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Abstract—Recently, hyperbolic deep neural networks (HDNNSs) have been gaining momentum as the deep representations in the
hyperbolic space provide high fidelity embeddings with few dimensions, especially for data possessing hierarchical structure. Such

a hyperbolic neural architecture is quickly extended to different scientific fields, including natural language processing, single-cell
RNA-sequence analysis, graph embedding, financial analysis, and computer vision. The promising results demonstrate its superior
capability, significant compactness of the model, and a substantially better physical interpretability than its counterpart in the euclidean
space. To stimulate future research, this paper presents a comprehensive review of the literature around the neural components in the
construction of HDNN, as well as the generalization of the leading deep approaches to the hyperbolic space. It also presents current
applications of various tasks, together with insightful observations and identifying open questions and promising future directions.

Index Terms—Neural networks on Riemannian manifold, hyperbolic neural networks, Poincaré model, Lorentz model

1 INTRODUCTION

DATA with tree structure and hierarchy are ubiquitous in
natural scenarios and the real-world [1], [2], [3], [4]. Lots
of such data, e.g., Internet [5], brain networks [6], the world
trade network [7], and financial networks [8], exhibit a highly
non-euclidean latent anatomy and negatively curved prop-
erties [9], [10], [11]. Similar properties can be observed from
tasks such as recommendation system [12], social media
analysis [13], knowledge graph embedding [14], single-cell
RNA-sequence analysis [15] and image retrieval [16]. In par-
allel, current machine learning, especially deep learning [17]
has provided a powerful data-driven way to analyze and
understand data. At its core lies the expectation of learning
low-dimensional and semantically rich representations of
data. Deep neural networks, constructed with a multi-lay-
ered structure, parameterized with millions of parameters,
and boosted with comprehensive and highly-optimized
deep learning libraries [18], [19], [20], theoretically have the
potential to fit any complex functions, leading to the domina-
tion of many research fields, such as image classification [21],
[22], machine translation tasks [23], and even video games
playing [24].

Nevertheless, in such successful applications, regular grid
data in the euclidean space, e.g., text and images, is the main
focus. Besides, the learning process is conducted in the intui-
tion-friendly euclidean space, which is a flat space with zero
curvature. However, neural architectures operating in the
euclidean space rely heavily on the locality and are originally

o The authors are with the Center for Machine Vision and Signal Analysis,
University of Oulu, 90570 Oulu, Finland. E-mail: {wei.peng, Tuomas.
Varanka, Abdelrahman.Mostafa, henglin.shi, guoying.zhaol@oulu fi.

Manuscript received 10 Feb. 2021; revised 15 Dec. 2021; accepted 16 Dec. 2021.
Date of publication 21 Dec. 2021; date of current version 3 Nov. 2022.

This work was supported in part by the Academy of Finland for ICT 2023 Proj-
ect under Grant 328115, in part by Academy Professor Project Emotion Al
under Grants 336116 and 345122, in part by Project MiGA under Grant
316765, and in part by Infotech Oulu.

(Corresponding author: Guoying Zhao.)

Recommended for acceptance by |. M. Solomon.

Digital Object Identifier no. 10.1109/TPAMI.2021.3136921

designed for grid data, thus not necessarily providing the
most powerful or meaningful geometrical representations for
structured data in a non-euclidean space. Typically, the non-
euclidean spaces including the elliptic space (a sphere) with a
constant positive curvature [25] and the hyperbolic space
with constant negative (sectional) curvature [26] should be
considered. Neural networks in the elliptic space [27], [28],
[29], [30], using spherical harmonic transform or Laplacian-
based graph convolution, have been successfully applied to
spherical signals. Analogous to this, there is a strong expecta-
tion to construct neural networks in the hyperbolic space for
data possessing hierarchies, as hierarchies can be represented
in such space with low distortion [31].

Apart from the structured data, the underlying relation-
ships between regular samples and important developmental
progresses can be also modeled by hierarchy in the hyperbolic
space. From the perspective of cognitive science, it is widely
accepted that human beings use hierarchy to organize
actions [32] and object categories [33], [34], [35]. An interesting
study [36] finds that both natural odors and human perceptual
descriptions of smells can be described using a three-dimen-
sional hyperbolic space. In single-cell analysis, the cell devel-
opmental processes show strong hierarchical relationships
and can be described by a hyperbolic space [15]. Zhou et al.
[37] also found that genetic variation and their expression can
be modeled by a low-dimensional hyperbolic geometry. Inter-
estingly, current study [16] even finds that the features of mini-
ImageNet [38] and CIFAR [39], which are learned in the
euclidean space using neural architectures like VGG [40],
Inception [41], and Resnet [21], have apparent hyperbolic
properties. Therefore, it is necessary and advantageous to con-
struct hyperbolic deep neural networks (HDNNSs) to efficiently
deal with far more complex irregular data, and interpret and
reason more complex relations beyond euclidean space, thus
producing success in the hyperbolic space [31], [42].

Recently, numerous HDNN architectures [4], [43], [44],
[45], [46], [47], [48], [49], [50] are developed to solve a variety
of different machine learning tasks. Hyperbolic spaces have
been proposed as an alternative continuous approach to
learn hierarchical representations for data from textual [51],
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[52], [53] and graph-structured data [46], [48], to biology [15],
[37] and images [16], [54]. The reason for this interest is that
the hyperbolic metric approximates the exponential expan-
sion of possible states of the system described by a hierarchi-
cal tree-like process. The negative-curvature of the hyperbolic
space results in drastically different geometric properties,
which makes the circle circumference (2sinhr) and disc area
(27(coshr — 1)) grow exponentially with radius r, as opposed
to the euclidean spaces where they only grow linearly and
quadratically. Therefore, hyperbolic spaces have recently
gained momentum to model data in the space that exhibits
certain desirable geometric hierarchical characteristics. To
summarize, there are several potential advantages of utilizing
hyperbolic deep neural networks to represent data:

e A better generalization capability of the model, with
less overfitting, computational complexity, and
requirement of training data.

e Reduction in the number of model parameters and
embedding dimensions.

e A low distortion embedding, which preserves the
local and global geometric information.

e A better model understanding and interpretation,
which can provide a conformal mapping to euclidean
space such that it is friendly to down-stream tasks.

Although constructing neural networks in hyperbolic
spaces has gained considerable attention recently, this is an
extremely challenging task as euclidean neural operators will
not consistently work in the space. Generalizing euclidean
operations, from basic arithmetic operations, e.g., additions
and multiplications, to neural operators like convolutions
and poolings, to the hyperbolic space is also arduous. To the
best of our knowledge, a survey of hyperbolic deep neural
networks does not exist in this field. This article makes the
first attempt and aims to provide a comprehensive review of
the literature around hyperbolic deep neural networks for
machine learning tasks. Our goals are to 1) provide a concise
context and explanation to enable the reader to become famil-
iar with the basics of hyperbolic geometry, 2) review the cur-
rent literature related to algorithms and applications about
hyperbolic deep learning, and 3) identify open questions and
promising future directions.

The article is organized as follows. In Section 2, we intro-
duce the fundamental concepts about hyperbolic geometry,
making the paper self-contained. Section 3 introduces the
generalization of important euclidean neural components to
the hyperbolic space. We then review the constructions for
hyperbolic deep neural networks, including building net-
works on two commonly used hyperbolic models, Lorentz
Model and Poincaré Model in Section 4. In Section 5, we
describe applications for testing hyperbolic deep neural net-
works and discuss the performance of different approaches
under different settings. Finally, in Section 6 we identify
open problems and possible future research directions.

2 HyPERBOLIC GEOMETRY

2.1 Mathematical Preliminaries

Manifold. A manifold M of dimension n is a topological
space of which each point’s neighborhood can be locally
approximated by the euclidean space R".
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Tangent Space. For each point z € M, the tangent space
7T, M of M at z is defined as an n-dimensional vector-space
approximating M around z at a first order.

Riemannian Metric. The metric tensor gives a local notion of
angle, length of curves, surface area, and volume. For a mani-
fold M, a Riemannian metric g is a smooth family of inner
products on the associated tangent space: (-,-), : 7, Mx
T,M — R. A given smooth manifold can be equipped with
many different Riemannian metrics.

Riemannian Manifold. A Riemannian manifold [55] is then
defined as a manifold equipped with a group of Rieman-
nian metrics g, which is formulated as a tuple (M, g) [56].

Geodesics. Geodesics is the the generalization of a straight
line in the euclidean space. It is the constant speed curve giv-
ing the shortest (straightest) path between pairs of points.

Exponential Map. The exponential map takes a vector
v € T, M of a point x € M to a point on the manifold M,
ie, Exp, : 7,M — M by moving a unit length along the
geodesic uniquely defined by yp(0) =x with direction
¥ (0) = v. Different manifolds have their own way to define
the exponential maps. Generally, this is very useful when
computing the gradient, which provides update that the
parameter moves along the geodesic emanating from the
current parameter position.

Logarithmic Map. As the inverse of the aforementioned
exponential map, the logarithmic map projects a point z € M
on the manifold to the tangent space of another point x € M,
which is Log,, : M — 7, M. Like the exponential map, there
are different logarithmic maps for different manifolds.

Parallel Transport. Parallel Transport P7,_., from vector
u € M tov € M defines the transporting of the local geome-
try along smooth curves that preserves the metric tensors. It
is a map from tangent space 7, M to 7, M that carries a
vector in 7, M along the geodesic from u to v.

Gromov 8-Hyperbolicity. Gromov 8-hyperbolicity [57], [58]
is used to evaluate the hyperbolicity of a dataset/space. Nor-
mally, it is defined under four-point condition, say points
a,b, c,v. A metric space (X, d) is §-hyperbolic if there exists a
8 > 0 such that these four points in X: (a,b), > min{(a,c),,
(b,¢),} — 8, where the (,), with respect to a third point v is
the Gromov product [31] of two points and it is defined as
(a,b), = 3(d(a,v) 4 d(b,v) — d(a, b)) with d(, ) as the distance
function. For instance, euclidean space R" is not §-hyper-
bolic, Poincaré disc (B?) is (log3)-hyperbolic.

2.2 Isometric Models in the Hyperbolic Space

The five isometric models [59], [60], i.e., the Lorentz (Hyper-
boloid) model, the Poincaré ball model, the Poincaré half
space model, the Klein model, and the Hemishpere model,
are the well-known models of hyperbolic space.! They are
embedded sub-manifolds of ambient real vector spaces. We
detail the most commonly used three models, i.e., the Lor-
entz, Klein, and Poincaré models, as illustrated in Fig. 1, for
constructing hyperbolic deep neural networks. Please refer
to the Appendix, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2021.3136921, for more details about the
other models.

1. We introduce models with constant sectional curvature of —1.
This can be easily generalized to other (negative) curvatures.
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Fig. 1. lllustration of Klein model (left two) and Poincaré model (Right two) in the hyperbolic space. Leftmost: the relationships between Lorentz model
and Klein model. We provide the examples of ’straight line’ in Klein model (Second from the left). Rightmost: the Poincaré model and the examples of
’straight line’ in it. Its relationship with Lorentz model is provided in the second from the right.

2.2.1 Lorentz Model

The Lorentz model L" of an n dimensional hyperbolic space
is a manifold embedded in the n + 1 dimensional Minkow-
ski space. The Lorentz model is defined as the upper sheet
of a two-sheeted n-dimensional hyperbola with the metric
g", which is

L"={z=(2"...,2") e R"™ : (z,2), = —1,2" > 0}, (D

in which the (, ), represents the Lorentzian inner product

(@, y), =2 gy =—2"' +> 2y, wandyeR", (2
=1

where g is a diagonal matrix with entries of 1s, except for
the first element being -1. For any z € L", we can get that

2% = y/1+ 3, (#7)*. The distance in the Lorentz Model is

defined as
d(z,y) = arcosh(—(z, y),)- @)

The main advantage of this parameterization model is
that it provides an efficient space for Riemannian optimi-
zation. An additional advantage is that its distance func-
tion avoids numerical instability, when compared to
Poincaré model, in which the instability arises from the
fraction.

2.2.2 Klein Model

Klein model is also known as the Beltrami-Klein model,
named after the Italian mathematician Eugenio Beltrami and
German mathematician Felix Klein. The Klein model of
hyperbolic space is a subset of R". Asillustrated in Fig. 1. Itis
the isometric image of the Lorentz model under the stereo-
graphic projection [60]. The Klein model is obtained by
mapping z € L™ to the hyperplane 2 = 1, using rays ema-
nating from the origin. Formally, the Klein model is defined
as

K" = {z €R": [jz]| < 1}. (4)

The distance is

1- <l’,y>

(5)
V=12~ Iyl

d(z,y) = arcosh | 1+

A straight line, e.g., line AB in the second figure from the
left of Fig. 1, in Klein model is an intersection of a plane
with the disk, thus it is still straight like in euclidean space.
Therefore, Klein model is commonly used to compute the
middle point. This model is not conformal to the euclidean
model, which means that angles and circles are distorted,

2.2.3 Poincaré Model

The Poincaré model, as shown in Fig. 1, is given by projec-
ting each point of L" onto the hyperplane z° = 0, using the
rays emanating from (-1, 0,..., 0). The Poincaré model B is a
manifold equipped with a Riemannian metric g®. This met-
ric is conformal to the euclidean metric g” = I with the
conformal factor A, = m, and g® = \2g”. Formally, an n

dimensional Poincaré unit ball (manifold) is defined as

B" = {z e R" :[[z]| <1}, (6)

where || - || denotes the euclidean norm. The distance between
x,y € B" is defined as
2
T —
=~ ol > . -

(1=l (X~ lIylP*)

d(x,y) = arcosh (1 +2

As illustrated in Fig. 2, the left one compares the hyper-
bolic distance between two points (curves in blue) with that
in the euclidean space (lines in black). Like in the left line
group, given a constant hyperbolic distance 0.7, the corre-
sponding euclidean distances decrease dramatically when
the points approach the unit boundary. On the contrary, as
shown in the right line group, when fix the euclidean dis-
tance to 0.36, the hyperbolic distances grow significantly
when the points are closed to the border. The hyperbolic
distance d(z,y) =~ 2||z — y|| when both z and y are closed to
the origin with zero norms, which means the model resem-
bles euclidean geometry near the center. As the points
move away from the origin and approach the border, the
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Fig. 2. lllustration of Poincaré Disk (2D Poincaré model), Left: the distan-
ces comparison between euclidean space (in black) and hyperbolic space
(in blue). Right: an example of modeling a tree using hyperbolic model.

norms are close to one and the distance grows exponen-
tially [61]. As a comparison, for a regular tree with branch-
ing factor b, there are (b+ 1)b'"! nodes at level I. The
number of nodes in this tree grows exponentially when the
tree goes deeper. Therefore, this exponential growing prop-
erty of hyperbolic space fits very well with the depth
increasing in the tree. Besides, when both z and y are
approaching the boundary, the distance between z and y
can be d(z,y) = d(O, z) + d(O, y), which means the shortest
path between = and y approaches the path through the ori-
gin O. From the definition of Gromov-product [61], we
know that such data has a very small § value of the Gromov
8-hyperbolicity. This is analogous to the property of trees in
which the shortest path between two sibling nodes is the
path through their parent. Therefore, the Poincaré disk is
very suitable for modeling a tree [62], as shown in the right-
most of Fig. 2.

Since they are isometric models in the hyperbolic space,
they can be transferred between each other by mapping
functions. Fig. 1 provides the visualizations of their relation-
ships. For Lorentz and Poincaré models, the map can be
described as

1 "

B". 8
o ,1+$0)e ®)

Likewise, the Klein model can be transferred from Lorentz
model by the projection

xz(mo,...,xTZ)EL7l<:><

1 n
I:(IEU,...,JJII)EL,L@(F,...,F)GK”. (9)

3 GENERALIZING EUCLIDEAN OPERATIONS TO THE
HYPERBOLIC SPACE

Although the use of hyperbolic embeddings (first proposed
by Kleinberg et al. [63]) in machine learning was already
introduced early in 2007, only recently there are methods
being extended to deep neural networks. Traditional euclid-
ean neural networks heavily depend on locality, thus cannot
directly be applied to hyperbolic space. Fundamental neural
operations like linear projection, average pooling, and fea-
ture concatenation, will not work, as the outputs would not
necessarily lie in the manifold. Therefore, generalizing
euclidean operations to the hyperbolic space plays a key
role in constructing hyperbolic neural networks.
Constructing deep neural networks in the hyperbolic
space is not as easy as it is on the euclidean space. One of the
most crucial reasons is that it is the non-trivial or impossible
principled generalizations of basic operations, e.g., vector
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addition, matrix-vector multiplication. Work [43] provides a
pioneer study of how classical euclidean deep learning tools
can be generalized to the hyperbolic space. Fueled by this,
many current works generalize various deep learning opera-
tions as it is the key step towards to hyperbolic deep neural
networks. In this section, we review the research literature
which is trying to generalize operations, e.g., basic addition,
mean and neural network layers, to the hyperbolic space.

3.1 Basic Arithmetic Operations

Basic mathematical operations, like addition and multiplica-
tion, are fundamental components of neural networks. They
are everywhere in the neural network components, like in
convolutional filters, fully connected layers, and activation
functions.

One simple way to perform these computations is to
approximate them by employing the tangent space. How-
ever, as observed in some works [47], [64], the approxima-
tion in the tangent space can have a negative impact on the
learning process. Specifically, the procedures follow a mani-
fold-tangent manifold scheme, basically by transforming
features between hyperbolic spaces and tangent spaces via
the logarithmic and exponential maps, in which the loga-
rithmic and exponential maps require a series of hyperbolic
and inverse hyperbolic functions. However, the mapping
between the manifold and the tangent space is only locally
diffeomorphic, which may distort the global structure of the
hyperbolic manifold [65], [66]. Besides, the compositions of
these functions are complicated and usually range to infin-
ity, significantly weakening the stability of models.

Another good choice is the Gyrovector space [67], which
is a generalization of euclidean vector spaces to models of
hyperbolic space based on Mobius transformations. Specifi-
cally, for a model B, the Gyrovector space provides a non-
associatitative algebraic formulation for studying hyper-
bolic geometry, in analogy to the way vector spaces are
used in euclidean geometry. In the Gyrovector space, the
Mobius addition @ for x and y in model B is defined as

(L+2(z,9) + Iyl + (1 — [l2])y
1+ 2(z,y) + ||l*[|y]I?

rdy= (10)

This is a generalization of the addition in euclidean
space. @y will recover to x 4+ y when the curvature goes
to zero. In addition, the Mobius subtraction © is simply
definedas:z ©y =2 ® (—y).

Then the Mobius scalar multiplication @ is defined as

r®T= {tanh(rartanh(HxH) m TEB 11)
0, r =0,

where 7 is a scalar factor. In fact, all above-mentioned opera-
tions can also be conducted in the tangent space by using
the exponential and logarithmic maps. As provided by [44],
the Mobius scalar multiplication can be obtained by projecting
2 in the tangent space at 0, multiplying this projection by
the scalar r in the tangent space. Then projecting it back on
the manifold with the exponential map, which means

r ® x = Expy(rLogy(z)). (12)
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With a similar strategy, the authors derived the Mobius
vector multiplication M®(x) between the matrix M and input

x, which is defined as
Mz
z|]) | ——.
(el)) fagen

Based on the Mobius tranformations, the authors [43] also
derived a closed-form expression of Mobius exponential
and logarithmic maps for the Poincaré model. For a vector
v€ T, M in the tangent space, the exponential map is
defined as

Aclo][ v
Exp, (v) :xEB( tanh ( — |,
2/ |l

and as the inverse operation of the exponential map, for a
point y € B" on the manifold, the logarithmic map is defined
as

M®(x) = tanh (HH |||| actanh (13)

(14)

-z Py

—, (15)
|| =2yl

2
Log, (y) = y~artanh(|| — 2 @ y])

where )\, is the conformal factor, as mentioned in

Section 2.2.3.

3.2 Mean in the Hyperbolic Space
The simple but valuable mean computation is one of the most
fundamental operations for machine learning approaches.
For example, it can be used to build the batch normaliza-
tion [68] and average pooling [41] in deep neural networks, as
well it can be employed to learn the latent distribution, e.g., in
variational Auto-Encoder [69], [70], of data (feature). The
weighted average counts much for information aggregation
in graph convolutional networks (GCNs) [71]. However,
unlike in the euclidean space, the mean computation cannot
be conducted simply by averaging the inputs, which may
lead to a result out of the manifold. Basically, the primary
approaches to generalize the mean to hyperbolic space
are tangent space aggregation [47], Einstain midpoint
method [44], and the Fréchet mean method [64].
Tangential aggregations is one of the most straightforward
ways to compute the mean in the hyperbolic space. Gener-
ally, the mean aggregation u in euclidean is defined as a
weighted average on the involved neighbors, N/ (i), of a cen-

ter i, which is
w= Z w;T;.
JEN (i)

(16)

However, directly utilizing Eq. (16) in the hyperbolic space
is not reasonable since the resulting average may be out of
the manifold. Work [47] turns to the tangent space and an
attention based aggregation is proposed to compute the
aggregated information. Specifically, given the correspond-
ing hyperbolic feature representation, one can compute the
attention weights w; first, then the mean (aggregated infor-
mation) u is

u = Exp, Z w;Log, (x;) an

JEN (i)
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Work [44] proposes to compute it with Einstein midpoint.
Einstein midpoint is an extension of the mean operation to
hyperbolic spaces, which has the most concise form in the
Klein coordinates. The Einstein midpoint of N samples is
defined as

N
Zi:l ViTi

p= stV as)
Zi:1 Vi
in which the z; is the i-th sample represented using coordi-

nates in Klein model. The y; = are the Lorentz fac-
_ im ,” il
tors. One can easily execute mldpomt computations by

simply projecting to the Klein model from various models
of hyperbolic space since all of them are isomorphic. For
instance, from Egs. (8) and (9), the transition between the
Poincaré (x]B) and Klein (rg) models can be derived as
TR = —|2 Therefore, based on the Einstein midpoint in

1+||
Eq. (18), we can get the mean in Poincaré model as

w

Up = (19)

1+ 4/1—[|ulP

There is also a closed-form expression for Poincaré
model to compute the average (midpoint) in the Gyrovector
spaces. Work [72] defines a gyromidpoint, which is

1 N apy;
m(zay, .. T) @) = 2@ (ZM%)) ,

i—1 2j=1 ai(y; —
(20)

Wlth()l— ((X17...7
Vi =

ay) as the weights for each sample z(;y and

T

ReHcenHtly, using the Fréchet mean [73], Luo et al. derives a
closed-form gradient expression for the mean on Rieman-
nian manifolds [64]. There are considerable years for gener-
alizing euclidean mean in non-euclidean geometries [73],
using Fréchet mean. However, the Fréchet mean does not
have a closed-form solution, and its computation involves
the argmin operation that cannot be easily differentiated.
Besides, as mentioned by work [64], computing the Fréchet
mean relies on some iterative solvers, which is computation-
ally inefficient, numerical unstable thus not friendly to deep
neural networks. Therefore, the authors derived an optimi-
zation objective for mean (and variance) computation in the
hyperbolic space, which is

l,l,f = a/rgln’l%/a* E a .T“ 5 (21)
== ]ll - E d iy MU 22
/LGM x ( )

However, the general formulation of Fréchet mean
requires an argmin operation and offers no closed-form
solution, thus both computation and differentiation are
problematic. Inspired by work [74], the authors provided its
generalization which allows to differentiate the argmin
operation on the manifold. Therefore, they provided their
closed-form of the Fréchet mean.
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Based on the aforementioned various ways to compute
the mean, fundamental neural components, e.g., average
pooling layer, batch normalization layer, can be constructed.

3.3 Concatenation and Split Operations
Concatenation and split are commonly used in current deep
neural networks, e.g., feature fusion in multimodal learning,
operations like GCN filters, and attention mechanism [23].
Simple as they are, they cannot directly be applied in the
hyperbolic space as the operations are not manifold pre-
serving ones. For example, points (0.99,0) and (0,0.99) are
both on the Poincaré disk. However, the resultant point
(0.99,0,0,0.99) from concatenation are surly not on a
Poincaré model as its norm is larger than one. Therefore,
new approaches should be provided for concatenation and
split in the hyperbolic space.

As previously described operations, the hyperbolic con-
catenation and split can be obtained by using the tangent
space. Specifically, for an n-dimensional feature embedding
x € B" (Note this can be easily generalized to other hyper-
bolic models) in the hyperbolic space, it can be split into NV
feature representations V

V={v eR™, ... ;oy € R"™} = Log,(z), (23)
subject to S° n; = n. Then, the tangent vector can be
mapped to the hyperbolic space using the exponential map.
Likewise, for IV parts feature representation V' in the hyper-
bolic space, the tangent space can also be used to perform
concatenation, which is

x = Exp,(Log,(v1)|Logy(ve), - - -, |Logy(vn)), (24)

where | denotes the concatenation operation in the tangent
space and v; represents one feature in the hyperbolic space.

However, as pointed out by work [4], merely splitting the
coordinates will lower the norm of the output Gyrovectors,
which will limit the representational power. Therefore,
work [4] proposes a g-split and g-concatenation, as an anal-
ogy to the generalization criterion in euclidean neural
networks [75].

The B-split and S-concatenation provided by [4] intro-
duce a scalar coefficient 8, = B(%,1), where B is the Beta
distribution. With this scalar coefficient, the tangent vectors
are scaled before being projected back to the hyperbolic
space. Therefore g-split is

V = {Expy(B,, B, ' v1), - - Expo (B B, ow) }- (25)
For the B-concatenation
z = Expy(B,8, 011B By vt - s |BuBuritn). (26)

Work [43] presents another way to perform vector concate-
nation in the hyperbolic space, by introducing linear projection
functions based on the Mobius transformations. Specifically,
for a set of hyperbolic representations {z; € B™, ...,ay €
B"~}, a group of projection functions {M; € B™™, ..., My €
B""¥ } is introduced. Then the concatenated result is

=M ®1P,..., DMy @ zN. 27)
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However, compared to the previous § methods, this one
applies the Mobius transformations (addition and multipli-
cation) many times, as mentioned by [4], which incurs a
heavy computational cost and an unbalanced priority in
each input sub-Gyrovector.

3.4 Fully-Connected Layers

Fully-connected layer (FC), or linear transform layer,
defined as y = Ax + b, is also one important component of
deep neural networks, in which all inputs from one layer
are connected to every activation unit of the next layer.
With analogy to euclidean FC layers, works [4], [43] general-
ized it to the hyperbolic space. In work [43], fully-connected
layers are constructed by Matrix-vector multiplication

y=A®z®b=Exp,(ALogy(z)) & b. (28)
Here, the bias translations can be further conducted by
Mobius translation, which first maps the bias to the tangent
space of origin and then parallel transports it to the tangent
space of the addend, finally maps back the result to the
manifold, which means

A
260 = Bxpy(PTo-.(Log(0) = Bxp, (3 Low®) ).

(29)

in which ), is the conformal factors defined in Section 2.2.3.
However, work [4] points out that with the Mobius transla-
tion, such a surface is no longer a hyperbolic hyperplane.
Besides, the shape of the contour surfaces is determined
since the norm of each row vector a;, and bias b contribute
to the total scale and shift. To deal with this problem,
work [4] provides a Poincaré FC layer based on a linear
transformation. They argued that the circular reference
between a; and ¢, can be unraveled by considering the
tangent vector at the origin, z;, € 7(B", from which ay, is par-
allel transported. In this way, a new linear transformation is
formulated as

vp(x) = 2||21||arsinh ()\,,;(z,ﬁ)cosh(%k) - (N — l)sillh(%k))7
2,

(30)

where z;, is the generalization of the parameter a; in A.
Based on this, they provided their FC layer, which is

yo v

14+ 4/1+ [Jw|]?

(31)

where w = (sinh(vi(z))). In this way, we avoid using the
tangent space to approximate the hyperplane such that can
more properly make use of the hyperbolic nature.

3.5 Convolutional Neural Network Operations

There is limited research about convolutional layers in this
space. Work [16] proposes to address the common com-
puter vision tasks, e.g., image classification and person re-
identification, using hyperbolic geometry. However, only
the decision hyperplanes are established in the hyperbolic
space. Thus, the authors did not generalize CNN to hyper-
bolic space.
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Basically, the generalization of a CNN can also be simply
conducted by using the tangent space. However, as pointed
out by [46], stacking multiple CNNs in the tangent space
may collapse to a vanilla euclidean CNN. This is because
the exponential map at kth layer would have been cancelled
by the logarithmic map at next layer. This can be avoided
by either applying activation function after the exponential
map or adding bias b using the parallel transport.

However, the advantages of hyperbolic geometry may not
be well adapted if only using the tangent space. Work [4] pro-
vides a novel method to bridge this gap. By using the g-con-
catenation and the Poincaré fully-connected (FC) layer, the
authors presented a method to build the convolutional layer.
In particular, given a C-channel input tensor z € B®"W>*# on
the Poincaré ball, for each of the W x H feature pixels, the
representations in the reception field of a convolutional filter
with size K are concatenated into a single vector = € B"¥,
using the p-concatenation. Then naturally, a Poincaré FC
layer, which will be detailed in Section 3.4, can be employed
to transfer the feature on the manifold. Let C’ be the output
channels of the CNN layer, then there will be o groups of
such transformations.

3.6 Recurrent Neural Network Operations
Recurrent neural networks (RNNs) [76], [77] are commonly

used in sequence learning tasks. Formally, a RNN can be
defined by

hprl = S(th + U.T}f, + b), (32)
where h;y; is the hidden state of the next step, which is
updated using the current hidden state ; and input z;. § is
a non-linear function. W and U are learnable parameters,
and b is the corresponding bias. Work [43] generalizes the
RNN to the hyperbolic space, leveraging the Mobius opera-
tions in Gyrovector space. The RNN in the hyperbolic space
can be defined by

hi1 =W h +U®ax; ®©b), (33)

where @ and ® are the generalization of original + and x in
Gyrovector space, as defined in Section 2. The authors also
extended the same idea into the gated recurrent unit (GRU)
architecture [78], with the same strategy.

Existing works are limited to the Poincaré model with the
corresponding operations defined in the Gyrovector space.
However, these kinds of operations are always costly when
compared to the euclidean counterparts. Future works can
explore more efficient ways and extend to other hyperbolic
models.

3.7 Activation Function

Activation function provides a non-linear projection of the
feed-in features such that much richer semantic representa-
tion can be learned. The expected activation function for
hyperbolic model should be the non-linear function which
as well preserve the manifold. Fortunately, for some hyper-
bolic models, e.g., Poincaré and Klein models, the manifold
is defined only by the norm constraints. Therefore, the acti-
vation function is manifold preserving once it is a norm
decreasing operation. Hence, any pointwise euclidean acti-
vation functions which do not increase the norm can be
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directly applied to these models. For example, Liu ef al. [46]
directly applied the norm decreasing ReLU [79] and leaky
ReLU [80] activation functions in the Poincaré model. How-
ever, manifold preserving activation functions are different
for different manifolds. For Lorentz model, as the origin in
Poincaré model is the pole vector in Lorentz model, these
activation functions cannot be applied as they will depart
the point away from the manifold. As Lorentz model is iso-
metric to Poincaré model, work [46] maps the point from
Lorentz model to Poincaré model, conducts the above men-
tioned euclidean activation functions, and then maps fea-
ture back to the original model.

Ganea et al. proposed a Mobius version of projection func-
tion [43], which can also be employed to activation functions.
In particular, for a function f : R" — R, its Mobius version
f¥is

£2 () = Expy(£(Logy (). (34)
The authors utilized the tangent space of the origin to per-
form the function f. A hyperbolic activation function can be
also realized by this way, in which case, the input dimension
n is equal to the output dimension m. Following the same
idea, work [47] provides a similar activation function for
graph convolutional networks. The only difference is that
they considered the curvatures of different layers. Thus, the
logarithmic map and exponential map are defined at the
point origins in the manifold with different curvatures.

Interestingly, work [4] removes the activation functions,
since the authors thought that the operation on the manifold
itself is non-linear, which obviates the need for activation
functions.

3.8 Batch Normalization

Batch Normalization (BN) [68] limits the internal covariate
shift by normalizing the activation of each layer. It is com-
monly used to speed up the training procedure of neural
networks, as well as to make the training process more sta-
ble. The basic idea behind is normalizing of the feature rep-
resentations by re-centering and re-scaling. Specifically,
given a batch of m data-points, The BN algorithm will first
compute the mean p of this batch. Based on u, the mini-
batch variance o is also computed. Then, two learnable
parameters are introduced, which are the scale parameter y
and the shift parameter g. The input activation x is then re-
centered and re-scaled, which is y = yz + B. Theoretically,
this BN operation can be easily generalized to the manifold
via transferring to the tangent space. Work [64] provides an
alternative based on Fréchet mean [73]. In particular, the
authors formulated the Riemannian extension of the stan-
dard euclidean Batch Normalization by a differentiable
Fréchet mean, as described in Section 3.2.

3.9 Classifiers and Multiclass Logistic Regression
lassifier is an essential component for classification tasks.
In the context of deep learning, multiclass logistic regres-
sion (MLR) or softmax regression is commonly used to
perform multi-class classification in euclidean space. For-
mally, given K classes, MLR is introduced to predict the
probabilities of each class k € {1,2,3,..., K} based on the
input representation x
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ply =k,z) < exp ({(ak,z) —b), (35)
where a; denotes the normal vector and b € R is the sca-
lar shift. Then, the decision hyperplane determined by
a € R"\{0} and b is defined by H,;, = {z € R": (a,z)—
b=0}. Note that exp is the exponential function, not
the manifold map function Exp. According to [81], the
MLR can be reformulated as

ply =k, x) <exp (sign({ar, z) — b)||ak||d(x, Happ,))s
(36)

where d(x, Hq,3,) is the euclidean distance between z and
the hyperplane H,, ;,. To further generalize it to the hyper-
bolic space, work [43] re-parameterizes the scalar term b € R
with a new set of parameters p; € R", by which they refor-
mulated the hyperplane: H,, = {x € R": (a,z — p) = 0},
and H ap = H a,(a,p)- IN this way, the MLR is rewritten as

ply=k.x) ccexp (sign({ar, z —pr))llarlld(z, Hapy)).
(37

Then, the definition of the hyperbolic setting is simply
achieved by replacing the addition + with Mobius addition .

However, this causes an undesirable increase in the
parameters from n + 1 to 2n in each class k. As pointed out
by [4], there is no need to introduce countless choices of py
to determine the same discriminative hyperplane. Instead,
they introduced another scalar parameter r;, € R such that
the bias vector g, ,, = Tku((ﬁ parallels to the normal vector
ay. That is

Hak.,rk. = {‘T € Rn|<ak7 —Gay,ry, + $> = 0} = Hak,rkHak.H-

(38)
Based on this, the MLR is reformulated as

p(y = k, ) o< exp(sign({ar, —Gayr, + T))||ak||d(T,fIaka))
(39)

In addition to the MLRs in the hyperbolic space, there are
also works constructing classifiers in this space. Work [82]
introduces a hyperbolic formulation of support vector
machine classifier (H-SVM). Work [83] provides theoretical
guarantees for learning a SVM in the hyperbolic space.
Besides, an efficient strategy is introduced to learn a large-
margin hyperplane, by the injection of adversarial examples.
Please refer to Appendix, available in the online supplemental
material, for more details.

3.10 Optimization

Optimizer plays a crucial role in training deep neural net-
works. It largely influences the convergence of the training
process, the training speed, and the final predictive perfor-
mance. Therefore, generalizing optimizers to hyperbolic
space is as important as constructing hyperbolic neural
architectures [84]. In terms of stochastic optimizers on Rie-
mannian manifolds, one pioneer work should be the Rie-
mannian stochastic gradient descent (RSGD), provided by
Bonnabel et al. [85]. They pointed out that for the standard
stochastic gradient descent in R", seeking the matrix with
certain rank, which best approximates the updated matrix,
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can be numerically costly, especially for very large parame-
ter matrix. To enforce the rank constraint, a more natural
way is to endow the parameter space with a Riemannian
metric and perform a gradient step within the manifold of
fixed-rank matrices. To address this issue, they proposed to
replace the usual update in SGD using an exponential map
(Exp) with the following update:

Wi = Expy, (—agr), (40)

where g; € Ty, M denotes the Riemannian gradient of the
objective at point W;. The provided algorithm is completely
intrinsic, which does not depend on a specific embedding of
the manifold or on the choice of local coordinates. For mani-
folds where Exp function is not known in a closed form, it is
common to replace it with a first order approximation [86].

Current deep learning optimization approaches prefer
adaptive strategies, e.g., Adagrad [87] and Adam [88], which
dynamically incorporates knowledge of the geometry of the
data observed in earlier iterations to perform more informa-
tive gradient-based learning. Although the input data is with
very high dimension, useful features have very different fre-
quencies. When the gradient vectors are sparse, the update of
the neural network can often be performed in time propor-
tional to the support of the gradient. One of the current chal-
lenges of generalizing the adaptivity of these optimization
methods to hyperbolic space is that the manifold does not pro-
vide an intrinsic coordinate system, while Riemannian mani-
fold only allows to work in a certain local coordinate systems.
Therefore, it is non-trivial to extend the optimizers to hyper-
bolic space in an intrinsic manner (coordinate-free). Suggested
by [89], one solution can be fixing a canonical coordinate sys-
tem in the tangent space and then parallelly transporting it
along the optimization trajectory. However, general Rieman-
nian manifold depends on both the chosen path and the cur-
vature, which will give the parallel transport a rotational
component (holonomy). This will break the gradient sparsity
and thus harm the benefit of adaptivity. For instance, imagin-
ing the vector z is initially sparse, e.g., z = (2.5, 0, 0), with the
parallel transport, the vector may be rotated and thus has
other components z = (1.2,0.4,0.1), which definitely brakes
the coordinate-wise updates and sparsity.

To avoid such problem, work [89] represent a n-dimen-
sional manifold M by a Cartesian product of n manifolds,
which means M = M; x --- x M,,. Based on this, the
authors provided the Riemannian Adagrad, which is
defined by

Wi = EXPWQ(_‘X%) (41)
i Olgi
WT,+1 = EXpVV; L—tlQ (42)
Zk-:l ||gk||rz

where the ||g;||% = (g}, g}) is a Riemannian norm. They
'k, ’ .

further extended it to Riemannian Adam by introducing the

momentum term and an adaptive term.

4 HypPeRBoLIC DEEP NEURAL NETWORKS

Overwhelming number of studies using deep neural net-
works [17] ranging from convolutional neural networks
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TABLE 1
Summary of the Advanced Machine Learning Methods in the Hyperbolic Space
Method Year Architecture Tasks G. Institution Source
PEmbedding [103] 2017 Embedding NLP and Graph B Facebook NeurIPS
Coalescent [102] 2017 Embedding Graph B TU-Dresden Nature
HyperGraph [108] 2017 Embedding Network Vertex Classification B ICL MLG W
TextHyper [52] 2018 AE(GRUs) Text Embedding B Google NAACL W
h-MDS [109] 2018 Embedding Tree and tree-like data modeling B Stanford PMLR
HyperQA [110] 2018 Encoder-Decoder Neural Question Answering B NTU WSDM
HyperCone [111] 2018 Embedding NLP and Graph B ETH Ziirich ICML
HNN [43] 2018 RNN NLP(textual entailment and noisy prefixes) B ETH Ziirich NeurIPS
Lorentz [45] 2018 Embedding Taxonomies Embedding, Graph and Historical Linguistics L Facebook ICML
HyperBPR [112] 2018 BPR [113] Recommender Systems B NTU AAAI
ProductM [114] 2018 Embedding Tree(with Cycle) Mixed Stanford ICLR
HAN [44] 2019 Attention Module Graph, Machine translation and Relational Modeling L(K) Deepmind ICLR
HGCN [47] 2019 GNN Graph L Stanford NeurIPS
PGlove [51] 2019 Glove [105] Word Embedding Mixed ETH Ziirich ICLR
HGNN [46] 2019 GNN Graph B,L Facebook NeurIPS
Tiling [106] 2019 Tiling NLP and Compressing L Cornell NeurIPS
PTaxo [115] 2019 Embedding Taxonomy Induction B U. Hamburg ACL
H-SVM [83] 2019 SVM NLP(Word E) Graph (Node C) B MIT AISTATS
H-Recom [12] 2019 BPR Recommender Systems L ASOS CoRR
MuRP [116] 2019 Bilinear knowledge Graph B U. Edinburgh NeurIPS
RAO [90] 2019 Optimizor NLP B ETH Ziirich ICLR
WrapN [117] 2019 VAE NLP,MNIST and Atari trajectories B U.Tokyo ICML
LDistance [118] 2019 Embedding NLP B U. Toronto ICML
PVAE [119] 2019 VAE NLP, and MNIST B Oxford NeurIPS
CCM-AAE [120] 2019 AE MNIST C, Graph Mixed U.Lugano ASOC
HWAE [54] 2019 VAE G MNIST, Graph and Tree B ETH Ziirich -
gHHC [121] 2019 Clustering Clustering ImagNet, Multi-Task B U. Mass KDD
HGAT [122] 2020 GNN Graph B BUPT AAAT
H-STGCN [48] 2020 GNN Skeleton Action B U. Oulu ACM MM
HyperKG [14] 2020 Translational Knowledge Graph B EPFL ESWC
HyperML [123] 2020 Metric Learning Recommender Systems B NTU WSDM
LorentzFM [124] 2020  Triangle Inequality Recommender Systems B eBay AAAIL
APo-VAE [53] 2020 VAE NLP (dialog-response generation) B Duke -
H-Image [16] 2020 Embedding Image c, few-shot B SIST CVPR
HyperText [125] 2020 RNN NLP(text classification) B Huawei EMNLP
«k-GCN [49] 2020 GNN Graph Mixed ETH Ziirich ICML
FMean [64] 2020 GNN Graph B Cornell ICML
H-NormF [126] 2020 Norm. Flow Graph B McGill ICML
k-Stereographic [127] 2020 GNN Graph Mixed SIST ICML
L-Group [128] 2020 Group jet physics L U. Chicago ICML
MVAE [129] 2020 VAE Image reconstruction and Tree systhsis Mixed ETH Ziirich ICLR
HypHC [130] 2020 Clustering Clustering(e.g., CIFAR-100) B Stanford NeurIPS
R-NormF [131] 2020 Norm. Flow Earth sciences B Oxford NeurIPS
RH-SVM [84] 2020 SVM ImageNet(Pick 2classes) L Princeton NeurIPS
TREEREP [132] 2020 Embedding Tree B U. Michigan NeurIPS
UltraH [133] 2020 Embedding Graph Mixed NVIDIA NeurIPS
GIL [134] 2020 GNN Graph B CAS NeurIPS
P-Maps [15] 2020 Embedding Biology B Facebook Nature
HNN++ [4] 2021 CNN, Transformer NLP, Clustering, Machine Translation B U. Tokyo ICLR
Hyper-gene [37] 2021 Embedding Biology B Salk Cell
scPhere [135] 2021 VAE Biology L MIT and Harvard Nature

Here, G. means the type of Geometry. Its value "Mixed’ means the methods combine more than one different geometries, i.e., euclidean, elliptic, and hyperbolic

geometries, to build the model.

(CNN) [90], recurrent neural networks (RNN) [77], [91],
graph neural networks (GNN) [71], [92] to generative models
like variational auto-encoder (VAE) [69] have showcased the
superiority of various deep neural networks in different
research tasks. With the success of all these neural architec-
tures in euclidean space, we have the reason to expect their
generalization and performance in the hyperbolic space. For-
tunately, we do observe a considerable number of research
extending such euclidean architectures to the hyperbolic
space, mainly using Poincaré and Lorentz models. This sec-
tion describes various hyperbolic deep neural architectures.
We try our best to collect and summarize all advanced hyper-
bolic machine learning methods, as illustrated in Table 1.
One can find that most of the works are from the prominent
conferences/journals, e.g., Nature, Cell, NeurIPS, ICML, and
ICLR. Besides, increasing institutions are getting into this
potential research field. From the method perspective, the

Poincaré model and Lorentz model are prominent hyper-
bolic models for generalizing neural networks. At the
same time, the former one (Poincaré model) is dominated
in the hyperbolic deep neural networks. In the following
part, we detail different kinds of hyperbolic architectures,
including hyperbolic embedding, hyperbolic clustering,
hyperbolic attention networks, hyperbolic graph neural
networks, hyperbolic normalizing flow, hyperbolic varia-
tional auto-encoder, and hyperbolic neural networks with
mixed geometries.

4.1 Hyperbolic Embeddings

Embedding [93] data into a standard space makes it possible
to use properties of the target space as additional structure in
the original dataset, and brings to front information that is
hard to detect in the raw input. Embedding has been found
relevant to a variety of subjects such as data visualization,
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network analysis, routing, localization, machine learning, sta-
tistics, biology and many others.

There have been many works [63], [94], [95], [96], [97],
[98], [99], [100] considering hyperbolic space as an alterna-
tive for various embedding tasks. Walter [94] provided a
construction of a distance preserving embedding of high-
dimensional data into the hyperbolic space for interactive
visualization. In Internet routing, Kleinberg [63] presented a
constructive proof that every finite, connected, undirected
graph has a greedy embedding in two-dimensional hyper-
bolic space, thus introducing hyperbolic geometry for greedy
routing in geographic communication networks. Later, Cvet-
kovski et al. [99] extended it to dynamic graphs, i.e., commu-
nication networks whose topology changes over time.
Similarly, Shavitt et al. [95] embedded the Internet distance
metric in a hyperbolic space and by carefully selecting the
curvature, they improved the accuracy of Internet distance
embedding. Boguna et al. [5] resolved the serious scaling lim-
itations of Internet by the embeddings of the AS (autono-
mous system) Internet topology in the hyperbolic space to
perform greedy shortest path routing. For complex net-
works, Krioukov [98] showed that heterogeneous degree dis-
tributions and strong clustering can emerge by assuming an
underlying hyperbolic geometry, thus developed a geomet-
ric framework to model complex networks using hyperbolic
space. Blasius et al. [100] constructed and implemented a
new maximum likelihood estimation algorithm that embeds
scale-free graphs in the hyperbolic space. Coalescent embed-
ding [101] was the first model-free unsupervised kernel
learning based solution for inferring the graph embedding in
the Poincaré disk.

Currently, Nickel ef al. [102] proposed to learn a Poincaré
embedding for symbolic data, while considering the latent
hierarchical structures. This work proves that Poincaré
embeddings can outperform euclidean embeddings signifi-
cantly on data with latent hierarchies, in terms of both
representation capacity and generalization ability. Follow-
ing this study, many new embedding methods in the hyper-
bolic space are proposed. They can be roughly summarized
into four categories, i.e., tangent optimized, fully Rieman-
nian optimization, numerical stable embedding, and combi-
natorially tree embedding (in Appendix, available in the
online supplemental material).

Specifically, the Poincaré embedding [102] is trying to find
embeddings © = {6;}!"_ |, where 6 € B?,||6;]| < 1 in the unit
d-dimensional Poincaré ball for a set of symbols with size of
n. Therefore, the optimization problem can be framed as
0" = argming L(0), where L(-) is a task-related loss func-
tion. For instance, in the hierarchy embedding task, the loss
function over the entire dataset D can be represented as

Z log

(u,)eD

efd]B(u,v)

£(©) = L
( ) Zv’ N e—dp(uv)

(43)

where NV (u) denotes a set of negative examples for u. This
loss function encourages related objects to be closer to each
other than objects without an obvious relationship. The
embedding is further optimized utilizing the RSGD with the
exponential map, which is a scaled version of the euclidean
gradient. Specifically, the retraction operation R,,(v) = w+ v
is utilized as the approximation of the exponential map, Exp.
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Then, a projection, which normalizes the embeddings with a
norm bigger than one, is utilized to ensure the embeddings
remain within the Poincaré model. Thus

(1= (Wil )* E)

1 (44)

W%l—mmo%—n

where v is the euclidean gradient, and » is the learning
rate. The normalization function is proj(z) = z/|z|| if
[|z|| > 1, otherwise proj(z) = z. Similarly, work [52] pro-
poses text and sentence embedding with Poincaré model.
The authors proposed to re-parametrize the Poincaré
embeddings such that the projection step is not required.
On top of the existing encoder architectures, e.g., LSTMs, a
reparameterization technique is introduced to map the out-
put of the encoder to the Poincaré ball, which is defined as

© = 3(uorm (W) 7

(45)
where h represents the hidden representation of encoder, and
8 denotes the sigmoid function. The function ¢;, : RY — R%is
used to compute a direction vector. Function ¢,,,,, : R? - R
is a norm function. In this way, the authors mapped the
encoder embeddings to the Poincaré ball and the Adam is
introduced to optimize the parameters of the encoder.

Work [43] presents hyperbolic entailment cones to espe-
cially deal with more complicated connections like asym-
metric relations in directed acyclic graphs, thus further
improving the performance of hyperbolic embeddings. The
authors pointed out that most of the embedding points of
the method [102] collapse on the boundary of Poincaré ball.
To address this issue, they generalized the idea of order
embeddings [103], which views hierarchical relations as
partial orders defined on a family of nested geodesically
convex cones, into the hyperbolic space.

Specifically, in a vector space, a convex cone S is a set that
is closed under non-negative linear combinations, which
means for vectors vy, v9 € S, then av; + Bvy € S,Va, 8 > 0.
Since the cones are defined in the vector space, the authors
proposed to build the hyperbolic cones using the exponen-
tial map, which leads to the definition of S-cone at point z,
which is

S, = Exp,(5),S € T, M. (46)

To avoid heavy cone intersections and scale exponentially
with the space dimension, the authors further constructed
the angular cones in the Poincaré ball. To achieve this, they
introduced the so-called cone aperture functions ¢(z) such
that the angular cones G‘f(z) follow four intuitive properties,
including axial symmetry, rotation invariant, continuous of
cone aperture function, and the transitivity of nested angu-
lar cones. With all of this the authors provided a closed-
form of the angular cones, which are

1 llzl?
G = {(n — /Ozy) < arsin <K%) },
x

where O in angle /Ozy is the origin, K is a constant. They
optimize the objective using fully Riemannian optimization,

47)
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instead of using the first-order approximation as work [102]
did.

In addition, Tifrea et al. [51] extends an unsupervised
word embedding algorithm, Glove [104], to the Riemannian
manifolds. They proposed to embed words in a Cartesian
product of hyperbolic spaces which they theoretically con-
nected to the Gaussian word embeddings and their Fisher
geometry.

Instead of providing new embedding methods in the
hyperbolic space, work [105] addresses the numerical insta-
bility issue of the networks. Like mentioned in work [105],
the difficulty is caused by floating-point computation and
amplified by the ill-conditioned Riemannian metrics. As
points move far away from the origin, the error caused by
using floating-point numbers to represent them will be
unbounded. For the Poincaré model, the distance changes
rapidly when the points are close to the ball boundary such
that it is not well conditioned. While for Lorentz model, it is
not bounded such that it will experience large numerical
error when the points are far away from the origin. There-
fore, for the representation in the hyperbolic space, it is
desirable to find a method that can represent any point with
small fixed bounded error in an efficient way. To this end,
work [105] presents a tiling-based model to utilize the inte-
ger-lattice square tiling (or tessellation) [106] in the hyper-
bolic space to construct a constant-error representation.
They proved that the representation error, the error of com-
puting distances, and the error of computing the gradient
are bounded by a fixed value that is independent of distance
to the origin.

4.2 Hyperbolic Cluster Learning
Hierarchical Clustering (HC) [135], which generally con-
structs a hierarchy over clusters with the form of a multi-lay-
ered tree whose leaves correspond to samples and internal
nodes correspond to clusters, is a fundamental problem in
data analysis, visualization, and mining the underlying rela-
tionships. Mainstream methods including bottom-up linkage
methods [136], and recently, cost function based meth-
ods [137]. However, these methods are either not amenable
for stochastic gradient methods or computationally expen-
sive. Gradient-based hyperbolic hierarchical clustering,
gHHC [120], a geometric heuristic to provide an approximate
distribution over lowest common ancestor (LCA), is proposed
over continuous representations of tree in the hyperbolic
space (Poincaré model), based on the observation that child-
parent relationships can be modelled by the distances and
norms of the embedded node representations. The authors
used the norm of vectors to model depth in the tree, requiring
child nodes to have a larger norm than their parents. The root
is near the origin of the space and leaves near the edge of the
ball. Formally, let Z = {z1,2,...,2},2 € B? represent the
node representation in the d-dimensional Poincaré ball. Then
a child-parent dissimilarity function is used to encourage the
children have a smaller norm than the parent, which is
AT T,) = da(ze,2) (1 + maa(llzl] — [[2]1,0), @9
where 2, z, are the hyperbolic embedding of nodes 7, 7).
If the norm of the parent node is smaller than the child, then
the dissimilarity will just be the distance in the hyperbolic
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space. Otherwise, this dissimilarity will be bigger than the
distance. Then this dissimilarity function is used to model a
distribution over the tree structure to encode the uncer-
tainty, which is P, (7|7 ¢, Z) o exp(—de,(T ¢, T p)), thus the
tree distribution over embedding will be

Pa(TZ) <[] ]I

Ty Tcechildren(T p)

Poar(Tp|T ¢, Z). (49)

In contrast with previous gradient-based approaches, this
approach has theoretical guarantees in terms of cluster-
ing quality and empirically outperforms agglomerative
heuristics.

4.3 Hyperbolic Attention Network

Currently, attention mechanism [23] for various neural net-
works becomes one of the most attractive research topics.
Outstanding architectures include the neural Trans-
former [23], BERT [138], and even the graph attention net-
works [121], [139], [140]. While attention mechanisms have
become the de-facto standard for NLP tasks, their momen-
tum has continuously been extended to computer vision
applications [141]. At its core lies the strategy of focusing on
the most relevant parts of the input to make decisions. Dif-
ferent from euclidean space, the distances defined in the
hyperbolic space highly depend on their locations (e.g.,
close to the origin or to the boundary) thus they have their
own ways to measure the similarity/dissimilarity, when
computing the attention. Therefore, it is important to design
hyperbolic attention network such that the correlations can
be captured reasonably in terms of the hyperbolic topology
and semantic representations.

Work [44] extends it into the hyperbolic space (Lorentz
model), utilizing the Lorentzian distance and the Einstein
midpoint method to conduct the score matching and aggrega-
tion. First, the data representation is organized by a pseudo-
polar coordinate, in which an activation z € R"! = (d,r) is
constructed by a n dimensional normalized angle d,||d|| =1
and a scalar radius r. Then, a well-developed map function is
introduced to project the activation to the hyperbolic space,
which is 7((d,r)) = (sinh(r)d, cosh(r)). It is easy to see that
the projected point lies in the Lorentz model. Then for hyper-
bolic matching, the authors took «a(g;, k;) = f (—/Sdg(qi_k.j) —c),
in which the negative Lorentzian distance (scaled by —8 and
shifted by c) is utilized to measure the correlation (matching
score a). Since there is no natural definition of mean on the
manifold, they turn to Einstein midpoint to conduct hyper-
bolic aggregation. Specifically, the agregated message m; can
be represented as

aijy (vij)

mi({aij}j, {vij};) = Z |:Zl aily(vil)j| Vi (50)
where y(v;;) is the Lorentz factor at point v;;, and v;; is
defined on the Klein model. On the top of the proposed
hyperbolic attention network, the authors further formu-
lated the Hyperbolic Transformer model, which is proved
to have the superiority when compared to the euclidean
Transformer.

Based on the euclidean graph attention network (GAT)
[139], work [121] generalizes it to a hyperbolic GAT. The idea
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is very simple, just replacing the euclidean operation with
Mobius operations, which means the matching score

They further defined the f function based on the hyperbolic
distance. Just as work [44], the negative of the distance
between nodes is utilized as the matching score. The scores
are finally normalized using softmax function, otherwise all
the scores are negative. The hyperbolic aggregation is sim-
ply conducted on the tangent space, as it is done in euclid-
ean space.

Shimizu et al. [4] proves that three different kinds of
hyperbolic centroids, including the Mobius gyromid-
point [72], Einstein midpoint [72] and the centroid of the
squared Lorentzian distance [117], are the same midpoint
operations projected on each manifold and exactly matches
each other. Based on this observation, they explored on
Mobius gyromidpoint and generalized it by extending to
the entire real value weights (previously, it is defined under
the condition of non-negative weights) by regarding a nega-
tive weight as an additive inverse operation. So the centroid
with real weights {v; € R} | is

1 = [z, ] —1@< (52)

S, viAT
5 .

N
> ict vil| Az

With the above weights, the authors computed the attention
in the hyperbolic space. Given the source and target as
sequences of Gyrovectors, first, the proposed Poincaré FC
layers (in Section 3.4) are utilized to construct the queries,
keys, and values. Then, in order to build the multi-head
attention, they are broken down into several parts. Like pre-
vious methods, the negative distances are also employed to
measure the matching scores. Finally, the message from
multi-head is aggregated using the proposed Poincaré
weighted centroid. The authors built a hyperbolic set trans-
former model and compared to its euclidean counter-
part [142]. The result shows that the hyperbolic one can at
least get equivalent performance, at the same time showing a
remarkable stability and consistently converges.

4.4 Hyperbolic Graph Neural Network

Recently, there has been a growing passion of modeling
graphs in the hyperbolic space [46], [48], [49]. A core reason
for that is learning hierarchical representations of graphs is
easier in the hyperbolic space due to the curvature and the
geometrical properties of the hyperbolic space. Such spaces
were shown by Gromov to be well suited to represent tree-
like structures [31] with low distortion as objects requiring
an exponential number of dimensions in euclidean space can
be represented in a polynomial number of dimensions in the
hyperbolic space. As an alternative, graph neural networks
(GNNs) [71], [92], [143] are powerful tools for data with non-
euclidean graph structures. However, the operations are still
in euclidean space, which does not make full use of the geo-
metric property. Current studies of GNN in the hyperbolic
space [46], [47], [48] show a superiority, in terms of both
model compactness and the predictive performance, when
compared to their counterparts in the euclidean space. This
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suggests the essential of generalizing graph neural networks
to hyperbolic space.

GNN can be interpreted as performing message passing
between nodes, which can be formulated as

pi = a( > AijW’“hf) :

JEN(D)

(63)

where h¥! represents the hidden representation of the ith
node at the (k+ 1)-layer, W* denotes the weight of the
network at k layer. The 4;; is the entry of the normalized
adjacency matrix A. Eq. (53) performs the information
aggregation around the neighbor nodes N(i) of node i to
update the representation of this node.

Works [46], [48] provide a straightforward way to extend
the graph neural network to hyperbolic space, using tangent
space. Work [46] utilizes the logarithmic map Log, at a cho-
sen point 2/, such that the functions with trainable parame-
ters are executed there. Thus, the graph neural operation in
a hyperbolic space is

h§:+1 =0 (EXpm/ ( Z A?]WkLOgL’(hf))) )
JEN()

where an exponential map Exp, is applied afterwards to
map the learned feature back to the manifold. The authors
moved the activation function o to the tangent space, since
they suggested that otherwise the hyperbolic operation will
collapse to the vanilla euclidean GCN as the exponential
map will be canceled by the logarithmic map at next layer.

Work [48] shares the same idea to construct spatial tempo-
ral graph convolutional networks [144] in the hyperbolic
space and applied this for dynamic graph sequences. They
further explored the projection dimension in the tangent
space, using neural architecture search (NAS) [145]. Chami
et al. [47] decoupled the message passing procedure of GCN
before generalization. The operation of GCN is divided into
three parts, including feature transform, neighborhood
aggregation, and activating by the activation function. Then,
the authors provided operations for corresponding parts in
the hyperbolic space.

Bachmann et al. [49] presented a novel x-GCN in the
hyperbolic space, which is a mathematically grounded gen-
eralization of GCN to constant curvature spaces. Specifically,
they extended the operations in Gyrovector space to the
space with constant positive curvature, which is the stereo-
graphic spherical projection models in their study. By this
way, they provided a uniform GCN for spaces with different
kinds of curvature (0, negative, and positive), which is called
the k-GCN. Work [126] further improves this method by pro-
viding a more reasonable definition of the gradient of curva-
ture at zero, since the original one is incomplete.

(54)

4.5 Hyperbolic Normalizing Flows

Normalizing flows [146] involve learning a series of invert-
ible transformations, which are used to transform a sample
from a simple base distribution to a sample from a richer
distribution. The models produce tractable distributions
where both sampling and density evaluation can be efficient
and exact. However, for the current euclidean normalizing
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flows, data with hierarchies embedded in the euclidean
space will suffer high embedding distortion [93]. Besides,
sampling from densities defined on euclidean space cannot
guarantee the generated points still lie on the underlying
hyperbolic space. Therefore, it is fundamental to construct
normalizing flows in the hyperbolic space.

Literally, normalizing flows have already been extended
to Riemannian manifolds (spherical spaces) [50], [147],
[148]. Work [125] is the pioneer one to present a new nor-
malizing flow in the hyperbolic space. They proposed first
elevated normalizing flows to hyperbolic space (Ieveraging
Lorentz model) using coupling transforms defined on the
tangent bundles. Then, they explicitly utilized the geometric
structure of hyperbolic spaces and further introduced
Wrapped Hyperboloid Coupling (WHC), which is a fully
invertible and learnable transformation.

Based on the tangent space, work [125] provides a method
called Tangent Coupling, which builds upon the real-valued
non-volume preserving transformations (RealNVP flow)
[149] and introduces the efficient affine coupling layers. Spe-
cifically, this work follows normalizing flows designed with
partially-ordered dependencies [149]. They defined a class of
invertible parametric hyperbolic functions £ : L¥ — L*. The
coupling layer is implemented using a binary mask, and parti-
tions the input z into two sets 71 = 24, 1y = 291", For the
first set x1, its elements are transformed elementwise inde-
pendently of other dimensions, while the transform of second
set zo is based on the first one. Thus, the overall transforma-
tion of one layer is

(&) = { 2; z f:; © 8(s(21)) + (1)

() = Expy (™ (Logy(x)), (55)
where ® and § are pointwise multiplication and pointwise
non-linearity, respectively. s and ¢ are map functions, which
are implemented as linear neural layers and conduct the
projection from 7,L¢ — 7,L""?. So the transformed result
will be Z, which is the concatenation of resulted and
mapped Z; and 2; on the manifold. They also provided an
efficient expression for the Jacobian determinant by using
the chain rule and identity.

To make full use of the expression power of the manifold,
the authors conducted operations using parallel transport,
instead of only operating in the tangent space of origin.
Likewise, they provided an efficient expression for the Joco-
bian determinant. In this way, they built two different kinds
of normalizing flows in the Lorentz model and improved
the performance.

4.6 Hyperbolic Variational Auto-Encoders

Variational Auto-Encoder (VAE) [69], [70] is a popular
probabilistic generative model, composed of an auxiliary
encoder that draws samples of latent code from the approxi-
mate posterior (conditional density), and a decoder generat-
ing observations x € X from latent variables z¢€ Z.
However, the vanilla VAE posterior is parameterized as a
unimodal distribution such that it is not able to allow the
structure assumption for data distributed in the hyperbolic
space. Unfortunately, such a normal prior for the low-
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dimensional latent variables will encourage the low-dimen-
sional representations of different samples to the center of
the latent space, even for data consisting of distinct struc-
tures. Besides, embedding non-euclidean data to a euclid-
ean space introduces significant distortion for commonly
used dimensionality reduction tools, which is not good for
visualization. Thus, it is meaningful to construct hyperbolic
VAEs.

One of the main challenges of generalizing VAE to the
hyperbolic space is the generalization of the latent distribu-
tion learning. As mentioned in [50], [118], there are mainly
three ways to model the normal distributions in the hyper-
bolic space.

First, the Riemannian Normal [150] with Fréchet mean
[73] n and dispersion parameter o. Sometimes, it is also
referred as maximum entropy normal. In particular, the Rie-
mannian normal distribution is defined as

A\ )

where dy is the induced distance [118], [151] and Z (o) is a
normalization constant.

Second, the Restricted Normal. Restricting the sampled
points from the normal distribution to sub-manifolds. It has
also been treated as the maximum entropy distribution with
respect to the ambient euclidean metric [152]. For instance,
in the work Hyperspherical variational auto-encoders [153],
the authors presented a novel VAE model, called S-VAE,
via von Mises-Fisher (vMF) distribution, in which the
encoder is a homeomorphism and can provide an invertible
and globally continuous mapping.

Third, the Wrapped Normal [116], [118], [154]. This dis-
tribution is constructed by utilizing the exponential map of
a Gaussian distribution on the tangent space centered at the
mean value. Specifically, there are four steps to get a
wrapped normal distribution. First, sample one point from
the euclidean normal distribution A (0, o). Second, concate-
nate 0 as the zeroth coordinate of this point and transfer it
to the tangent space of the origin. Third, parallel transport
the sample from the current tangent space to the tangent
space at the point . Finally, map the point from the tangent
space to the manifold. In this way, a latent sample on the
manifold is obtained. As mentioned in [53], the Wrapped
Normal has the following reparametrizable form:

N/\/I(Z“'La 02) =

Z(0) (56)

z=Exp,(PTo-u(v))),v € N(0,0). (57

However, the Riemannian Normal distribution could be
computationally expensive for sampling if it is based on
rejection sampling. The Restricted Normal like vMF has
only a single scalar covariance parameter, while other
approaches can parametrize the covariance in different
dimensions separately. On the contrary, sampling with
Wrapped Normal distributions are very computationally
efficient. Based on the aforementioned generalization of the
normal distribution in the non-euclidean space, there are
numerous works [53], [54], [116], [118], [119] constructing
VAE in the hyperbolic space, aiming at imposing structure
information on the latent space.
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Ovinnikov et al. [54] provided a closed-form definition of
Gaussian distribution in the hyperbolic space, as well as the
sampling rules for the prior and posterior distribution, to
endow a VAE latent space with the ability to model under-
lying structure via the Poincaré ball model. Specifically,
based on the maximum entropy generalization of Guassian
distribution [150], they derived the normalization constant
in Eq. (56) by decomposing it into radial and angular com-
ponents. Based on the Wasserstein Autoencoder [155]
framework, which is introduced to circumvent the high var-
iance associated with the Monte-Carlo approximation, they
built each layer using the hyperbolic feedforward layer pro-
vided by [43]. They also provided a generalization of the
reparameterization trick by using the Mobius transforma-
tions. They further relaxed the constraint to the posterior by
using the maximum mean discrepancy [156] and the net-
work is optimized by RSGD [85]. However, as pointed out
by [118], the authors had to choose a Wasserstein Auto-
Encoder framework since they could not derive a closed-
form solution of the ELBO’s entropy term. Besides,
work [116] mentions that the approximation of the likeli-
hood and its gradient can be avoided.

Nagano et al. [116] provided a new normal distribution
function in the hyperbolic space (Lorentz model), which is
called Pseudo-Hyperbolic Gaussian, and it can be utilized
to construct and learn a probabilistic model like VAE in this
non-euclidean space. The authors emphasized that this dis-
tribution is computed analytically and could be sampled
efficiently. Pseudo-Hyperbolic Gaussian can be constructed
with four steps, as mentioned above in the wrapped normal.
The author further highlighted their contributions by deriv-
ing the density of Pseudo-Hyperbolic Gaussian distribution
G(u,2) due to the exponential map and the parallel trans-
port in the wrapped normal are differentiable. Since they
provided a closed-form of the density function, they could
evaluate the ELBO exactly and no need to introduce the rep-
arameterization trick in this hyperbolic VAE.

However, as pointed out by [118], the neural layers are still
the euclidean ones, which do not take into account the hyper-
bolic geometry. Therefore, work [118] introduces a VAE that
respects the geometry of the hyperbolic latent space. This is
done by adding a generalization of the decision hyperplane in
euclidean space. Normally, the euclidean linear affine trans-
formation is f(z) = sign({a,z — p))||a||d(z, H,,), where a is
the coefficient, p is the intercept (offset). H,, denotes a hyper-
plane passing through p with a as the normal direction, thus
d(z, H,3) means the euclidean distance of z to the hyperplane.
Analogue to the euclidean linear function f(z), they general-
ized it like

fap(2) = sign({a, Log, (2)))llal|,d (2, Hy,)- (58)

Inspired by the MLR in work [43], the first layer of the
decoder, which is called the gyroplane layer and is chosen to
be a concatenation with a Poincaré operator f. Then it is then
composed with a standard feed-forward neural network.

The gyroplane layer is then composed with a standard
feed-forward neural network. For the encoder part, the
author also changed the last layer by adding an exponential
map for the Fréchet mean, and a softplus function for the
positive defined 3.
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Then, the ELBO of VAE is optimized via an unbiased
Monte Carlo (MC) estimator with two main Gaussian general-
isations, which are wrapped normal and Riemannian normal
generalization. Through a hyperbolic polar change of coordi-
nates, they provided efficient and reparameterizable sam-
pling schemes to calculate the probability density functions.

Compared to the above-mentioned methods, the work [53]
highlights an implicit posterior and data-driven prior. They
proposed an adversarial Poincaré variational autoencoder
(APo-VAE), using a wrapped normal distribution as the prior
and the variational posterior for a more expressive generaliza-
tion. However, they replaced the tangent space sampling step
in Eq. (67) with a more flexible implicit distribution from
N(0,1I), inspired by work [157]. Then, a geometry-aware
Poincaré decoder is constructed, which shares the same idea
as it for the decoder in work [118].

ApoVAE further optimized the variational bound by
adversarially training this model by exploiting the primal-
dual formulation of Kullback-Leibler (KL) divergence based
on the Fenchel duality [158]. The training procedure is fol-
lowing the training scheme of coupled variational Bayes
(CVB) from work [159] and implicit VAE [157]. Meanwhile,
inspired by [160], they replaced the prior with a data-driven
alternative to reduce the induced bias.

5 APPLICATIONS AND PERFORMANCE

Various applications from different research fields can bene-
fit from hyperbolic deep neural networks, since the latent
hierarchical structure is a generic property of real-world
data. Thus, we will introduce the applications for process-
ing data which contains hierarchical structures, such as
graph embedding learning, natural language processing
(NLP), and the analysis of data with tree-like properties.
Moreover, we also notice there exists an increasing potential
for the application of hyperbolic neural networks on data
that has no obvious hierarchical structures, such as images.
As a result, how hyperbolic networks can be adapted to
computer vision tasks is also introduced in this section.
Besides, another interesting application is about hyperbolic
models for biology. Current studies demonstrate attractive
results for measuring cells and their activities. Thus, we
also introduce advanced approaches for computational biol-
ogy with hyperbolic geometry.

5.1 Hyperbolic Models for Graph Applications
Hierarchies are ubiquitous in graph data. There are numer-
ous works leveraging deep hyperbolic neural networks
dealing with the graph tasks, including node classifica-
tion [47], graph classification [46], [48], link prediction [47],
and graph embedding [49]. Here, we only concentrate on
the hyperbolic models on top of the GNN architecture,
although there are many other existing hyperbolic embed-
ding methods, like PVAE [118], HAT [44], which also con-
sider the modeling of graph (mainly for natural language or
networks).

Works [101], [107] are pioneering works to introduce the
concept of graph embeddings in the hyperbolic space.
Recently, HGNN [46] and HGCN [47] are almost proposed
at the same time to build GNN in the hyperbolic space. The
HGCN is built on the Lorentz model. The authors applied
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HGCN to both node classification and link prediction tasks.
Experiments show that for a dataset with low §-hyperbolic-
ity, the HGCN can get a performance much better than mod-
els built in the euclidean space. The HGNN provides models
on both the Poincaré model and Lorentz model. The authors
dealt with graph classification tasks, in which the graphs are
synthetically generated with three distinct graph generation
algorithms. The results show that when the embedding
dimension is smaller than 20, the HGNN has a significant
superiority. We can also see that for most cases, HGNN on
the Lorentz model performs better than that on the Poincaré
model. While increasing the dimensions, this advantages
disappeared and when the dimension is larger than 256, the
HGNN even performs worse than its euclidean counterpart.
Currently, work [49] derives a general version of GCN with
constant curvature, k-GCN, which significantly minimizes
the graph embedding distortion and gets a superior perfor-
mance on the node classification tasks.

Most of previous mentioned tasks are focused on static
graphs, while work [48] considered the graph classification
task with a dynamic graph input. They constructed and
searched for the optimal ST-GCN in the Poincaré model.
Another interesting work [126] conducted extensive experi-
ments on four different kinds of graph tasks, including
node classification, link prediction, graph classification, and
graph embedding, to provide a profound analysis of when
the hyperbolic space can provide a superior performance.
The experimental results suggest that the non-euclidean
space are not always a better choice than the euclidean
counterpart. As summarized by work [126], in the task that
labels depend only on the local neighborhood of the node,
hyperbolic models may be inferior to their euclidean coun-
terparts. However, many other factors, like the the way to
build the manifold and the corresponding optimization
strategy, may also lead to this result. Therefore, more explo-
rations are needed to draw this conclusion.

5.2 Knowledge Graph Completion

Knowledge graph is a multi-relational graph representation
of a collection of facts F, formed in a set of triplet (e,, 7, ¢€,),
where e, is the subject entity, ¢, is the object entity and r is a
binary relation (typed directed edges) between them.
(es,7,€0,) € F denotes subject entity e, is related to object
entity e, by the relation r. As mentioned by work [115],
knowledge graphs often exhibit multiple hierarchies simul-
taneously. For instance, nodes near the root of the tree under
one relation may be leaf nodes under another. The challenge
for representing multi-relational data lies in the difficulty to
represent entities shared across relations, such that different
hierarchies are formed under different relations.

Most of the previous works [161], [162] model in the
euclidean space, relying on the inner product or euclidean
distance as a similarity measure, which can be categorised
as translational models and bilinear models, respectively.
Work [163] proposes to embed the entities in a Riemannian
manifold, where each relation is modeled as a move to a
point and they also defined specific novel distance dissimi-
larities for the relations. However, as pointed out by [115],
this model defined in the hyperbolic space does not outper-
form euclidean models. Work [115] presents a new bilinear
model called MuRP to embed hierarchical multi-relational
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data in the Poincaré ball model of the hyperbolic space.
MuRP defines a basis score function for multi-relational
graph embedding and generalizes it to the hyperbolic space.
Experiments show that MuRP can get superior performan-
ces on the link prediction task. Besides, it requires far fewer
dimensions than euclidean embeddings to achieve compa-
rable performance. Work [164] points out that MuRP is not
able to encode some logical properties of relationships.
Therefore, the authors leveraged the hyperbolic isometry to
simultaneously exhibit logical patterns and hierarchies, and
achieved the current best performance.

On the contrary, work [14] proposes a new translational
model in Poincaré model, where both the entities and the
relations are embedded. Compared to the translational
models in euclidean space, this method almost doubles the
performance in terms of the mean reciprocal rank (MRR)
metric. However, as mentioned by the authors, the
HyperKG excludes from the comparison with many recent
works that explores advanced techniques, thus this method
is not comparable to the state-of-the-art methods, as listed
in results in [115].

5.3 Natural Language Processing (NLP)

As summarized in Table 1, there are more than one third
hyperbolic methods being presented to deal with NLP tasks,
of which specific tasks include text classification [124], taxon-
omy induction [114], taxonomies embedding [45], word
embeddings [51], [52], Lexical Entailment [102] and text gen-
eration [53]. Natural language often conceives a latent hierar-
chical structure, e.g., linguistic ontology. It is natural to turn
to the hyperbolic space. Another advantage of modeling in
the hyperbolic space, as mentioned by work [53], is that the
latent representation allows more control of the sentences
we want to generate. In the following part, we will detail dif-
ferent NLP tasks using hyperbolic geometry, from tasks of
embedding, generation, to classification.

In the task of word embeddings, work [116] proposes a
Gaussian-like distribution in the hyperbolic space, which is
called pseudo-hyperbolic Gaussian. Based on this, a hyper-
bolic VAE is presented to deal with the word embeddings.
Work [51] adapts the Glove [104] algorithm to learn unsuper-
vised word embeddings in this type of Riemannian mani-
folds. To this end, they proposed to embed words in a
Cartesian product of hyperbolic spaces which they theoreti-
cally connected to the Gaussian word embedding and the
Fisher geometry. Some notable founds are, based on their
method, the fully unsupervised model can almost outper-
form all supervised euclidean counterparts. Once trained
with a small amount of weakly supervision for the hypern-
ymy [165] score, they can obtain significant improvements
and this result is much better that the models in euclidean
space.

In the taxonomy embedding task, work [102] is one pioneer
research piece that can learn embeddings in the hyperbolic
space. To evaluate its ability to infer hierarchical relationships
without supervision, they trained on data where the hierarchy
of objects is not explicitly encoded. A significant improvement
was witnessed in the taxonomy embedding task. Dhingra
et al. [52] proposed a re-parametrization of Poincaré embed-
dings that removes the need for the projection step and allows
the use of any of the popular optimization techniques in deep
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learning, such as Adam [88]. After this several works are pre-
sented to deal with the stability of the hyperbolic embedding.
Nickel et al. [45] pointed out that the Lorentz model is substan-
tially more efficient thus proposed to learn a continuous
representation using the model and further improves the per-
formance. Marc et al. [117] mentioned that Poincaré distance
is numerically unstable and suggested the squared Lorentzian
distance as a better choice. Based on this, they learned a
closed-form squared Lorentzian distance and thus improved
the performance on the this task. Besides, Yu et al. [105] con-
structed the hyperbolic model for dealing with the numerical
instability of the previous hyperbolic networks. Based on the
Lorentz model, they provide a very efficient model to learn
the embedding. For instance, they can even compress the
embeddings down to 2% of a Poincaré embedding on the
WordNet Nouns. Very recently, Shimizu et al. [4] shows the
superior parameter efficiency of their methods compared to
conventional hyperbolic components, and the stability and
outperform over their euclidean counterparts.

Then, we introduce the hyperbolic models for generation
tasks. In the text generation task, HyperQA [109] is the first
to model QA pairs in the hyperbolic space. HyperQA is an
extremely fast and parameter efficient model that achieves
very competitive results on multiple QA benchmarks, espe-
cially when compared to euclidean methods at that time.
ApoVAE [53] also deals with the dialog-response genera-
tion problem. It optimized the variational bound by adver-
sarially training and exploited the primal-dual formulation
of KL divergence based on the Fenchel duality [158]. In neu-
ral machine translation, based on the hyperbolic attention
mechanism, work [44] provides a hyperbolic Transformer,
which shows the improvement over the original one, espe-
cially when the model capacity is restricted.

Finally, hyperbolic models are also commonly used for
text-related classification tasks. In the task of sentence entail-
ment classification, works [43] and [4] proposed the hyper-
bolic MLRs. The results confirm the tendency of the
hyperbolic MLRs to outperform the euclidean version in all
settings. At the same time, the hyperbolic MLR from
work [4] shows more stable training, relatively narrower
confidence intervals, and at least comparable performance
with only half of the parameters compared to the MLR
in [43]. In the task of text classification, HyperText [124] per-
forms significantly better than the state-of-the-art text classi-
fier, FastText [166], in euclidean space. Besides, HyperText
with 50-dimension achieves better performance to FastText
with 300-dimension, which proves the hyperbolic space is a
better choice for this task. Also, works [124] and [167] bene-
fits from the hyperbolic methods in the Chinese text analysis
tasks. Textual entailment, which is also called natural lan-
guage inference, is a binary classification task to predict
whether the second sentence (hypothesis) can be inferred
from the first one (premise). HNN [43] embedded two sen-
tences using two distinct hyperbolic RNNs. With the corre-
sponding distances, the sentence embeddings are then fed
into a feedforward network and predicted with an MLR.
Interestingly, the results shows that the fully euclidean base-
lines might even have an advantage over hyperbolic models.
On top of pre-trained Poincaré embeddings [102], they con-
ducted experiments on the WordNet noun hierarchy to eval-
uate the hyperbolic MLR. On this subtree classification task,
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hyperbolic MLR displays a clear advantage to the euclidean
counterpart. Nevertheless, in what case hyperbolic is more
suitable is not clear enough.

5.4 Hyperbolic Space for Recommender Systems
One of the most important factors to the success of a recom-
mender system is the accurate representation of user prefer-
ences and item characteristics, modelled by complex
networks. As mentioned in [98], hyperbolic geometry natu-
rally emerges from network heterogeneity in the same way
that network heterogeneity emerges from hyperbolic geome-
try. Therefore, given the complex nature of these networks,
the hyperbolic space is more suitable to embed them than its
euclidean counterpart. Based on the above observations,
work [12] embeds bipartite user-item graphs in the hyperbolic
space. This recommendation algorithm learns to rank loss that
represents user-item correlations, using of hyperbolic repre-
sentations through an analogy with complex networks. This
algorithm shows a clear advantage when compared with the
system in the euclidean space. The recommender system
based on this algorithm is scaled to millions of users.

Although this system shows obvious superiority,
work [122] points out that it does not learn the embeddings
in a metric learning manner. Therefore, the authors explored
the connections between metric learning and collaborative
filtering, thus proposed a highly effective model for recom-
mender systems. They constructed an input triplet tuple
with the user, an item liked by the user, and the item unliked
by the user. Then they proposed to learn the user-item joint
metric in the hyperbolic space. At the same time, they intro-
duced so-called local and global factor to better embed user-
item pairs to the hyperbolic space and preserve good struc-
ture quality for metric learning.

As pointed out by work [123], in the factorization
machine model [168], the naive inner product is not expres-
sive enough for spurious or implicit feature interactions.
Therefore, higher-order factorization machine [169] is pro-
posed to learn higher-order feature interactions efficiently.
As suggested by collaborative metric learning [170], learn-
ing distance instead of inner product has advantages to pro-
vide a fine-grained embedding space which could capture
the representation for item-user interactions, item-item and
user-user distances at the same time. Thus, the triangle
inequality is more preferred than the inner product.
Inspired by this, work [123] proposes a model named Lor-
entzian Factorization Machine (LorentzFM), which learns
feature interactions with a score function measuring the
validity of triangle inequalities. The authors argued that the
feature interaction between two points can be learned by
the sign of the triangle inequality for Lorentz distance,
rather than using the distance itself. Based on this, they pre-
sented the model in the hyperbolic space.

5.5 Hyperbolic Models for Computer Vision

The passion of solving computer vision tasks using hyper-
bolic models is inspired from the observation that similar
hierarchical relations between images are also common in
computer vision tasks [16]. Besides, hierarchies investigated
in NLP can be also transcended to the visual domain, like
the knowledge graph.
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Work [16] is one of the pioneering methods to model
images in the hyperbolic space. To prove it is reasonable to
utilize the hyperbolic space for image-based tasks, the
8-Hyperbolicity is used to measure the property of
“negatively curved” of the features extracted from the
embedding network. The authors concluded that the feature
embeddings from current famous architectures like ResNet
[21], VGG19 [40], and InceptionV3 [41] are with a small §
thus suggested the learned features process strong hierarchi-
cal relationships. Based on these observations, the authors
constructed the analogues of layers in the hyperbolic spaces.
They evaluated their models in computer vision tasks,
including person re-identification [171], and few-shot classi-
fication [172], and results proved its superiority.

Another study in in this field is trying to generalize gen-
erative models like VAE to the hyperbolic space and deal
with image reconstruction or generation tasks. Work [54]
provides a Wasserstein Autoencoder for the Poincaré model
and applied it to the task of generating binarized MNIST
digits in order to get an intuition for the properties of the
latent hyperbolic geometry. However, they did not provide
a better reconstruction results when compared to the euclid-
ean counterpart. As mentioned by the authors, both models
meet with a dimension mismatch problem [173] such that
reconstructed samples present a deteriorating quality as the
dimensionality increases despite the lower reconstruction
error. Compared to work [118], the authors derived a
closed-form solution of the ELBO with two different kinds
of normal distributions in the hyperbolic space. Their VAE
model outperforms its euclidean counterpart, especially for
low latent dimensions. However, as the latent dimension
increases, the embeddings quality decreases, hence the gain
from the hyperbolic geometry is reduced, just as also
observed by work [102]. The same situation is also found in
the work [128], where a mixed geometry space is intro-
duced. On the MINIST reconstruction task, they displayed
clear advantage when setting the latent dimension to six.
However, this advantage to euclidean spaces immediately
disappears when they double the dimension of latent space.
This can be also caused by the property of the datasets.
More studies are needed to answer whether the hyperbolic
space has its advantages to address such computer vision
tasks. Besides, it needs to extend to more complicated set-
tings in larger-scale cases.

5.6 Computational Biology With Hyperbolic
Geometry

Computational Biology [174] is an interdisciplinary area using
biological data-driven computational models to understand
biological systems and relationships. Meanwhile, hierarchical
representations, such as phylogenetic trees and clustering
clades have long been applied to characterize differences
between cells, proteins, the activity within cells [37]. It is natu-
ral to consider hyperbolic metric as an alternative when
modeling biological data in computational biology. In line
with this, multiple advances have been made in computa-
tional biology towards the goal of discovering and analyzing
hierarchical structures from single-cell measurements. This
section presents advanced results [15], [37], [134] in single-cell
RNA-seq analysis, cells developmental processes, and gene
expression analysis in the hyperbolic space.
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For single-cell analysis, one major difficulty stems from
how to reveal the progression of cells along continuous tra-
jectories with multiple tree-like branches. Especially for
complex hierarchies, modeling with efficient low-dimen-
sional embeddings in euclidean space will substantially dis-
tort distances between measurements, which definitely is
an unwanted issue for modeling the progression. Based on
the hyperbolic embedding [102], Klimovskaia ef al. [15] pro-
vided Poincaré maps for the discovery and analyzing of
complex hierarchies in single-cell data. In addition, the
approach deals with all these different tasks such as cluster-
ing, lineage detection, and pseudotime inference using a
single embedding in an unsupervised manner, which is
impossible for previous works like t-SNE [175], PCA [176],
and UMAP [177].

There are three steps in this method, of which the first
two are used to approximate an unknown manifold and the
last is to learn the hyperbolic embedding. First, a connected
k-nearest-neighbor graph (kKNNG) [178] is constructed to
embed each cell and measure their euclidean distances.
This step codes the local geometries of an underlying mani-
fold. Second, based on kNNG built before, to estimate the
intrinsic geometry of the underlying manifold, the global
geodesic distances are computed. Then, the third step learns
a two-dimensional Poincaré embedding for each cell, which
preserves the topology. This can place nodes with small dis-
tances (like cells in early developmental stage) close to the
center of the Poincaré disk and nodes with large distances
close to the boundary. Poincaré maps produce state-of-the-
art two-dimensional representations of cell trajectories on
multiple scRNAseq datasets.

Following this work, Ding et al. [134] focused on elimi-
nating the batch-correction and addressing visual crowding
issues of conventional generative modeling approaches for
Single-cell RNA-seq (scRNA-seq). The motivations are:
First, normally, scRNA-seq is very high-dimensional data
with typically low intrinsic dimensionality due to the co-
expressed property of genes. Second, the crowding issues
caused by multidimensional normal prior assumption in
euclidean space lead to unreasonable gathering at the center
of the latent space, even for cells from distinct cell types.
Third, datasets typically have multiple technical and biolog-
ical factors which cannot be handled by current VAE or
batch-correction method. To address above issues, Ding
et al. provided to represent and infer of branched develop-
mental trajectories in the hyperbolic spaces via deep genera-
tive embedding model, of which a wrapped normal [116],
[118] distribution is used as the prior for the latent variable.
In this way, latent representation is learned in the hyper-
bolic space and the resulted latent structure accounts for the
multiple batch effects. Visualization on large datasets with
multiple cell types and hierarchical structures shows a
much better results without cell crowding problems, which
proves the effectiveness of the learned representations.

Another interesting and valuable work is applying
hyperbolic geometry to gene expressions [37] analysis,
which forms an important part to understand how the geno-
type of an organism impacts its phenotype, like disease. The
challenge of this problem lies at the complexity of their rela-
tionship as thousands of genes can affect a single phenotype
of interest [179]. Fortunately, the widespread correlations
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between genes suggests that a low-dimensional geometry
can be applied to model the genetic variation and their
expressions [180]. Therefore, the authors in work [37] devel-
oped a quantitative test for distinguishing the curvature of
the underlying low-dimensional geometry. Besides, by
incorporating hyperbolic metric into the t-SNE method,
they provided visualization tools for data that exhibit a low-
dimensional hyperbolic geometry. Results on several gene
expression datasets from mouse and human prove that
gene expression can be effectively described using low-
dimensional hyperbolic metric.

6 DiSCUSSION AND OPEN PROBLEMS

6.1 When to Expect Benefits From Hyperbolic
Networks

One observation is that hyperbolic embeddings or hyper-
bolic neural networks cannot consistently work better than
the euclidean counterparts [43]. Many times the euclidean
counterpart can recover its superiority when adding the
embedding dimensions. It is not clear whether the hyper-
bolic model can only provide a more compact model or it
can provide a more efficient model with significant perfor-
mance improvement. A better understanding of when and
why the use of hyperbolic geometry is justified is crucial.
Based on current study results, we summarize when to
expect such potential benefits.

First, when there is hierarchical data. This is quite clear
as hyperbolic space is naturally a better place for such data
and could provide a low distortion embedding. Therefore,
for data like realistic complex networks [181], data with
tree-structure, graph with power-law distribution (this can
be organized with latent hierarchy), generally we can expect
a better performance using the hyperbolic space. Second,
when the data or feature has a low Gromov é-hyperbolic-
ity [57]. Basically, for hierarchical data, its § will be very
small. For data without a clear observed hierarchy, Gromov
8-hyperbolicity is a better way to measure this underlying
structure. From work [16], we know for Poincaré disk, they
get experimental value § = 0.18, and for the feature repre-
sentations for minilmageNet learned from VGG, § = 0.17.
Thus, data or feature with similar value can be treated as
data possessing such hierarchy thus can expect an improve-
ment by applying the hyperbolic space. Third, when the
process is expected to have a hierarchical development.
Although the data itself does not possess hierarchy, the evo-
lutionary process of samples may have strong hierarchical
relationships, e.g., the developmental progress of single
cell [15]. Therefore, we can expect success in such relation-
ship modeling task or other reason induction cases. Fourth,
when dealing with huge dataset with extremely limited
resources. Many high-dimensional data exhibit an underly-
ing low-dimensional hyperbolic geometry [37]. As well,
hyperbolic embeddings could provide an extremely low-
dimensional coding with low distortion. In such case, the
hyperbolic space can provide richer information and a more
compact model. Fifth, when model interpretation is much
more important than the performance, the hyperbolic space
is also a better choice. One of the biggest issues of current
euclidean neural network is the lack of interpretability. The
black-box property of deep learning keeps causing concern
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Fig. 3. lllustration of data with different structures. Leftmost shows a data
with cycle. Middle shows a tree-structured data and the rightmost is a
combination.

in real-life applications. For example, a great deep model can
perform very well on the seen-dataset, while it could provide
extremely wrong predicts with very high confidence on the
unseen dataset. On the contrary, hyperbolic model has much
better interpretation as it would give an uncertain prediction
with low confidence [15]. Last, hyperbolic neural models can
also be introduced as a supplemental information branch for
helping traditional euclidean neural model. For instance,
work [133] develops more advanced architectures by the
interaction of euclidean and hyperbolic spaces. The learned
representations show a superiority.

6.2 Which Hyperbolic Model?

As shown in Table 1, majority of the research in the litera-
ture is based on the Poincaré model. However, on one
hand, current research has found that the Lorentz model
has better numerical stability properties [45], due to its large
variance when close to the boundary. On the top of the Lor-
entz model, Yu et al. provided a more stable model [105] by
introducing tiling method. On the other hand, Lorentz
model is un-bounded from the definition, which is not
friendly to modern neural networks. Therefore, more stud-
ies are needed to choose the right hyperbolic model.

6.3 Neural Networks With Mixed Geometries
Currently, we also find a trend to construct neural networks
utilizing mixed geometries.> As mentioned by work [113],
the quality of the learned representations is determined by
how well the geometry of the embedding space matches the
underlying structure of the data. Therefore, for the real-
world data possessing multiple complicated structures, like
in the rightmost of Fig. 3, learning representations via
hybrid geometry may be a better choice. Nonetheless, one
major issue is how to construct the mixed manifold and at
the same time determine its signature. Besides, current opti-
mizations require a costly grid search to tune hyper-param-
eters. Efficient Optimization is also highly expected for the
neural network with mixed geometries.

Fortunately, there are some representative attempts for
mixed geometries, i.e., First, product spaces [113], which uti-
lizes a Riemannian product manifold of model spaces [182],
including hyperbolic spaces , spherical space, and the flat
euclidean space. Second, mixed-curvature method [49],
[128], which partitions the space into multiple component
spaces and learn a curvature for each part. Third, pseudo-
Riemannian manifolds of constant nonzero curvature [132],
[183], which include the hyperbolic and spherical geometries
and whose non-degenerate metric tensor is not constrained
to be positive definite.

2. Note, the ‘Mixed” methods listed in Table 1 combine geometries
with different types of curvature, not different type of hyperbolic
models.
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6.4 Advanced Hyperbolic Networks

One potential direction can be the combination of Riemannian
neural network with advanced deep learning technology. For
instance, exploring new Riemannian neural architectures
with advanced automatic machine learning methods, like
NAS [145]. Work [48] provides to search the best projection
dimension in the Poincaré model, utilizing the NAS method.
However, there is much room to improve by automatically
designing the neural modules, instead of only searching for
optimal projection dimensions. Another important research
topic can be the generalization of more sophisticated euclid-
ean optimization algorithms. In many cases, as mentioned
in [43], fully euclidean baseline models might have an advan-
tage over hyperbolic baselines. One possible reason is that
euclidean space is equipped with much more advanced opti-
mization tools. Once the hyperbolic neural networks are also
equipped with such tools, we can expect more from the pow-
erful hyperbolic networks.
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