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Abstract—5G networks and beyond introduce a larger number
of Network Elements (NEs) and functions than former cellular
generations. The increase in NEs will, thus, result in signifi-
cantly increasing the Management-Plane (M-Plane) data collected
from the NEs. Therefore, the conventional centralized Network
Management Systems (NMSs) will face fundamental challenges
in processing the M-Plane data. In this paper, we present the con-
cept of Quality of Monitoring (QoM) as a solution, which is able
to reduce the M-Plane data already at the NEs. First, QoM aggre-
gates the raw M-Plane data into Key Performance Indicators
(KPIs). To these KPIs, the QoM applies a data-driven algorithm
to define information loss limits for QoM classes specific for each
KPI time series. Then, the QoM applies the classes for compress-
ing the KPI data utilizing a lossy-compression method, which is
a derivative of the Piece-Wise Constant Approximation (PWCA)
algorithm. To evaluate the performance of the QoM solution, we
use M-Plane raw data from a live LTE network and calculate
four KPIs, while each KPI has different statistical characteris-
tics. We also define three QoM classes named Exact, Optimized,
and Sharp. For all KPIs, the class Optimized has a higher com-
pression rate than the class Exact, while the class Sharp has the
highest compression rate. Assuming that, for example, NEs of
a network produce 280 MB of raw data containing information
that needs to be transferred to the network operations center;
we use KPIs to represent the information contents of the data,
and QoM solution to transfer the data over the network. As a
result, the QoM solution achieves an estimated 95% compression
gain from the raw data in transfer.

Index Terms—Quality of monitoring, QoM, cellular networks,
data management, LTE-4G, and 5G.

I. INTRODUCTION

THE EVOLUTION of the 5th Generation of Mobile
Networks (5G) and beyond is accompanied by an increase

in the number of end devices and network services [1]. 5G
networks are expected to have more distributed NEs (e.g.,
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small cells) to meet the demand of ultra-low latency and high
throughput to the end-users [2]. In addition, due to investment
and user retention reasons, network providers are generally
reluctant to scrap the old NEs immediately from their network.
Network providers are compelled to integrate the new NEs
into existing infrastructure instead of replacing the old ones.
This increases the complexity and heterogeneity of the mobile
networks leading to challenges in network management and
operation [3]. The multiplication of NEs and the complexity
of networks will therefore increase the volume of data sourced
from the NEs; and brings up the data transfer, data storage, and
data aggregation challenges at the network Management-Plane
(M-Plane).

Indeed, to operate these complex mobile networks in an
optimal state, fast collection of network statistics from the M-
Plane enables monitoring and management of the networks
in real-time. While the collection and processing of M-Plane
data are facilitated by network management systems (NMSs),
this data is used for network planning, maintenance of
the end-users quality of services, and monitoring of NEs’
performance [4]. It is worth noting that the “M-Plane” refers
to functions, interfaces, protocols, data formats, and storage,
which are used by NMSs and applications to control, configure
and monitor the network status [5], [6].

To overcome the challenges presented above, the research
in [5] presents a simple architecture for distributed computa-
tion and delivery of data. The architecture proposed therein
performs aggregation and refinement of data at the nodes
located at the network operator’s edge cloud and near to
producers of M-Plane data. In addition to the architecture
presented in [5], in this paper, to deal with the challenges
of M-Plane data, we propose the quality of monitoring (QoM)
concept as a solution that uses a set of classes to perform
mobile edge computation and compression of M-Plane data at
the NEs. Whereas, each QoM class has an accuracy limit and
allows a specific amount of information loss. Our proposed
QoM solution can be implemented at different elements of
the 4G, 5G and beyond networks (i.e., eNBs and gNBs)
such as picocells, femtocells, relays, and cellular-based edge
computers.

The QoM solution is designed to minimize the amount of
data to be transferred, that is by filtering data already at the
source and removing redundant or similar data. The QoM
solution achieves compression in three stages. In the first
stage, to reduce the amount of M-Plane data after collecting
and parsing the data, semantic compression is performed by
aggregating M-Plane data into the desired key performance
indicators (KPIs). In the second stage, a lightweight data-
driven method is implemented and identifies the information
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loss limits for QoM classes. In the third stage, a lossy
compression of performance metrics is performed by removing
portions of data with redundant or small information content.
This compression is performed so that the relative amount of
information needed by the applications consuming this data
does not get compromised. The QoM solution is based on
the Publish-Subscribe (Pub-Sub) communication paradigm for
data delivery [7] that helps to optimize the data collection and
delivery from the NEs [5].

To evaluate the feasibility of QoM solution, we implement
a Pub-Sub paradigm using Apache Kafka [8] for streaming of
the compressed data. We also use the M-Plane data from four
KPIs of different NEs from a live LTE network, each hav-
ing different statistical characteristics. We define three QoM
classes named Exact, Optimized, and Sharp and derive their
parameters from the data during a two-week training period.
Then, we apply a lossy-compression algorithm called the
modified version of the Piece-Wise Constant Approximation
(PWCA) algorithm for compression of the M-Plane data. The
evaluation results show the effectiveness of the proposed QoM
solution by reducing the volume of M-Plane data through the
removal of data with small information content as well as
redundant data.

The remainder of this paper is constructed as follows.
Section II presents the state of the art on the data manage-
ment. Section III explains the concept of the QoM and its
core elements. Section IV presents the QoM classes. Section V
explains the evaluation of QoM implementation and presents
the evaluation results. Finally, Section VI concludes the paper.

II. STATE OF THE ART

The evolving cellular networks such as 5G and beyond will
become increasingly heterogeneous with a constantly increasing
number of network elements (NEs). These numerous NEs will
generate huge amounts of measurement data that can be used as
M-Plane data to monitor and analyze the network performance
as well as the quality of service. The M-Plane data are indeed
numerical counters, such as the number of user equipment
attaching to the NE or the number of handovers or different
failures, and physical measurements, e.g., the user equipment’s
signal strength. In practice, these performance measurements
are periodically generated and aggregated to KPI variables [9].
These KPIs provide necessary statistics to the network opera-
tors, helping them to identify their network’s state such as the
parts of the network which are overloaded or underutilized,
as well as the malfunctioning parts of NEs. However, due to
periodic reporting and a large number of performance measure-
ments, KPI time series themselves contribute to the significant
portion of M-Plane data [10]. Therefore, new approaches are
required to efficiently manage the M-Plane data to guarantee
the performance of the network. Indeed, using the traditional
quality and performance management systems that are based
on processing data at the management plane in a central loca-
tion will not be an efficient approach for the management of
multiplying network resources.

In literature, different studies present various approaches
for improving the users’ quality-of-experience (QoE) and

TABLE I
SUMMARY OF ABBREVIATIONS AND NOTATIONS

performance management in cellular networks. For example,
the research in [11] proposes a framework for mobile network
optimization and uses a dataset collected from users’ equip-
ment and mobile networks to improve the users’ QoE. The
research in [12] aims to improve the users’ QoE through
multimedia services using specific KPIs and proposes neu-
ral networks to automatically classify KPIs. The work in [13]
focuses on quality monitoring and estimating user’s QoE in
real-time using QoE-Agents based on a QoE-layered model.
More specifically, this work aims to identify the location and
the operation of the QoE-Agents based on the accuracy of
the measurements and the load in networks. The results show
acceptable error ranges from the measurements, low CPU uti-
lization, and acceptable memory utilization. Another study
in [14] extracts a large quantity of network operators’ data to
identify the most recurring use cases to reduce the churn rate
and increase the average revenue per user. The work in [15]
also monitors communication activity patterns of machine-to-
machine devices over the cellular network and estimates the
quality of services perceived by users.

To reduce the data volume and efficiently utilize the
resources, other studies apply machine learning methods
and compression techniques. For example, the study in [16]
adopts neural network regression as compression and uses
combining techniques including the coefficient averaging,
euclidean distance, cosine similarity, and re-learning in order
to achieve more accurate data representation and prediction.
The research in [17] proposes an artificial intelligence-based
lossless compression algorithm to reduce the size of text mes-
sages in the network. The research applies the algorithm on
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a string with average length of 160 characters and shows the
algorithm leads to reduction of bandwidth utilization and cost
consequently. The study in [18] proposes an algorithm which
combines a recurrent neural network predictor and a lossless
compression method; and uses genomic and text datasets and
achieves around 20% reduction over the traditional compres-
sion method, i.e., Gzip. The work in [19] presents a two-level
approach that selects a compression framework for individual
data points in time-series and then proposes a neural network
structure that tunes parameter values automatically. As a result,
the framework is capable of improving compression ratio by
up to 120% compared to other traditional compression meth-
ods. Moreover, another study considers two approaches of data
compression techniques and formulates mixed-integer nonlin-
ear problems in order to maximize the energy efficiency in
the network. The study conducts a numerical analysis and
confirms the performance advantages of the approaches by
showing a higher energy efficiency of the network [20].

The existing studies in the literature utilize already stored
data in offline mode and present different approaches for
improving the users’ QoE in cellular networks by applying
ML methods and compression techniques. These studies aim
to classify KPIs, estimate user’s QoE, reduce churn rates,
reduce the size of data in the network, or perform mobile
network optimization by improving resource utilization and
maximizing energy efficiency in the network. In contradis-
tinction to these studies, we introduce the QoM concept as a
solution, which uses a set of classes for the compression of
M-Plane data at the mobile edge. The QoM uses live stream
data from the network and aggregates M-plane data into the
desired KPIs and then applies a lossy-compression technique
to minimize the amounts of data to be transferred by filtering
data already at the NE, leading to efficient utilization of the
network resources. Next, we explain the QoM concept and its
components.

III. QUALITY OF MONITORING

The QoM is a solution, planned to optimize the manage-
ment of M-Plane data by mobile network operators. Before
transmitting the data, the QoM solution uses a set of classes
to minimize the amount of data by removing redundant and
repeated data, and data with zero information value. The
QoM classes are used to differentiate data collection, data
transfer and storage from different NEs as well as network
services based on desired data quality and criticality of the
equipment and services. The NEs and services that require
the highest priority for data collection and monitoring are
assigned to the best QoM class, while non-critical elements
and services are assigned to a lower QoM class. The lower
QoM class for data collection implies that the larger por-
tions of data containing relatively small information are not
collected, while the best QoM class collects whole data with-
out any information loss. The QoM solution implements the
classes for differentiated monitoring and data compression
using a set of components. Based upon their functions and
computational resource requirements, these components could

Fig. 1. The high-level system architecture of the QoM concept and it’s core
components.

be executed in mobile edge cloud or core cloud environments
in cellular networks.

The QoM is planned based on the Pub-Sub communication
paradigm which optimizes the data collection in two ways.
Firstly, the request interaction from the consumer of data (i.e.,
NMS Application) is reduced by utilizing a subscription pat-
tern. As a result, the consumer makes the subscription request
once and the source of data publishes data either sporadically
or periodically, depending upon the type of the subscription.
There is no need for repeated data queries as in the case
of polling-based systems [21]. Secondly, if there are multiple
consumers interested in the same stream of data, instead of
collecting the same data multiple times, the Pub-Sub paradigm
collects the data only once from its source and delivers it
to multiple consumers of data. The Pub-Sub communication
paradigm thus helps the solution in saving bandwidth resources
at the mobile edge. Furthermore, the Pub-Sub paradigm gives
flexibility to the consumer to create, modify and cancel a sub-
scription concerning the QoM class on the fly, without affecting
other consumers. Fig. 1 illustrates the high-level system archi-
tecture of the solution. In the figure, the solid lines represent
signaling and the uncompressed data, and dotted lines repre-
sent compressed data generated by a particular QoM class. The
QoM requires setting up the following components:

Data Fetcher (DF): This component can be an integrated or
a separated element that collects data from a network element
or a service. A DF filters out the portions of data with zero or
small information content. A DF performs the filtering based on
a QoM class which is specified in the data collection function.
A DF is installed at the multi-access edge computing (MEC)
platform or a NE and operates at the edge cloud. A DF is
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designed to reduce computational and memory footprints. In
QoM solution, a DF is the producer and publisher of data
in the Pub-Sub paradigm. The DF collects raw M-Plane data
from the NE, parses data, performs computations such as KPI
calculation based upon KPI equations, compresses the data
according to the given QoM class; and delivers the aggregated
and compressed data to the subscribed NMS applications. A DF
communicates with a centralized QoM Database (QoM-DB) to
obtain the necessary KPI equations and QoM class definitions.
A DF publishes the compressed and filtered data (shown with
dotted arrows in Fig. 1) to the Data Switch (DS).

In addition, a DF is divided into two sub-components called
Fetcher and Sender. Fetcher interacts with NEs and receives
subscription requests from the Data Hub (DH), fetches raw
M-Plane data from the NE, uses QoM class definitions
received from QoM-DB and stores M-Plane data as training
data, and applies KPI equation and performs KPI calculation
based upon subscription. The Sender works as a data producer
and interfaces with the DS. Once the Fetcher sub-component
completes the KPI calculation of the subscriber’s requested
data, the data will be then available to the sender component.
The Sender then publishes this compressed data to DS.

Data Switch (DS): This component is installed on the cen-
tral cloud of an operator which has sufficient resources and
a global view of all NEs connected to it. The DS is respon-
sible for buffering and routing of data generated by DFs to
DH. Each data producer (i.e., DFs) and data consumer (i.e.,
DH) should know the details of the brokers in the DS compo-
nent. An example of a broker is Apache Kafka consisting of a
Kafka cluster and a Kafka ZooKeeper. The Kafka ZooKeeper
component of the DS is responsible for coordinating and man-
aging the Kafka cluster that may also consist of multiple Kafka
brokers. The DH subscribes to the DS on behalf of actual
consumers (i.e., NMS applications). Then, the DS delivers
subscription data to the DH that has subscribed for the topic.

Data Hub (DH): This component provides the filtered por-
tions of the collected data for NMS applications needing it.
The DH starts the subscription of data, works in a Pub-
Sub manner, informs the DS about the new subscriptions,
and delivers subscribed data to the NMS Application. The
other tasks of the DH include acknowledging the decrease in
subscription count if the actual consumers cancel their sub-
scription, updating the subscription count if multiple actual
consumers have requested the same subscription, and deliv-
ering data to all interested actual consumers for a particular
subscription.

In the DS, the Kafka ZooKeeper component that is respon-
sible for managing the Kafka cluster maintains the state of
messages (which are being consumed by the particular DH).
That is by maintaining the offset of the last message consumed
by the DH. In addition, the Kafka ZooKeeper is responsi-
ble for creating new Kafka topics for new subscriptions and
destroying a Kafka topic if there are no consumers left who
are interested in that topic. Each producer (i.e., DF) and con-
sumer (i.e., DH) should know the details of at least one Kafka
broker in the DS. However, having information about more
than one Kafka broker would be beneficial from a redundancy
point of view when a Kafka broker fails.

QoM-DB: This component is a database that runs in a cen-
tral location between the network operator and the NEs, and
allows network functions and NEs to communicate with it. The
QoM-DB enables the operators to maintain the KPI calcula-
tion equations of raw M-Plane data. The QoM-DB exposes
two interfaces including i) the operator interface that defines
necessary models containing parameters and equations, and
the QoM class definitions for the particular KPI, and ii) the
interface which is exposed to DFs and which is used to query
about QoM classes applied. These QoM class definitions con-
tain the information loss limits per QoM class for the particular
KPI. Through the latter interface, the DFs also request equa-
tions for all the KPIs, whose subscription was made by the
NMS application. After getting the KPI equations, DF per-
forms the KPI calculation and compresses the KPI data using
given QoM class definitions. The KPIs are calculated from
one or more network (such as LTE) counters. Some KPIs may
be calculated using just one counter while some other KPIs
may use tens of counters, therefore, calculating KPI aggregates
information of various counters into a single value.

IV. QOM CLASSES

In cellular network operations, a significant portion of M-
Plane data is redundant or deviates by a very small amount,
practically conveying no significant information. There are
also various auxiliary NEs that are not critical but generate
the least significant data that comprise a significant share in
the overall M-Plane data. In addition, in current NMS solu-
tions, the least significant data holds the same collection and
storage priority as that of the non-redundant portion of data
from the most critical NEs [22], [23]. Defining classes for the
QoM solution allows the network operator to specify to what
extent the M-Plane data should be collected from the NEs.
In other words, QoM classes determine the information loss
limit that the M-Plane data can tolerate in order to regenerate
meaningful information at the receiving end.

In practice, QoM classes can be defined by two approaches:
1) Network operator-defined QoM class, in which network
operators use their prior knowledge about the network
performance metrics to define acceptable information loss lim-
its for a QoM class. 2) Data-driven QoM class, which uses
a data-driven method for determining information loss limits
for a QoM class at the DF. In this approach, the data which
flows in the DFs is collected and used as the training data set
to obtain those limits.

Note that there are no known practical limitations on the
number of QoM classes. However, in our study we implement
the following three QoM classes.

Class Exact: This class corresponds to the exact (with least
removal of data), i.e., best possible collection and storage of
M-Plane data. In this class, in the compression before the
transmission, subsequent redundant data values are removed.
The data decompression thus restores the exact data series,
and then the information is not lost. This class would be
appropriate, for example, for core NEs such as mobility man-
agement entity and serving gateway, radio access network
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(RAN) elements such as the critical sites, or the elements
which are in the proximity of premium customers.

Class Normal: This class corresponds to minimal
information loss by removal of all subsequent M-Plane
data values, which differ by a small value δ such that
|X [i ]− X [m]| ≤ δ << ̂X , where X[i] is the current data
point, X[m] is the last reported data point, and ̂X is the
median of data sequence X. Note that the removed data
values are approximated by a single data value (i.e., piece
constant). Before transmitting the data, the subsequent data
values that are too similar to the last reported data point, are
removed. The decompression of the compressed data belong-
ing to this class thus produces almost equal data series with
very minimal information loss. This class can be used by the
network operators for monitoring the least critical NEs such
as small/pico/femtocells, which are of no special importance.

Class Sharp: This class corresponds to small information
loss by removal of all subsequent M-Plane data values which
differ by the small value δ′ such that |X [i ]−X [m]| ≤ δ′ <<
̂X , where δ < δ′, X[i] is the current data point, X[m] is the
last reported data point and ̂X is the median of data sequence
X. This class removes all data values less than δ′ away from
the last reported data point and represents them by a single
value, i.e., the last reported data point. The decompression
of the compressed data belonging to this class thus produces
similar data series with small information loss. This class can
be applied for monitoring auxiliary NEs in the network such
as repeater RAN elements and picocells, femtocells, and gNBs
in the least critical places.

V. EVALUATION OF QOM SOLUTION

The proposed QoM concept implements the QoM classes
for differentiated monitoring and compression of M-Plane data
using a set of components as explained in Section III. Based
upon the functions and computational resource requirements,
these components can be implemented in a mobile edge cloud
or core cloud environment in the cellular network architec-
tures. In this section, we evaluate the QoM solution using an
experiment. Hence, we first explain our implementation setup
for QoM solution. Then, we evaluate the results achieved from
the experiment.

A. Experimental Setup

To evaluate the proposed QoM concept, we carry out an
experiment utilizing two private cloud environments provided
by Nokia for research and development purposes. As shown in
Fig. 2, one environment is based on the HP Matrix cloud [24]
and another environment is based on OpenStack [25]. The dif-
ferent components of the QoM solution run in separate virtual
machine instances of these two clouds. Fig. 2 illustrates the
overall setup of the experiment. In the following, we explain
the details of the implementations of the experiment.

Data Fetchers are distributed in both HP Matrix and
OpenStack cloud environments and run in separate virtual
machines. Each virtual machine has 1 GB of memory, 2.4 GHz
dual-core processor, and Ubuntu as the operating system. In
the setup, we implemented a total of 25 DFs, while 12 DF

Fig. 2. Experimental setup and the data flow between the components of QoM
solution. DF and NE refer to Data Fetcher and Network Element, respectively.

instances operate on HP Matrix cloud and 13 DF instances
run on OpenStack cloud. Each DF instance replayed M-Plane
data of live LTE Cells, which are part of a real network. As
explained earlier in Section III, a DF fetches and sends the
data. We implemented the Fetching using a Python script and
we utilized Java programming language and the API of Kafka
producer for sending the data. Then, we tested DF with a
Python interpreter and JDK in the Linux environment.

Data Switch consists of one instance of Apache Kafka
Broker and Kafka ZooKeeper. We used Apache Kafka for
implementing Kafka Broker and ZooKeeper, which runs on
two separate virtual machines in the HP Matrix cloud. Kafka
Broker’s virtual machine has 16 GB memory, a 2.3 GHz
dual-core processor, and CentOS as the operating system.
ZooKeeper’s virtual machine has 2 GB memory, a 2.4 GHz
processor, and Ubuntu as the operating system.

QoM-DB is deployed on a separate virtual machine in the
OpenStack Cloud. This virtual machine has 2 GB memory, a
2.3 GHz processor, and Ubuntu as the operating system. In
the setup, we used Python programming language in a Linux
environment to implement QoM-DB as an HTTP server.

Data Hub implemented on a virtual machine in the HP
Matrix cloud. The virtual machine has 2 GB memory, a
2.3 GHz processor, and Ubuntu as the operating system. We
also implemented the DH in the Java programming language
and tested it with JDK in a Linux environment.

Consumer is an emulated network operator center (NOC)
that consumes the M-Plane data. The emulated NOC in a real
network scenario would be an actual NOC that monitors the
network operation through KPIs. In our setup, we deployed
the emulated NOC on a virtual machine in the HP Matrix
cloud. This virtual machine has 4 GB memory, a 2.4 GHz
processor, and Ubuntu as the operating system. We imple-
mented an emulated NOC as an HTTP server using Python
and JavaScript programming languages, and then we made a
subscription using the DH.
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B. The LTE Network Data

For the experiment, we collected raw M-Plane data from
a live LTE network in Northern Europe. The collected data
which was about 4-week duration with hourly measurements
of LTE performance counters were applied for KPI calcula-
tion and finding compression gains achieved from the QoM
solution. Then, for evaluation purposes, we calculated four
different KPIs. Since the KPIs did not ideally follow any stan-
dard statistical distribution, we performed the Cullen and Frey
test [26]. The test revealed that a majority of KPIs follow the
Beta Distribution [27], allowing us to compute the standard
deviation σ for each KPI. Following are the four KPIs and
their different statistical characteristics:

• LTE_5017a: a static KPI (Median = 100; σ = 0.02)
whose value is generally 100 and rarely fluctuates.

• LTE_5178a: a moderately static KPI (Median = 99.65;
σ = 2.1) whose value is often 100 and fluctuates
occasionally.

• LTE_5518a: a non-static KPI (Median = 1001.93; σ =
321.32) whose values are changing often.

• LTE_5520a: a non-static KPI (Median = 906.04; σ =
315.6) whose values are changing often.

C. Comparing Compression Techniques

The traditional lossless compression and archiving tech-
niques such as zip, gzip, bzip2, xz, and tar allow the original
data to be perfectly reconstructed from the compressed data.
These techniques package the data into a dense format by
eliminating all the empty spaces or repeating bit patterns
in the files [28]. Unfortunately, these techniques have major
drawbacks when applying them to a streaming time series of
NE performance data (which consist of a set of values of
several different performance parameters and measurements).
Whereas, each single data point is relatively small compared to
the collection of all M-Plane data points for the same period. In
addition, each data point contains relatively small amounts of
redundant bit patterns. Therefore, the gain that the traditional
lossless compression methods provide is small per data point.
These lossless compression methods also rely on having the
complete compressed bitstream available when decompressing
the data, which can not be guaranteed in a real network envi-
ronment. Because, if any of the data points are lost, the rest
of the stream may become impossible to decompress.

In comparison, applying lossy compression for the time-
series data will significantly reduce the amount of data. For
example, Piece-Wise Constant Approximation (PWCA) is a
compression technique, where a set of subsequent data points
are represented by a constant value (such as a median or mean
value called the piece). These data points that lie close to each
other are assumed to be part of a single piece. The PWCA
technique includes offline and online algorithms [29]. The
PWCA offline algorithms can play a better role in archiv-
ing time-series data at the database end, but they cannot
be used for compressing M-Plane data at its source (i.e., in
the NEs, which have strict velocity requirements of M-Plane
data) [30], [31]. Therefore, to implement lossy compression
we propose a modified version of the PWCA online algorithm
(mPWCA) for QoM compression, inspired by the algorithm

Algorithm 1 Modified Piece-Wise Constant Approximation
(mPWCA) Algorithm for KPI Series Compression

1: Set S = [s[1], s[2], . . ., s[n]]
2: Set Information Loss Limit (Iloss � 0)
3: Set PWCA(s) = ()
4: Set i = 1
5: Set m = 0
6: Set PieceConstant = 0
7: Set CurrentPiece = ()
8: while (S.hasMoreValues()) do
9: m = S[i]

10: if (| PieceConstant - m | � Iloss ) then
11: CurrentPiece.clear()
12: append(m,i) to CurrentPiece
13: append CurrentPiece[0] to PWCA(s)
14: PieceConstant = CurrentPiece[0][0]
15: else
16: append(m,i) to CurrentPiece
17: end if
18: i = i + 1
19: Publish PWCA(s)
20: end while

proposed in [31]. Applying the mPWCA algorithm overcomes
the limitations of the PWCA algorithm and enables faster data
collection cycles. It also allows removing redundant data trans-
fers which lead to reducing energy consumption. The logic of
our proposed mPWCA is presented in Algorithm 1.

In the algorithm, in lines 1 and 2, the algorithm takes an
online time-series S = [s [1], s [2], . . . , s [n]] and (Iloss ≥ 0) as
the input; and then generates compressed online time-series in
line 19 as it’s output. In the algorithm, an online time-series
S = [s [1], s [2], . . . , s [n]] is compressed to form a time-series
PWCA(S) within the error bound Iloss . Where Iloss can be
an operator defined or from data derived information loss
limit for a given QoM class. In line 10, the algorithm checks
if each incoming data point qualifies as the member of the
ongoing piece, if and only if it is not deviating from the ongo-
ing piece’s constant by more than the information loss limit
(Iloss ), which is specified for compression. In lines 11 and 12,
all of the data points which fall under the same piece are rep-
resented by the piece constant in the compressed series. In
lines 13 and 14, on the creation of a new piece, the constant
of the new piece is appended to the compressed list and a new
PieceConstant is formed. In line 16, if a data point is deviating
less than the information loss limit from the ongoing piece’s
constant, it is appended to the current piece. Note that in the
algorithm, CurrentPiece is a list of tuples, where tuples are
in the form of [Time constant, KPI value]. While
CurrentPiece[0] represents the first tuple of CurrentPiece list,
the CurrentPiece[0][0] represents the value of the first element
of the first tuple, which in this case is the KPI value.

D. Compression Gain

The QoM solution achieves compression of data in two
steps: i) First by performing KPI calculation that is by
aggregating LTE raw data in the form of LTE counters to the



HOSSEIN MOTLAGH et al.: QoM FOR CELLULAR NETWORKS 387

LTE KPIs, and ii) second by performing lossy compression
of the LTE KPI data through the QoM class implementa-
tions. Within the first step, we aggregate the LTE counter
data into LTE KPIs at the mobile edge. This aggregation leads
to a significant reduction in data. For KPI calculation, if we
assume that an operator is interested in N KPIs, while each
KPI requires k counters. If these KPIs are not calculated at
the network edge (i.e., DFs in this paper), then (N × k) data
values will be transferred. It is also worth noting that different
LTE KPIs require a different number of counters for calcula-
tion, and hence the value of k will vary for different KPIs. In
our study, the minimum and maximum values of counters k
were 1 and 27, respectively. These values are from the LTE
KPI documentation of the source network.

In real life, each NE is capable of producing several
thousand parameters in which some of these parameters are
updated every second. For instance, in the live LTE data used
in this paper, there are about 2800 parameters produced by
each of the NEs. Note that each network includes a massive
number of operating elements, i.e., NEs. For example, in a
large 5G network, there might be from one hundred thousand
to one million NEs. From these figures, if we assume the num-
ber of NEs is equal to x, thus, we can derive an imaginary scale
for the transferred data amounts by 105×2800×1/s×x bytes,
which results in the order of 280 × x MB/s. After performing
KPI calculation, if we assume the average of 10 parameters per
KPI is reduced, then the transferable data amount decreases
to 28 × x MB/s per KPI. This number will even be further
reduced by the QoM compression (in the second step of the
QoM solution) as explained in the following.

In the second step, to show the performance of applying
the lossy compression (as explained in Section V-C) on the
KPI calculated data and to evaluate the compression gain
achieved by QoM solutions; we conducted experiments by
both networks operator defined and Data-driven QoM class
definition approaches.

1) Network Operator Class Definition: In our study, the
number of transactions refers to the number of KPI data points.
These data points need to be sent from a DF to the DS. In
our experiment, we compressed each of the four KPIs at the
DF with different information loss limits. We also defined the
information loss limits for a KPI as (K ×σ) and increased the
K from 0.0 to 1.5.

All the network elements (in our case eNBs) produced the
same set of KPI data. Note that if the KPI data comes from
different networks, their distribution varies from one network
to another. But, if the KPI data comes from one network,
their distributions are often constant among elements having
similar contexts. In the experiment, we used the data of four
KPIs, which all come from the NEs of the same network.
We applied QoM compression to all of their time-series data
and then summed up the results to the network level. As our
test data comes from only one network and we have achieved
results with a deterministic process (which produces the same
results every time for this data set), we do not observe any
variation.

The results of network operator-defined classes are shown in
Fig. 3. These results explain the amount of expected data loss

Fig. 3. Compression achieved and Mean Square Error concerning different
information loss limits (k × σ) used for the compression.

when applying the compression algorithm within the proposed
QoM solution. Fig. 3(a) illustrates the compression achieved in
KPI data using different information loss limits (K×σ). As we
observe from this figure, with the increase in the information
loss limits (K), the number of transactions (that refers to the
number of KPI data to be transferred) considerably reduces
for all KPIs. The descending trends in the shape of all KPIs
show the effectiveness of implemented network operator-based
class defined approach. The results in this figure illustrate that
K is linearly correlated with the number of transactions, that
is by increasing the values of K. The increase in K also signif-
icantly decreases the number of transactions which translates
to considerably compressing of the data points. For instance,
by selecting K = 0.2, the proposed mPWCA algorithm com-
presses a considerable amount of data for all of the KPIs. In
the case of LTE-5518a (shown by red color) the amount of data
reduces almost by half. In addition, setting a bigger value for
K compresses the data significantly but at the price of losing
more information. However, the compression reduction rate
after K = 0.6 becomes almost stable.

Fig. 3(b) shows the variation of mean squared error (MSE)
of the compressed time-series data. This error is expressed as
the percentage of the corresponding time-series median value.
As depicted in the figure, with the increase in the information
loss limit (i.e., increasing values of K), all of the KPIs illustrate
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a small increasing trend by the MSE metric. For each KPI at
each K value, the amount of MSE increases slightly. When
K = 0.2, the compression rate is low, and accordingly when
K = 1.2, the compression rate is the highest. Indeed, when the
value of MSE is high the accuracy of the proposed solution
is low, i.e., it efficiently compresses large amounts of data but
loses the information. For example, if we select K = 1.2, the
data can be compressed almost by 100%, leading to high MSE
values and information loss for some KPIs. However, in this
case, some other KPIs can still carry information that might
be feasible for some monitoring tasks.

The results in the figures depict that the best value for K
would be 0.6 as it guarantees efficient compression, i.e., a
considerable amount of data reduction by the implemented
algorithm (mPWCA). Indeed, this best value ensures optimal
performance for the QoM solution. The results also approve
the effectiveness of the implemented mPWMC algorithm in
the QoM solution. These results therefore could be used by
network operators, for instance, to decide the information loss
limit definitions (i.e., setting the value of K) for different QoM
classes, as K = 0.6 would be the best limiting number in this
case.

2) Data-Driven QoM Class Definition: Due to the differ-
ent distribution behaviors of KPI data in the real cellular
networks, we use the Absolute Consecutive Deviation σA
as the model to define information loss limits for the QoM
Classes. Thus, for the set of time series data X , such that
X = (x(1), x(2), . . . , x(k)), where x(k) ∈ R is the value
observed by the real-world process at any time point k,
we define a series of absolute consecutive deviation σA as
σA = (|x(1) − x(2)|, |x(2) − x(3), | · · · · · · |, x(k−1) − x(k)|)
and observe its value distribution within each transferred time
series over the training period.

As the statistical metric, the σA can be used for determining
information loss limits for the QoM classes. The σA depicts
the changes and variations in the data. Thus, it enables the
operator to decide which deviations between consecutive KPI
values are insignificant to be removed in the compression and
the deviations, which are significant to be reported to the con-
sumer. In addition, the observation of value distribution of each
σA also requires only a lightweight computation, which makes
it suitable to be performed at the MEC platforms. To this end,
in our implementation, we applied σA as the metric to define
the information loss limit (shown by Iloss in Algorithm 1)
and defined the following three QoM classes:

• Class Exact: Information loss limit was set to 0.
• Class Optimized: Information loss limit was set to 25th

percentile of σA of the training data.
• Class Sharp: Information loss limit was set to 50th

percentile of σA of the training data.
This data-driven QoM class definition method can be further

enhanced in the future. It is possible to use lightweight ML
methods to increase the accuracy of the method by identifying
additional redundancies and correlations from the time series.
For example, unsupervised clustering of M-Plane data could
be used to identify repeating system states, where the devia-
tions between consecutive values can vary. One such method
could be K-Means clustering algorithm, which is one of the

TABLE II
THE COMPRESSION (C) AND ERROR (E) PERCENTAGES FOR DIFFERENT

KPIS ACHIEVED USING DATA-DRIVEN QOM CLASS COMPRESSIONS

most popular unsupervised learning algorithms [32]. Indeed,
the K-Means clustering algorithm can group unlabeled dataset
instances into clusters based on similar attributes. In addi-
tion, the K-means clustering algorithm is a compressed sensing
algorithm that can compress real-time and large datasets [33].

Next, we train the DFs for the duration of two weeks and
start the compression of the KPI series. In our implementation,
we recorded the number of KPI transactions when the com-
pression started to find compression gains. Table II presents
the overall compression results including the compression gain
and the error rate (MSE) achieved in compression of KPI
data for the three QoM classes. In the results, KPI’s MSE
is expressed as the percentage of KPI’s median value.

Let us study compression gains given in Table II. Let’s con-
sider the real-world example that we studied earlier in the
second paragraph in Section V-D, where after KPI calculation,
data volumes reduced from 280 × x MB/s to 28 × x MB/s = V.
Let us now consider all of the elements in a network. Let
us assume that in the network, we need the precise data
of 10% of the NEs. In this case, the QoM class Exact is
the accurate class to be applied. In the network for 40%
of the NEs, it is accurate enough to use the QoM class
Optimized. For the rest of NEs which are auxiliary, it is
good enough to apply the class Sharp. Let us assume fur-
ther that the types of analyzed KPIs represent the types of
all KPIs of the NEs which are equally distributed. Thus, we
can use the average of compression gains in each class to
estimate the achieved compression in KPIs of NEs, to which
the class has been applied. Hence, considering Table II as an
example, the compression gain for class Exact is (63.78 +
37.66 + 6.3 + 4.5)/4 ≈ 28. Correspondingly, compression
gains for classes Optimized and Sharp equal approximately
to 44 and 60 correspondingly. As a result, we achieve straight
forward estimation for a data volume reduction of KPI data V:
(1 − 28/100) × (10/100) × V + (1 − 44/100) × (40/100) × V
+ (1 − 60/100) × (50/100) × V = 0.5 × V. Thus, the amount
of transferred data gets down to 14 × x MB/s from the original
280 × x MB/s, which gives us an estimated 95% compression
gain from the original data rate.

E. QoM Resource Consumption

Our proposed QoM solution is designed to be installed at
the network edges at MEC platforms [34], which are known to
have limited CPU and memory resources [35]. Thus, running
applications which demand heavy computational resources
may violate the MEC environments. To this end, we eval-
uate the CPU consumption and the memory utilization of
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TABLE III
CPU UTILIZATION AND AVAILABLE MEMORY OF DATA

FETCHER WITH 200 KPI SUBSCRIPTIONS

the QoM solution. In our experiment which we explained in
Section V-A, we measured the computational resource con-
sumption by making two subscriptions from the NEs. The
first subscription streamed the resource consumption of the
DF and the second subscription streamed the KPI data (calcu-
lated by the DF from M-Plane raw data). Then, the DFs were
set to compute and publish the increasing number of KPIs in
each iteration, and also record the consumed computational
resources during each iteration from the DFs. The resource
consumption of the DFs was also measured using a Linux
utility named Collectl [36]. Then, to study the computational
resource utilization of the QoM, we run our test-bed two times.
Without implementing QoM solution and when implementing
the QoM as described in the followings:

Without QoM Setup: In this experiment, we monitored the
resource consumption of DFs while the QoM solution was not
implemented. The DFs were assigned to i) Fetch KPI equation
from QoM-DB (Once at the start of subscription), ii) Fetch
necessary counters from M-Plane data, and iii) Calculate KPIs
and publish KPIs data to the DS.

With QoM Setup: In this experiment, we monitored the
resource consumption of DFs while the QoM concept was
implemented. We replayed the M-Plane data for the dura-
tion of 4 weeks. We further divided the experiment into two
phases: 1) Training phase and 2) Compression phase. The
training phase is required if in QoM-DB, the QoM class def-
initions are not defined by the network operator. During the
training phase, the DFs learn the QoM class definitions and
they don’t perform compression. In our experiment, the train-
ing phase lasts until DF analyses M-Plane data of at least
2 weeks and learns QoM class definitions. After the train-
ing phase, the compression phase starts in which KPI data
is compressed. In our experiment, we recorded the compu-
tational resource consumption by the DFs in both training
and compression phases as follows. For both phases, the DF
was assigned to i) Fetch the KPI equation from QoM-DB and
ii) Fetch necessary counters from the M-Plane data for the KPI
computation. In addition to these, for the training phase, the
DF was also assigned to learn QoM class definitions and pub-
lish KPI data without compression. The compression phase is
also assigned to compress KPI as per the defined QoM class
specified by the QoM-DB. If definitions were not available by
QoM-DB, the DF fall-backed to QoM class definitions learned
by the DF and then publishes the compressed KPI data to
the DS.

Results of Resource Utilization: Table III presents the
performance results of CPU utilization and memory utiliza-
tion measured during the experiment (in both cases of with
and without implementing the QoM solution).

The results for without setting up the QoM showed
that the CPU utilization increased almost linearly with KPI
subscriptions. With 200 KPI subscriptions, the mean and
median CPU utilization was around 22% and 21%, respec-
tively. A relatively high CPU utilization peak was seen in
each iteration when KPI subscription was started, which was
taken as start-up overhead and was not considered as CPU
utilization. With 200 KPI subscriptions and while perform-
ing KPI calculations, results show that a considerable amount
of memory is consumed, such that approximately 240 MB of
memory becomes available from the CPU’s memory capacity
of 800 MB.

The results of the experiment when setting up the QoM in
both the training and compression phase showed that the CPU
utilization and memory consumption at the DF was higher
compared to experiments without the QoM setup. As presented
in Table III, when implementing the QoM, available memories
in training and compression phases were 89 MB and 80 MB,
respectively. While, without implementing QoM, the available
memory was 240 MB. Similarly, the mean CPU utilization
when implementing QoM in training and compression phases
were 25.5%, and 28%, respectively. When the QoM was not
implemented, the CPU utilization was lower and the available
memory decreased with the increase in KPI subscriptions.

These results are indeed natural since, in both experiments,
the operation uses considerable amounts from the available
resources like around 560 MB memory without implementing
QoM, and 711 and 720MB when training and applying the
QoM setup, respectively. In addition, the results are acceptable
because of the availability of resources needed for running the
QoM solution.

F. Comparison With the State-of-the-Art

The works in the state-of-the-art implement the traditional
compression methods and the lossy compression techniques to
use the available resources efficiently. These studies use differ-
ent datasets, each having different volumes and have varying
types and different data formats. While some studies compare
the traditional compression methods, others implement ML
algorithms to optimize resource consumption. While the ML
algorithms used in the studies are not similar, some works con-
sider CPU and while others use GPU to conduct a performance
evaluation. Indeed, comparing the performance results of the
studies in the state-of-the-art with the results obtained in
this paper seems inappropriate. Because the datasets and
methodologies applied in the literature are dissimilar to our
implementation.

For example, the work in [17] uses an artificial intelligence-
based lossless compression algorithm and applies a dataset that
includes tiny strings with an average length of 160 characters
per dataset. As a result, the work reduces the size of data sig-
nificantly with a compression rate of 84.31%. The study in [18]
uses genomic and text datasets and combines a recurrent neu-
ral network predictor and lossless compression method; and
achieves around 20% reduction over Gzip on the datasets. The
work in [19] uses a reinforcement learning-based approach
for compression of time-series data and improves compression
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ratio by up to 120% (with an average of 50%), compared to
compression methods called Gorilla, MO (Middle-Out), and
Snappy. Then, the work studies bandwidth utilization of the
method using a combined CPU and GPU platform for Gorilla,
MO, and Snappy. The results show that the Gorilla and MO
are stable with average performances of around 100 MB/s and
1.3 GB/s, respectively. Snappy’s performance varies a lot by
reaching around 60M B/s in most cases. Then, the work eval-
uates the compression performance using GPU and achieves
a performance of around 900MB/s.

In our paper, we propose the QoM concept as a solution that
uses three classes to minimize the amount of M-Plane data by
removing redundant data and data with minimum information
value at the network edge. Within the classes, at the network
edge, the QoM solution aggregates the data into KPIs and
applies a lossy compression to compress data. The implemen-
tation results applied to real-world LTE networks KPI data
show that the QoM solution achieves a high compression gain
for the three classes which apply different loss limits, and
needs reasonable CPU and memory resources for operating.

VI. CONCLUSION

Cellular communication networks are evolving rapidly and
appear with an increasing number of network infrastructure
and elements. Current network monitoring solutions will face
fundamental challenges in the future, if they continue using
the conventional approached of monitoring the M-Plane data.
While the increasing number of network elements generate
more and more data; a significant portion of this data includes
redundant or small information content which translates to the
least significant and has no value for monitoring. In this paper,
we presented the concept of Quality of Monitoring (QoM) as
a solution for monitoring the M-Plane data which aggregates
the data into KPIs and uses a set of classes to compress data at
the mobile edge before monitoring. While the QoM solution
uses a set of classes which each has a different information loss
limit that can be defined by the network operator or can learn it
using data-driven or machine learning methods at the network
edge. The QoM then applies a lossy-compression algorithm
called mPWCA algorithm to further compress the data. We
evaluated the performance of the QoM solution using raw
M-Plane data from a live LTE network and computed four
KPIs, such that each KPI has a different statistical character-
istic. The results show the significant performance of the QoM
solution by considerable compression of the M-Plane data at
the network edge and efficiently utilizing the network edge
resources such as the CPU and the memory.
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