidered within the framework we
propose, however, to keep development simple, we reswicttiention to first-order Markov processes
and Bernoulli-Gaussian marginals until Sectioh V, wheredescribe an extension of the above signal

model that yields Bernoulli-Gaussian-mixture marginals.

I1l. THE DCS-AMP ALGORITHM

In this section we will describe the DCS-AMP algorithm, whiefficiently and accurately estimates the
marginal posterior distributions th,(ﬁ}, {9 } and{s } from the observed measuremefig®) }L_,
thus enabling both soft estimation and soft support detectrhe use of soft support information is
particularly advantageous, as it means that the algorithed mever make a firm (and possibly erroneous)
decision about the support that can propagate errors agrasg timesteps. As mentioned in Section I,
DCS-AMP can perform either filtering or smoothing.

The algorithm we develop is designed to exploit the staststructure inherent in our signal model.
By definingy to be the collection of all measuremen{y,(”}ff:1 (and definingz, 5, and@ similarly),
the posterior joint distribution of the signal, supportdaamplitude time series, given the measurement

time series, can be expressed using Bayes’ rule as
N
p(,5,0]y) < H (H Py |z™) Hp(wﬁf)!855),Hét))p(s,(f)ls,(f‘l))p(%t)\@%t‘”)) : (5)
n=1

wherex indicates proportionality up to a constant scale faqt()sfg)]sﬁlo)) = p(s (1)) andp(e(1 \9 )
p(eg”). By inspecting [(b), we see that the posterior joint distiiftu decomposes into the product of
many distributions that only depend on small subsets ofabées. A graphical representation of such
decompositions is given by tHactor graph which is an undirected bipartite graph that connects the pd
“factors” of (8) with the random variables that constituleit arguments [23]. In Tablé I, we introduce
the notation that we will use for the factors of our signal mipghowing the correspondence between
the factor labels and the underlying distributions theyrespnt, as well as the specific functional form

assumed by each factor. The associated factor graph fora$terpor joint distribution of[(5) is shown
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TABLE I: The factors, underlying distributions, and furmtal forms associated with our signal model
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Fig. 1: Factor graph representation of the joint posteristrithution of [3).

in Fig.[, labeled according to Talle I. Filled squares repn¢ factors, while circles represent random
variables.

As seen in Figl]1, all of the variables needed at a given tiepesan be visualized as lying in a plane,
with successive planes stacked one after another in timewxMeefer to these planes as “frames”. The
temporal correlation of the signal supports is illustralgdthe hﬁf) factor nodes that connect thaéf)
variable nodes between neighboring frames. Likewise, eéhgporal correlation of the signal amplitudes
is expressed by the interconnectionﬁ‘) factor nodes aneﬁf) variable nodes. For visual clarity, these
factor nodes have been omitted from the middle portion offé&wtor graph, appearing only at indices
n =1 andn = N, but should in fact be present for all indices=1,..., N. Since the measurements

{yﬁ,ﬁ)} are observed variables, they have been incorporated iatgf,%factor nodes.



The algorithm that we develop can be viewed as an approximgiementation of belief propagation
(BP) [24], a message passing algorithm for performing griee on factor graphs that describe proba-
bilistic models. When the factor graph is cycle-free, Hglimpagation is equivalent to the more general
sum-product algorithm[_[23], which is a means of computing tharginal functions that result from
summing (or integrating) a multivariate function over atisgible input arguments, with one argument
held fixed, (i.e., marginalizing out all but one variabla).the context of BP, these marginal functions are
the marginal distributions of random variables. Thus, givgeasurementg and the factorization of the
posterior joint distributiorp(ic, s, 9|'y), DCS-AMP computes (approximate) posterior marginals:ﬁ{j?f,
s,(f), and Hﬁf). In “filtering” mode, our algorithm would therefore retura,g.,p(mﬁf)|{y(t)}§:1), while
in “smoothing” mode it would returm(xﬁf)|{y(t)}le). From these marginals, one can compute, e.g.,
minimum mean-squared error (MMSE) estimates. The fact@plyof Fig[1 contains many short cycles,
however, and thus the convergence of loopy BP cannot be igieaicl[23]1 Despite this, loopy BP has
been shown to perform extremely well in a number of differepplications, including turbo decoding

[29], computer vision[[30], and compressive sensing [1BH [20], [31]-[33].

A. Message scheduling

In loopy factor graphs, there are a number of ways to schedulsequence, the messages that are
exchanged between nodes. The choice of a schedule can imaghly the rate of convergence of the
algorithm, but also the likelihood of convergence as well][3Me propose a schedule (an evolution of
the “turbo” schedule proposed in [18]) for DCS-AMP that isagjhtforward to implement, suitable for
both filtering and smoothing applications, and empiricaliglds quickly converging estimates under a
variety of diverse operating conditions.

Our proposed schedule can be broken down into four distitegss which we will refer to using

the mnemonicginto), (within), (out), and (across). At a particular timestep, the (into) step involves
N

n=1"

passing messages that provide current beliefs about ttedftéhe relevant support variable{$,$f)

and amplitude variables{ﬂﬁf) N_ laterally into the dashed AMP box within frame (Recall Fig[1.)

n=11
The (within) step makes use of these incoming messages, together withbegvations available in

that frame,{y,(,? M_ to exchange messagesthin the dashed AMP box of framg thus generating

m=11

estimates of the marginal posteriors of the signal vari;al{)&éf) }N_|. Using these posterior estimates,

3However, it is worth noting that in the past decade much wark been accomplished in identifying specific situationseund

which loopy BPis guaranteed to converge, e.d..[[19].1[25]4[28].



the (out) step propagates messages of the dashed AMP box, providing updated beliefs about thtest
of {sﬁf) N_ and {0,@ N_,. Lastly, the(across) step involves transmitting messagesgossneighboring
frames, using the updated beliefs absif’ }_, and{6\}V_, to influence the beliefs abogs{ ™"}V,
and {65 (or {3 and {6 V).

The procedures for filtering and smoothing both start in #treesway. At the initiak = 1 frame, steps
(into), (within) and(out) are performed in succession. Next, stagross) is performed to pass messages
from {1, and {01, to {s'P 1A, and{6P}2_,. Then at frame = 2 the same set of steps are
executed, concluding with messages propagatir!{g;ﬁ‘(a},{LV:1 and{@ﬁf’) N_,. This process continues until
steps(into), (within) and(out) have been completed at the terminal frare At this point, DCS-AMP
has completed what we call a single forward pass. If the tbgavas to perform filtering, DCS-
AMP terminates at this point, since only causal measuresnieate been used to estimate the marginal
posteriors. If instead the objective is to obtain smoothemh-causal estimates, then information begins
to propagate backwards in time, i.e., s{@gross) moves messages fror{mg) N | and {0,(LT) N | to
{Sg_n N and {HﬁlT_l) N_. Steps(into), (within), (out), and(across) are performed at fram& — 1,
with messages bound for frani¥e — 2. This continues until the initial frame is reached. At thisirg
DCS-AMP has completed what we term as a single forward/bacdkywass. Multiple such passes, indexed
by the variablet, can be carried out until a convergence criterion is met oa@imum number of passes

has been performed.

B. Implementing the message passes

We now provide some additional details as to how the above §taps are implemented. To aid our
discussion, in Fig.]2 we summarize the form of the messagatss between the various factor graph
nodes, focusing primarily on a single coefficient indexat an intermediate frame Directed edges
indicate the direction that messages are moving. In(daeoss) phase, we only illustrate the messages
involved in a forward pass for the amplitude variables, asalé out a graphic for the corresponding
backward pass, as well as graphics for the support var{@bt@ss) phase. Note that, to be applicable at
frame T', the factor nodedﬁf“) and its associated edge should be removed. The figure alsallictes
the notation that we adopt for the different variables tleave to parameterize the messages. We use the
notationv, () to denote a message passing from naede a connected node For Bernoulli message
pdfs, we show only the non-zero probability, e@ff,) = Vh;#>_>s,<;>(3g) =1).

To perform step(into), the messages from the factdnéf) and hﬁf“’ to sff) are used to sef,(f),

the message fromﬁf) to fff). Likewise, the messages from the factdég and d£f+1) to 9,(f) are used
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Fig. 2: A summary of the four message passing phases, imgutdiessage notation and form. See the pseudocode of [Thble Il

for the precise message update computations.

to determine the message fro&ét) to f,gf). When performing filtering, or the first forward pass of
smoothing, no meaningful information should be conveyed1frtheh§f+1) and d§f+1) factors. This can
(t)

be accomplished by initializing,,’, 7, x{) with the values(L,0, ).

In step(within), messages must be exchanged between@:tlffé}gzl and{gﬁ,? }n]\le nodes. Whem ()
is not a sparse matrix, this will imply a dense network of aeations between these nodes. Consequently,
the standard sum-product algorithm would require us touatal multi-dimensional integrals of non-
Gaussian messages that grow exponentially in number in Botand M. This approach is clearly
infeasible for problems of any appreciable size, and thutiweto a simplification known aapproximate
message passing\MP) [17], [31].

At a high-level, AMP can be viewed as a simplification of lodply, employing central limit theorem
arguments to approximate the sum of many non-Gaussian mandoiables as a Gaussian. Through
a series of principled approximation steps (which becomecefor sub-Gaussiamd matrices in the
large-system limit[[19]), AMP produces an iterative threlsling algorithm that requires onl)(M N)
operations, dominated by matrix-vector products, to obgaisteriors on the{mﬁf)}i\;l variable nodes.
The specifics of the iterative thresholding algorithm wilpgnd on the signal prior under which AMP

is operating|[[311], but it is assumed that the joint prior dgules into independent (but not necessarily

i.i.d.) priors on each coefficient!!. See Appendix’A for additional background on AMP.
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By viewing ufg)_)xg)(-) as a “local priorH for xﬁf), we can readily apply an off-the-shelf AMP
algorithm (e.g.,[[31],[I35],[[36]) as a means of performitge tmessage passes within the portions of
the factor graph enclosed within the dashed boxes of[Fignly (@ne such box is visible). The use of
AMP with decoupled local priors within a larger message pasalgorithm that accounts for statistical
dependencies between signal coefficients was first proposfiB], and further studied in_[20]/ [21],
[32], [37], [38]. Here, we exploit this powerful “turbo” iefence approach to account for the strong
temporal dependencies inherent in the dynamic CS problem.

The local prior for our signal model is a Bernoulli-Gaussiaamely
Vg (@) = (1= 70)5(a0) + 7OCN (@05, ).

The appropriate AMP message update equations for this fwéal follow a straightforward extension
of the derivations outlined ir_[18], which considered thespl case of a zero-mean Bernoulli-Gaussian

prior. The specific AMP updates for our model are given[by] ¢4g) in Table[Tl.

M
m=1

After employing AMP to manage the message passing betw&@aiﬁﬁ)}ivzl and {gﬁ,?} nodes
in step(within), messages must be propagated out of the dashed AMP box of fréstep (out)) and
either forward or backward in time (stépcross)). While step(across) simply requires a straightforward
application of the sum-product message computation rgtep,(out) imposes several difficulties which
we must address. For the remainder of this discussion, wesfenr a novel approximation scheme
for specifying the messagefy)_%t)(-). Our objective is to arrive at a message approximation that
introduces negligible error while still leading to a comgtidnally efficient algorithm. A Gaussian message
approximation is a natural choice, given the marginally §€an distribution oﬂﬁf). As we shall soon
see, it is also a highly justifiable choice.

A routine application of the sum-product rules to m@-to-efﬁ message would produce the following
expression:

Rt (D) & (1 — 7 CN(0; ¢y, c) + TICN(OD); ¢y, ). (6)

’V(lt) %055)

Unfortunately, the tern@ A\ (0; ¢%,, ct) prevents us from normalizi f(xggem(e,@), because it is constant

with respect tcﬂ,(f). Therefore, the distribution o@ﬁt) represented by [6) is improper. To provide intuition

into why this is the case, it is helpful to think m}ﬁfqeﬁﬁ (Hﬁf)) as a message that conveys information

4The AMP algorithm is conventionally run with static, i.ijgtiors for each signal coefficient. When utilized as a sutmsonent
of a larger message passing algorithm on an expanded faefon,ghe signal priors (from AMP’s perspective) will be nbang

in response to messages from the rest of the factor graphef#feto these changing AMP priors kxal priors.
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about the value 00( ) based on the values @ﬁ andsg) If s(t) =0, then by K?)ac(t = 0, thus making
0,(1) unobservable. The constant term i (6) reflects the unogytaiue to this unobservability through
an infinitely broad, uninformative distribution faﬁff).

To avoid an improper pdf, we modify how this message is ddrivg regarding our assumed signal
model, in whichsﬁf) € {0,1}, as a limiting case of the model wiﬁff) € {e,1} ase — 0. For any fixed

positivee, the resulting messag%)_)@g)(-) is proper, given by

VI 0 (00) = (1= QD)) CN 00 L6, &) + QG CN 0D b)), (D)
where
A 5271'

The pdf in [7) is that of a binary Gaussian mixture. If we cdesk < 1, the first mixture component
is extremely broad, while the second is more “informatiweith mean¢:, and variance,. The relative
weight assigned to each component Gaussian is determindeekgrmQ(m (t)) Notice that the limit of

this weighting term is the simple indicator function

0 fo<rm<l,
lim Q(7) = 9)

=0 1 ifr=1

Since we cannot set = 0, we instead fix a small positive value, e.g.= 10~7. In this case,[{7)
could then be used as the outgoing message. However, trsermsea further difficulty: propagating
a binary Gaussian mixture forward in time would lead to anomgmtial growth in the number of
mixture components at subsequent timesteps. This diffiéslla familiar one in the context of switched
linear dynamical systems based on conditional Gaussiarelsiosince such models are not closed under
marginalization[[39]. To avoid the exponential growth ie thumber of mixture components, we collapse
our binary Gaussian mixture to a single Gaussian compoma@ngpproach sometimes referred to as a
Gaussian sum approximation [40], [41]. This can be justifigdhe fact that, for < 1, Q(-) behaves
nearly like the indicator function in{9), in which case orféle two Gaussian components will typically
have negligible mass.

To carry out the Gaussian sum approximation, we proposediteving two schemes. The first is to
simply choose a threshold that is slightly smaller than and, using[(P) as a guide, threshoﬁiéj) to

choose between the two Gaussian components|of (7). Theaaesuolessage is thus

Vo0 (09) = CN(0; 60, 0 1), (10)
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with £ and4{ chosen according to
(20}, &) m) <7

£ 1) = . (11)
( ) (¢i,ci), 7P >7

The second approach is to perform a second-order Taylazssapproximation of- log er::i%d—w;f) (Hﬁf))
with respect to@,(f). The resultant quadratic form i@;(f) can be viewed as the logarithm of a Gaussian
kernel with a particular mean and variance, which can be tespdrameterize a single Gaussian message,
as described ir_[32]. The latter approach has the advanfageing parameter-free. Empirically, we find
that this latter approach works well when changes in the supgccur infrequently, e.gp,, < 0.025,
while the former approach is better suited to more dynamiérenments.

In Table[Il we provide a pseudo-code implementation of owppsed DCS-AMP algorithm that gives
the explicit message update equations appropriate foopeirfig a single forward pass. The interested
reader can find an expanded derivation of the messagés lin Th2] primary computational burden of
DCS-AMP is computing the messages passing betweer{atﬁé} and {gﬁ,?} nodes, a task which can
be performed efficiently using matrix-vector products imimg A® and A®". The resulting overall
complexity of DCS-AMP is therefor€®(T'M N) flops (flops-per-pass) when filtering (smoothng‘Dhe

storage requirements af& N) andO(T'N) complex numbers when filtering and smoothing, respectively

IV. LEARNING THE SIGNAL MODEL PARAMETERS

The signal model of Sectidnl Il is specified by the Markov cha@mameters\, p,,, the Gauss-Markov
parameters, «, p, and the AWGN variance?. It is likely that some or all of these parameters will requir
tuning in order to best match the unknown signal. To this eveldevelop an expectation-maximization
(EM) [22] algorithm that works together with the messagespag procedure described in Section TlI-A
to learn all of the model parameters in an iterative fashromfthe data.

The EM algorithm is appealing for two principal reasonsstithe EM algorithm is a well-studied and
principled means of parameter estimation. At every EM ftera the likelihood is guaranteed to increase
until convergence to a local maximum occurs]|[43]. For mubidtal likelihoods, local maxima will, in
general, not coincide with the global maximum, but a judisionitialization of parameters can help in

ensuring the EM algorithm reaches the global maximum [48f $econd appealing feature of the EM

SWhen they exist, fast implicitA(*) operators can provide significant computational savingkigh-dimensional problems.
Implementing a Fourier transform as a fast Fourier tramsf(#FT) subroutine, for example, would drop DCS-AMP’s coaxjtly
from O(TMN) to O(TNlog, N).
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% Define soft-thresholding functions:

MO ON
Fre(61¢) 2 (14 ma(50) 7 (P o) 01

L)
Gni(¢sc) £ (1 +yme(¢30)7" (i‘{%ﬁ) + vt (65 0)[Fni(¢30))>  (D2)
Fri(di¢) 2 ZFni(¢,¢) = LGni(es0) (D3)
A ™ (t) c
'Ynt((b? C) = (11—(;; )(lz} c+ )

xexp (- [W)W@(” *eo+ e e —clel!) El) o
P ey +e)

% Begin passing messages. ..
fort=1,...,T:
% Execute the (into) phase. ..
T 5

;(t) n ’Vl
i vn Al
T 0y a0 05w (A1)
) R D
¥ = EoN=olIAL (A2)
=) =)
gv(f) = 7(5) . (ﬁ?,) + LE})) vn (A3)

% Initialize AMP-related variables .
Vm:zl, = y,(n),Vn pL, =0, and ¢} = 100 - Zn 1 ,(f)
% Execute the (within) phase using AMP . ..

fori=1,...,1I, :
he = ZM Agrtl)n*Z;nt + e Vn (A4)

P = Frt(@heicf) Vn (A5)
ot = Gm(%, ¢) vn (AB)
Ciﬂ =ol+ M Zn 1 ::trl (A7)
= o = el T S SN R Gl Ym o (A8)

end

8 = pu' vn % Store current estimate of x!) (A9)

% Execute the (out) phase. .

7 = (1 4 (li(t))'ym(d»m I“)) " vn (AL0)

€W, ) = {(d) /s,clﬂ/e pEr c<1) (Al

(@hoei ™), o.w.

% Execute the (across) phase forward in time .

~ NOI ) S0

NI = Pl e (A1)

A Z (1 - a)(@%%) @% + T,))) +al Vn (A13)

~(t41) o [ RO H®

ROTD — (1 - @) <W> +a2p Vn (A14)

end

TABLE Il: DCS-AMP steps for filtering mode, or the forward pion of a single forward/backward pass in smoothing mode.
See Fig[R to associate quantities with the messages tiryehe factor graph.

algorithm lies in the fact that its expectation step levesaguantities that have already been computed
in the process of executing DCS-AMP, making the EM procedwraputationally efficient.
We letT" £ {\,p,,,( a,p,02} denote the set of all model parameters, andIletdenote the set

of parameter estimates at th& EM iteration. The objective of the EM procedure is to find maeter
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estimates that maximize the data likelihage(@|I"). Since it is often computationally intractable to perform
this maximization, the EM algorithm incorporates additibthidden” data and iterates between two steps:
(i) evaluating the conditional expectation of the log liketildlcof the hidden data given the observed data,
g, and the current estimates of the paramef@fs and(ii) maximizing this expected log likelihood with
respect to the model parameters. For all parameters exuepioise variance;?, we uses andf as the
hidden data, while for? we usez.

Before running DCS-AMP, the model parameters are inilizising any available prior knowledge.
If operating in smoothing mode, DCS-AMP performs an initiatward/backward pass, as described
in Section[Il[-A. Upon completing this first pass, estimatdésthe marginal posterior distributions are
available for each of the underlying random variables. Addally, belief propagation can provide
pairwise joint posterior distributions, e.@.(,s,(f), s,(f_l) |fg), for any variable nodes connected by a common
factor node([44]. With these marginal, and pairwise joirdsterior distributions, it is possible to produce
closed-form solutions for performing stefdsand(ii) above. We adopt a Gauss-Seidel scheme, performing

coordinate-wise maximization, e.g.,
ML — argmax E, a1y |log (9,5, 6; A TR\ g; Fk} .
)\ b

The EM procedure is performed after each forward/backwass pleading to a convergent sequence of
parameter estimates. If operating in filtering mode, theegdore is similar, however the EM procedure
is run after each recovered timestep using only causallijadoe posterior estimates.

In Table[Ill, we provide the EM update equations for each @& garameters of our signal model,
assuming DCS-AMP is operating in smoothing mode. A comptitgavation of each update can be

found in [42].

V. INCORPORATINGADDITIONAL STRUCTURE

In Sections Il -[IV we described a signal model for the dynai@i® problem and summarized a
message passing algorithm for making inferences undenthigel, while iteratively learning the model
parameters via EM. We also hinted that the model could bergbépred to incorporate additional, or
more complex, forms of structure. In this section we willbgeate on this idea, and illustrate one such
generalization.

Recall that, in Sectionlll, we introduced hidden variatdeand@ in order to characterize the structure
in the signal coefficients. An important consequence obthicing these hidden variables was that they

made each signal coeﬁiciemf) conditionally independent of the remaining coefficientgingiven sﬁf)
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% Define key quantities obtained from AMP-MMV at iteration k:
- (OO
E[sn’|y] = BT+ (1) 0= ) Q1)
E[sW)s% Vg] =p(st) = 1,5V = 1]g) Q2)
5 2 var{oP |z} = (# + == + #)71 (Q3)
n’ = nlYr == ONEE=O)
5 5 O~ OIS ()
o) 2ol = (3 + 5 + 2 ) @
o 2 var{xm |y} % See[(Ab) of Tabl€l
p 2 E[aP|y] % See[[Ab) of TablEll
% EM update equationS'
AL = LN e[|y (E1)
oD [+ D)
k+1 Etzzz ~5n ! |
P (E2)
ot 2271 1 [(t 1>| }
N - ~(1
¢t = (M <a?)k) (e il At
+Zt QZn 1 ak E (H(t) l-a )HSLtil))> (E3)
bl = ol (b — /BT F8N(T — 1)c> (E4)
where:
b2 2 T, N me{ Bl 00 V)
~Re{(ar!) — TRy - (P
2 Z i 0+ D 5 0
me{E[eSP o5V g)}
pk+1 = (ak)2N(T 1) Z 22 ’55?) + “’L(t)P
+(ak)2[cH? - 2(1 - m{E[e‘“ i)
—20kRe{ i ¢k} + 20k (1 — aF)Re{ a1 ¢k Y
+(1 - aF) @ + m&f*”m (E5)
()1 = o (2L Ily® — Ap®)? +1500) (E6)

TABLE Ill: EM update equations for the signal model parametef Sectiori]l.

and Hff). This conditional independence served an important dlgoic purpose since it allowed us to
apply the AMP algorithm, which requires independent loc@rg, within our larger inference procedure.
One way to incorporate additional structure into the signadel of Sectiori ]l is to generalize our
choices ofp(s) andp(@). As a concrete example, pairing the temporal support moagigsed in this
work with the Markovian model of wavelet tree inter-scaleretations described in_[20] through a
more complex support priop(s), could enable even greater undersampling in a dynamic M&hge
Performing inference on such models could be accomplidmmedigh the general algorithmic framework
proposed in[[38]. As another example, suppose that we wigtkpand our Bernoulli-Gaussian signal

model to one in which signal coefficients are marginally ritistted according to a Bernoulli-Gaussian-



17

mixture, i.e.,

D
p(e?) = 2P 5) + 3 AP eN @ ¢ 03),

d=1
where ZD )\(t = 1. Since we still wish to preserve the slow time-variationstlie support and
smooth evolution of non-zero amplitudes, a natural chofdeidden variables i3, 61, ...,0p}, where

s,(f) € {0,1,...,D}, and@ff}1 eC,d=1,...,D. The relationship between(f) and the hidden variables
then generalizes to:
(t) (t) _
01,0 g0 vy _ ) ), s =0,
p(‘rn |Sn IR W R I D,n) (t) (t)
6(zn” — 047, sV =d # 0.

To model the slowly changing support, we spegifi) using a(D + 1)-state Markov chain defined

by the transition probabilitiegg; = Pr{sﬁf) = 0|s,(f_1) = d} andpgy = Pr{sgf) = d|s,(f_1) =0}, d =
, D. In this work, we assume that state transitions cannot doetween active mixture components,
ie., Pl(sn = d]s,f_l =e) = 0 whend # e # OH For each amplitude time-series we again use
independent Gauss-Markov processes to model smooth erduin the amplitudes of active signal
coefficients, i.e.,
) _ (t=1)
Hd,n = (1—ad)(9 Cd) —i—adwdn—i-Cd,

wherewflf)n ~ CN(0, pa).

As a consequence of this generalized signal model, a nunfbilleanessage computations of Sec-
tion [[lI-Bl must be modified. For stepnto) and (across), it is largely straightforward to extend the
computations to account for the additional hidden varisbkor step(within), the modifications will
affect the AMP thresholding equations defined.inl(D1) -I(D#Jable(ll. Details on a Bernoulli-Gaussian-
mixture AMP algorithm can be found ih_[33]. For tljeut) step, we will encounter difficulties applying
standard sum-product update rules to compute the meséta%@s_w;tl(-)}gzl. As in the Bernoulli-
Gaussian case, we consider a modification of our assumedlsigmﬂel that incorporates an < 1
term, and use Taylor series approximations of the resulteastsages to collapse(® + 1)-ary Gaussian

mixture to a single Gaussian. More information on this pdure can be found i [42].

®By relaxing this restriction on active-to-active statensitions, we can model signals whose coefficients tend terehe
support set at small amplitudes that grow larger over tinteugph the use of a Gaussian mixture component with a small

variance that has a high probability of transitioning to ghieir variance mixture component.



18

VI. EMPIRICAL STUDY

We now describe the results of an empirical study of DCS—AH\IITh.e primary performance metric that
we used in all of our experiments, which we refer to as the {iweraged normalized MSE (TNMSE),

is defined as

. [zt — 2O
TNMSE(z, z) Z TEOE 2,

wherez® is an estimate of(®).

Unless otherwise noted, the following settings were usedDiGS-AMP in our experiments. First,
DCS-AMP was run as a smoother, with a total offorward/backward passes. The number of inner
AMP iterations I for each(within) step wasl = 25, with a possibility for early termination if the
change in the estimated signaf;, fell below a predefined threshold from one iteration to tleetni.e.,
%HH% — pi7|2 < 1075, Equation [AD) of Tabl€]l was used to produ#€), which corresponds to an
MMSE estimate ofc(Y) under DCS-AMP’s estimated posteriqr&ﬁf)@). The amplitude approximation
parametee from (@) was set t& = 10~7, while the threshold- from (I1) was set ta- = 0.99. In our
experiments, we found DCS-AMP’s performance to be relgtiviesensitive to the value of provided
thate < 1. The choice ofr should be selected to provide a balance between allowing-BK2B to track
amplitude evolutions on signals with rapidly varying sugp@nd preventing DCS-AMP from prematurely
gaining too much confidence in its estimate of the support.fdMad that the choice = 0.99 works
well over a broad range of problems. When the estimateditiam$probability p,, < 0.025, DCS-AMP
automatically switched from the threshold method to theldlageries method of computing_(10), which
is advantageous because it is parameter-free.

When learning model parameters adaptively from the datagutie EM updates of Tablell, it
iS necessary to first initialize the parameters at reasenadlues. Unless domain-specific knowledge
suggests a particular initialization strategy, we advweeeting the following simple heuristics: The initial
sparsity rate\!, active mean(!, active variance(s?)!, and noise variancggs2)!, can be initialized
according to the procedure described!inl [89]. H The Gauss-Markov correlation parameter,can be

initialized as
T-1 ,y (t+1)‘

1
at=1- .
-1 ; A (o2)1| tr{A® ACFDHY

(12)

"Code for reproducing our results is availablé at http://weoe.osu.eduschniter/turboAMPdEs.

8For problems with a high degree of undersampling and relgtinon-sparse signals, it may be necessary to threshold the
value for \! suggested in[33] so that it does not fall below, e(glP.


http://www.ece.osu.edu/~schniter/turboAMPdcs
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The active-to-inactive transition probability,, , is difficult to gauge solely from sample statistics involyi

the available measurementig, We usedp})1 = 0.10 as a generic default choice, based on the premise
that it is easier for DCS-AMP to adjust to more dynamic sigr@ice it has a decent “lock” on the static
elements of the support, than it is for it to estimate reddyiwstatic signals under an assumption of high

dynamicity.

A. Performance across the sparsity-undersampling plane

Two factors that have a significant effect on the performaoicany CS algorithm are the sparsity
|S®)]| of the underlying signal, and the number of measuremght€onsequently, much can be learned
about an algorithm by manipulating these factors and obsgithe resulting change in performance. To
this end, we studied DCS-AMP’s performance across the gpansdersampling plane _[45], which is
parameterized by two quantities, thermalized sparsity ratios 2 E[|S®)|]/M, and theundersampling
ratio, § £ M/N. For a given(é, 3) pair (with N fixed at1500), sample realizations of, 8, ande were
drawn from their respective priors, and elements of a timeing A® were drawn from i.i.d. zero-mean
complex circular Gaussians, with all columns subsequestiifed to have unit;-norm, thus generating
x andy.

As a performance benchmark, we used the support-aware Kagmother. In the case of linear
dynamical systems with jointly Gaussian signal and obsiems, the Kalman filter (smoother) is known
to provide MSE-optimal causal (non-causal) signal esém@t6]. When the signal is Bernoulli-Gaussian,
the Kalman filter/smoother is no longer optimal. Howeverpadr bound on the achievable MSE can
be obtained using the support-aware Kalman filter (SKF) ooathrer (SKS). Since the classical state-
space formulation of the Kalman filter does not easily yidld support-aware bound, we turn to an
alternative view of Kalman filtering as an instance of messpgssing on an appropriate factor graph
[47]. For this, it suffices to use the factor graph of Fiy. 1h/\4ts§f)} treated as fixed, known quantities.
Following the standard sum-product algorithm rules rasinta message passing algorithm in which all
messages are Gaussian, and no message approximationguiredeThen, by running loopy Gaussian
belief propagation until convergence, we are guaranteadtiie resultant posterior means constitute the
MMSE estimate ofz [25, Claim 5].

To quantify the improvement obtained by exploiting tempamarrelation, signal recovery was also
explored using the Bernoulli-Gaussian AMP algorithm (BGHR) independently at each timestep (i.e.,

ignoring temporal structure in the support and amplitugesiomplished by passing messages only within
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Support-aware Kalman smoother TNMSE [dB] DCS-AMP TNMSE [dB] EM-DCS-AMP TNMSE [dB] BG-AMP TNMSE [dB]
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Fig. 3: A plot of the TNMSE (in dB) of (from left) the SKS, DCSMP, EM-DCS-AMP, and BG-AMP across the

sparsity-undersampling plane, for temporal correlatiarameter®,, = 0.05 anda = 0.01.

the dashed boxes of Figl 1 usipga:,(f)) from (@) as AMP’s prioH

In Fig. [3, we present four plots from a representative expent. The TNMSE across the (loga-
rithmically scaled) sparsity-undersampling plane is siider (working from left to right) the SKS,
DCS-AMP, EM-DCS-AMP (DCS-AMP with EM parameter tuning), daBG-AMP. In order to allow
EM-DCS-AMP ample opportunity to converge to the correctapagter values, it was allowed up 360
EM iterations/smoothing passes, although it would quiteroterminate much sooner if the parameter
initializations were reasonably close. The results shownevaveraged over more thaa0 independent
trials at each(d, 5) pair. For this experiment, signal model parameters werasat = 1500, T = 25,

p,, = 0.05, ¢ =0, a = 0.01, > = 1, and a noise variance;’

e

chosen to yield a signal-to-noise
ratio (SNR) of25 dB. (M, \) were set based on specifié, 5) pairs, andp,, was set so as to keep
the expected number of active coefficients constant acioss. fit is interesting to observe that the
performance of the SKS and (EM-)DCS-AMP are only weakly aejesit on the undersampling ratio

In contrast, the structure-agnostic BG-AMP algorithm osgly affected. This is one of the principal
benefits of incorporating temporal structure; it makes ggilole to tolerate more substantial amounts of

undersampling, particularly when the underlying signadess sparse.

B. Performance vg,, and«

The temporal correlation of our time-varying sparse signatiel is largely dictated by two parameters,
the support transition probability,, and the amplitude forgetting factor. Therefore, it is worth inves-

tigating how the performance of (EM-)DCS-AMP is affectedthgse two parameters. In an experiment

°Experiments were also run that compared performance agBimsis Pursuit Denoising (BPDN) [48] with genie-aided
parameter tuning (solved using the SPGL1 solier [49]). H@nethis was found to yield higher TNMSE than BG-AMP, and

at higher computational cost.
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Support aware Kalman smoother TNMSE [dB] DCS-AMP TNMSE [dB] EM-DCS-AMP TNMSE [dB]
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Fig. 4: TNMSE (in dB) of (from left) the SKS, DCS-AMP, and EMd3-AMP as a function of the model parametggs and
a, for undersampling ratié = 1/3 and sparsity ratigg = 0.45. BG-AMP achieved a TNMSE o0f-5.9 dB across the plane.

similar to that of Fig[B, we tracked the performance of (HMZ5-AMP, the SKS, and BG-AMP across
a plane of(p,,,«) pairs. The active-to-inactive transition probability, was swept linearly over the
rangel0, 0.15], while the Gauss-Markov amplitude forgetting factowas swept logarithmically over the
range[0.001,0.95]. To help interpret the meaning of these parameters, we hatethe fraction of the
support that is expected to change from one timestep to tkieisigiven by2p ,, and that the Pearson
correlation coefficient between temporally adjacent amgé variables id — «.

In Fig.[4 we plot the TNMSE (in dB) of the SKS and (EM-)DCS-AMB a function of the percentage
of the support that changes from one timestep to the next Zpg x 100) and the logarithmic value of
« for a signal model in whickh = 1/5 and 5 = 0.60, with remaining parameters set as before. Since
BG-AMP is agnostic to temporal correlation, its performans insensitive to the values of, anda.
Therefore, we do not include a plot of the performance of BEPAbut note that it achieved a TNMSE
of —5.9 dB across the plane. For the SKS and (EM-)DCS-AMP, we seepirddrmance improves with
increasing amplitude correlation (moving leftward). Thishavior, although intuitive, is in contrast to the
relationship between performance and correlation founthénMMV problem [32], [50], primarily due
to the fact that the measurement matrix is static for all §teps in the classical MMV problem, whereas
here it varies with time. Since the SKS has perfect knowlegfgtihe support, its performance is only
weakly dependent on the rate of support change. DCS-AMPRaance shows a modest dependence on
the rate of support change, but nevertheless is capable wagireg rapid temporal changes in support,

while EM-DCS-AMP performs very near the level of the noiseewl < 0.10.
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C. Recovery of an MRI image sequence

While the above simulations demonstrate the effectiveoEBES-AMP in recovering signals generated
according to our signal model, it remains to be seen whethersignal model itself is suitable for
describing practical dynamic CS signals. To address théstipn, we tested the performance of DCS-
AMP on a dynamic MRI experiment first performed in_[51]. Thepexment consists of recovering
a sequence of0 MRI images of the larynx, each56 x 256 pixels in dimension. (See Fi@l 5.) The
measurement matrices were never stored explicitly dueggtbhibitive sizes involves, but were instead
treated as the composition of three linear operatiohs= MFW'. The first operationW7', was
the synthesis of the underlying image from a sparsifying, 2Bevel Daubechies-4 wavelet transform
representation. The second operatiBnwas a 2-D Fourier transform that yielded the k-space coeffis
of the image. The third operatiod/, was a sub-sampling mask that kept only a fraction of thelaiviai
k-space data.

Since the image transform coefficients are compressiblerahan sparse, the SKF/SKS no longer
serves as an appropriate algorithmic benchmark. Insteadsompare performance against Modified-CS
[Q], as well as timestep-independent Basis Pu@uAs reported in[[9], Modified-CS demonstrates that
substantial improvements can be obtained over temporghpstic methods.

Since the statistics of wavelet coefficients at differendlss are often highly dissimilar (e.g., the
coarsest-scale approximation coefficients are usuallyhnhess sparse than those at finer scales, and are
also substantially larger in magnitude), we allowed our Efdcpdure to learn different parameters for
different wavelet scales. Using to denote the indices of the coarsest-scale “approxinfatioefficients,
and G, to denote the finer-scale “wavelet” coefficients, DCS-AMPswiaitialized with the following
parameter choicesig, = 0.99, \g, = 0.01, p,, = 0.01, (g, = (g, = 0, ag, = ag, = 0.05, pg, = 10°,
pg, = 10%, ando? = 0.01, and run in filtering mode withl = 10 inner AMP iterations.

We note that our initializations were deliberately choserbé agnostic, but reasonable, values. In
particular, observing that the coarsest-scale approiomatoefficients of a wavelet decomposition are
almost surely non-zero, we initialized the associated gjeosparsity rate ahg, = 0.99, while the finer
scale detail coefficients were given an arbitrary sparsitymoting rate of\g, = 0.01. The choices ofx

andp were driven by an observation that the variance of coeffisiaoross wavelet scales often differs by

OModified-CS is available at http://home.engineeringatseduf luwei/modcs/index.html. Basis Pursuit was solved usirg th
£1-MAGIC equality-constrained primal-dual solver (chosence it is used as a subroutine within Modified-CS), avadaht

http://users.ece.gatech.edjustin/I1magic/.


http://home.engineering.iastate.edu/~luwei/modcs/index.html
http://users.ece.gatech.edu/~justin/l1magic/
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Algorithm TNMSE (dB) | Runtime
Basis Pursuit -17.22 47 min
Modified-CS -34.30 7.39 hrs
DCS-AMP (Filter) -34.62 8.08 sec

TABLE 1V: Performance on dynamic MRI dataset from [51] withcreased sampling rate at initial timestep.

Algorithm TNMSE (dB) | Runtime

Basis Pursuit -16.83 47.61 min

Modified-CS -17.18 7.78 hrs
DCS-AMP (Filter) -29.51 7.27 sec

TABLE V: Performance on dynamic MRI dataset from [51] witfeidical sampling rate at every timestep.

an order-of-magnitude. The noise variance is arguably th&t important parameter to initialize properly,
since it balances the conflicting objectives of fitting theadand adhering to the assumed signal model.
Our rule-of-thumb for initializing this parameter was thiais best to err on the side of fitting the data
(since the SNR in this MRI data collection was high), and thuesinitialized the noise variance with a
small value.

In Table[IM we summarize the performance of three differestineators: timestep-independent Basis
Pursuit, which performs independefit minimizations at each timestep, Modified-CS, and DCS-AMP
(operating in filtering mode). In this experiment, per theupedescribed in[51], the initial timestep was
sampled at0% of the Nyquist rate, i.e.)/ = N/2, while subsequent timesteps were samplethé of
the Nyquist rate. Both Modified-CS and DCS-AMP substantiallitperform Basis Pursuit with respect
to TNMSE, with DCS-AMP showing a slight advantage over MadifiCS. Despite the similar TNMSE
performance, note that DCS-AMP runs in seconds, whereasfidd<«CS takes multiple hours. In Figl 5,
we plot the true images along with the recoveries for thisegxpent, which show severe degradation
for Basis Pursuit on all but the initial timestep.

In practice, it may not be possible to acquire an increasenben of samples at the initial timestep.
We therefore repeated the experiment while samplind6ét of the Nyquist rate at every timestep.
The results, shown in TablelV, show that DCS-AMP’s perforoeadegrades by abodt dB, while
Modified-CS suffers d4 dB reduction, illustrating that, when the estimate of thiiahsupport is poor,

Modified-CS struggles to outperform Basis Pursuit.
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Fig. 5: Framesl, 2, 5, and 10 of the dynamic MRI image sequence of (from top to bottom): filly sampled dataset, Basis
Pursuit, Modified-CS, and DCS-AMP, with increased samptiaig at initial timestep.

D. Recovery of a CS audio sequence

In another experiment using real-world data, we used DC3A recover an audio signal from
sub-Nyquist samples. In this case, we employ the Bern@alissian-mixture signal model proposed
for DCS-AMP in Sectiori Y. The audio clip is @ second recording of a trumpet solo, and contains a
succession of rapid changes in the trumpet’s pitch. Sucbh@dang presents a challenge for CS methods,
since the signal will be only compressible, and not sparde. dlip, sampled at a rate afi kHz, was
divided intoT = 54 non-overlapping segments of length= 1500. Using the discrete cosine transform
(DCT) as a sparsifying basis, linear measurements weraneltaising a time-invariant i.i.d. Gaussian
sensing matrix.

In Fig.[@ we plot the magnitude of the DCT coefficients of théiatsignal on a dB scale. Beyond the
temporal correlation evident in the plot, it is also inteires to observe that there is a non-trivial amount
of frequency correlation (correlation across the infigy, as well as a large dynamic range. We performed
recoveries using four techniques: BG-AMP, GM-AMP (a tengflgragnostic Bernoulli-Gaussian-mixture
AMP algorithm with D = 4 Gaussian mixture components), DCS-(BG)-AMP, and DCS-GMPA(the
Bernoulli-Gaussian-mixture dynamic CS model describe8entior V¥, withD = 4). For each algorithm,
EM learning of the model parameters was performed usinggbtfarward variations of the procedure

described in Sectidn 1V, with model parameters initializedomatically using simple heuristics described
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Fig. 6: DCT coefficient magnitudes (in dB) of an audio signal.

Undersampling Rate

Algorithm

5=1 5=1 5=1
BG-AMP -16.88 (dB)| 09.11 (s) | -11.67 (dB)| 08.27 () | -08.56 (dB)| 06.63 (3)
GM-AMP (D = 4) -17.49 (dB)| 19.36 (s) | -13.74 (dB)| 17.48 (s)| -10.23 (dB)| 15.98 (s)
DCS-BG-AMP -19.84 (dB)| 10.20 (s) | -14.33 (dB)| 08.39 (s)| -11.40 (dB)| 6.71 (s)

DCS-GM-AMP (D = 4)

-21.33 (dB) | 20.34 (s)

-16.78 (dB) | 18.63 (s)

-12.49 (dB) | 10.13 (s)

25

TABLE VI: Performance on audio CS dataset (TNMSE (dBuntime (s)) of two temporally independent algorithms,

BG-AMP and GM-AMP, and two temporally structured algoriinDCS-BG-AMP and DCS-GM-AMP.

in [33]. Moreover, unique model parameters were learnedeh émestep (with the exception of support

transition probabilities). Furthermore, since our modeédidden amplitude evolutions was poorly matched

to this audio signal, we fixed = 1.

In Table[V] we present the results of applying each algoritonthe audio dataset for three different

undersampling rates, For each algorithm, both the TNMSE in dB and the runtime icosels are pro-

vided. Overall, we see that performance improves at eachrgathpling rate as the signal model becomes

more expressive. While GM-AMP outperforms BG-AMP at all ershmpling rates, it is surpassed by
DCS-BG-AMP and DCS-GM-AMP, with DCS-GM-AMP offering the &eETNMSE performance. Indeed,

we observe that one can obtain comparable, or even bettésrpeance with an undersampling raite= %
using DCS-BG-AMP or DCS-GM-AMP, with that obtained using B®P with an undersampling rate

5=1,
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E. Frequency Estimation

In a final experiment, we compared the performance of DCS-AddRinst techniques designed to
solve the problem of subspace identification and trackiognfpartial observations (SITPQ) [52], [53],
which bears similarities to the dynamic CS problem. In salspidentification, the goal is to learn the
low-dimensional subspace occupied by multi-timestep daasured in a high ambient dimension, while
in subspace tracking, the goal is to track that subspaceaslites over time. In the partial observation
setting, the high-dimensional observations are sub-sssmpbking a mask that varies with time. The
dynamic CS problem can be viewed as a special case of SITP&gimhthe time: subspace is spanned
by a subset of the columns of an a priori known matf%). One problem that lies in the intersection
of SITPO and dynamic CS is frequency tracking from partialetidomain observations.

For comparison purposes, we replicated the “direction falranalysis” experiment described [n [53]

where the observations at timeake the form
y® =@y gh L O =12 .. T (13)

where®® ¢ {0,1}M*N is a selection matrix with non-zero column indic@$) c {1,...,N}, V¥ ¢

CN*K js a Vandermonde matrix of sampled complex sinusoids, i.e.,

VO 2 o)., o)l (14)
with v(w”) £ [1,e2m” | o2 (N=D]T andw®) € [0,1). al® € RX is a vector of instantaneous

amplitudes, ana® < RY is additive noise with i.i.d N (0, c2) element@ Here, {®®}T_, is known,
while {w®}T_, and {a®}L_, are unknown, and our goal is to estimate them. To assessrperice,
we report TNMSE in the estimation of the “complete” sigaf a7 .

We compared DCS-AMP’s performance against two online élyos designed to solve the SITPO
problem: GROUSE [52] and PETRELS [53]. Both GROUSE and PEIREeturn time-varying subspace
estimates, which were passed to an ESPRIT algorithm to gengéme-varying frequency estimates (as
in [53]). Finally, time-varying amplitude estimates werengputed using least-squares. For DCS-AMP,
we constructedd® using a2x column-oversampled DFT matrix, keeping only those rowsxed by
Q). DCS-AMP was run in filtering mode for fair comparison wittettonline” operation of GROUSE
and PETRELS, withl = 7 inner AMP iterations.

HCode for replicating the experiment provided by the authafr§53]. Unless otherwise noted, specific choices regarding

{wff)} and{a¥} were made by the authors 6f [53] in a deterministic fashiow] ean be found in the code.
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Problem Setup

N=256M=30,K=>5| N=256 M=10, K =5 | N =1024, M = 120, K = 20
£ | GROUSE -4.52 (dB)| 6.78 () 2.02 (dB)| 6.68 () -4.51 (dB)| 173.89 (s)
g PETRELS | -15.62 (dB) | 29.51 (s) 0.50 (dB)| 14.93 (s) -7.98 (dB)| 381.10 (s)
< | DCS-AMP |  -15.46 (dB)| 34.49 (s) -10.85 (dB) | 28.42 (s) -12.79 (dB) | 138.07 ()

TABLE VII: Average performance on synthetic frequency mstiion experiment (TNMSE (dB) Runtime (s)) of GROUSE,
PETRELS, and DCS-AMP. In all caseE,= 4000, o2 = 10~°.

The results of performing the experiment for three difféneroblem configurations are presented in
TablelVIl, with performance averaged ovel0) independent realizations. All three algorithms were given
the true value ofK. In the first problem setup considered, we see that GROUSEatg®ethe fastest,
although its TNMSE performance is noticeably inferior tattiof both PETRELS and DCS-AMP, which
provide similar TNMSE performance and complexity. In theaed problem setup, we reduce the number
of measurements\/, from 30 to 10, leaving all other settings fixed. In this regime, both GR@&Usd
PETRELS are unable to accurately estim@u.ét)}, and consequently fail to accurately recow&t)a(®,
in contrast to DCS-AMP. In the third problem setup, we inseghthe problem dimensions from the first
problem setup by a factor af to understand how the complexity of each approach scaléspritblem
size. In order to increase the number of “active” frequesidiem K = 5 to K = 20, 15 additional
frequencies and amplitudes were added uniformly at randonhe 5 deterministic trajectories of the
preceding experiments. Interestingly, DCS-AMP, which waes slowest at smaller problem dimensions,
becomes the fastest (and most accurate) in the higher-diorel setting, scaling much better than either
GROUSE or PETRELS.

VIl. CONCLUSION

In this work we proposed DCS-AMP, a novel approach to dyna@fic Our techniqgue merges ideas
from the fields of belief propagation and switched linear alyical systems, together with a computa-
tionally efficient inference method known as AMP. Moreowee proposed an EM approach that learns
all model parameters automatically from the data. In nucaéexperiments on synthetic data, DCS-AMP
performed within3 dB of the support-aware Kalman smoother bound across thsigpandersampling
plane. Repeating the dynamic MRI experiment from [51], D&SP slightly outperformed Modified-CS
in MSE, but required less thar) seconds to run, in comparison to more thahours for Modified-
CS. For the compressive sensing of audio, we demonstragadfisant gains from the exploitation of

temporal structure and Gaussian-mixture learning of tyeadiprior. Lastly, we found that DCS-AMP can
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CN(ym; a'Tw7 U(%) Tn p(fEn)

Fig. 7: The factor graph representation of the decompasivio(18).

outperform recent approaches to Subspace Identificatiomeatking from Partial Observations (SITPO)

when the underlying problem can be well-represented thraigynamic CS model.

APPENDIXA

THE BASICS OFBELIEF PROPAGATION AND AMP

In this appendix, we provide a brief primer on belief progéma and the Bayesian approximate
message passing (AMP) algorithmic framework proposed bgobo, Maleki, and Montanari [31]. In
what follows, we consider the task of estimating a signataee ¢ CV from linearly compressed and
AWGN-corrupted measurements:

y=Ax+ecCM (15)

AMP can be derived from the perspective of loopy belief pgaien (LBP) [23], a Bayesian inference
strategy that is based on a factorization of the signal piostedf, p(x|y), into a product of simpler
pdfs that, together, reveal the probabilistic structuréhim problem. Concretely, if the signal coefficients,
x, and noise samplesy, in (18) are jointly independent such thatr) = Hfj:lp(mn) andp(ylx) =

[TM_, CN (ym; al,, 02), then the posterior pdf factors as

M N
plely) o« [] CN(yms al, 02) [] plan). (16)
m=1 n=1

yielding the factor graph in Fid.] 7.

In belief propagation[[24], messages representing betibfsut the unknown variables are exchanged
amongst the nodes of the factor graph until convergence taldesfixed point occurs. The set of beliefs
passed into a given variable node are then used to infestitati properties of the associated random
variable, e.g., the posterior mode, or a complete postéigiribution. The sum-product algorithrn_[23]

is perhaps the most well-known approach to belief propagatvherein the messages take the form of
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probability distributions, and exact posteriors are gntaad whenever the graph does not have cycles
(“loops”). For graphs with cycles, exact inference is knaaie NP-hard, and so LBP is not guaranteed to

produce correct posteriors. Still, it has shown statehefdrt performance on a wide array of challenging

inference problems, as noted in Section 1lI-B.

The conventional wisdom surrounding LBP says that acciméteence is possible only when the factor
graph is locally tree-like, i.e., the girth of any cycle isatévely large. With [(1b), this would require that
is an appropriately constructed sparse matrix, which posd some of the most interesting CS problems.
In a remarkable departure from convention, Donoho, Mal®lantanari, and Bayati demonstrated that
LBP-based compressive sensing is not only feasible [171] f8r dense A matrices, but provably
accurate[[19]. In particular, they established that, in ldrge-system limit (i.e., a8/, N — oo with
M/N fixed) and under i.i.d. sub-Gaussiahy the iterations of AMP are governed by a state-evolution
whose fixed point—when unique—yields the true posterior me&eyond its theoretical significance,
AMP is important for its computational properties as wels demonstrated in the original AMP work
[17], not only can LBP solve the compressive sensing probf&8), but it can do so much faster, and
more accurately, than other state-of-the-art methodstheheoptimization-based, greedy, or Bayesian.
To accomplish this feat| [17]| [31] proposed a specific seqmbroximations that become accurate in
the limit of large, densed matrices, yielding algorithms that give accurate resudisigi only ~ 2M N
flops-per-iteration, and relatively few iterations (eigns).

The specific implementation of any AMP algorithm will depesrdthe particular choices of likelihood
and prior, but ultimately amounts to an iterative, scalaft-doesholding procedure with a carefully
chosen adaptive thresholding strategy. Deriving the gpjate thresholding functions for a particular
signal model can be accomplished by computing scalar swaldot, or max-sum, updates of a simple

form (see, e.g./ [36, Table 1]).
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