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Editorial
Biologically Learned/Inspired Methods

for Sensing, Control, and Decision

THE Special Issue aims at collecting new ideas and
contributions at the frontier of bridging the gap between

biological and engineering systems. Contributions include a
wide range of related research topics, from neural computing
to adaptive control and cooperative control, from autonomous
decision systems to mathematical and computational models,
and from neuropsychology-based decision and control to engi-
neering system sensing and control algorithms, as well as
applications and case studies of biologically inspired systems.
This editorial note provides a brief overview of the accepted
articles.

I. OVERVIEW OF THE SPECIAL ISSUE

Sensing, control, and decision making are subjects of exten-
sive investigation for decades in control system theory and
control system design. An important focus of the studies
is for engineered systems to achieve desired performance,
and be resilient to externally or internally caused errors and
unpredictable failures. In essence, this requires engineered
systems capable of learning and self-reconfiguring, and having
awareness of itself and the environment within which it is
operating. Thus, reliable sensing and decision making in
engineered systems are called for. Traditional engineering
approaches have taken into account these design consider-
ations, but usually, the solutions are costly. Yet, biological
organisms in nature have successfully demonstrated their supe-
rior capability of processing a large amount of information,
dealing with uncertainties when perceiving and processing
information of their surroundings, adapting to environmental
changes, and recovering from their internal errors and failures.
All these important attributes are what engineered systems
long for. It is therefore expected that biologically learned and
inspired methods may offer fundamentally new theoretical
frameworks for and new design approaches to addressing
system robustness and reliability. Thus, seeking inspiration
from biological systems for modeling, control and decision
making has naturally become a prudent and promising option.
The goal of the Special Issue aims at collecting new ideas
and contributions at the frontier of bridging the gap between
biological and engineering systems. Contributions include a
wide range of related research topics, from neural computing
to adaptive control and cooperative control, from autonomous
decision systems to mathematical and computational models,
and from neuropsychology-based decision and control to engi-
neering system sensing and control algorithms, as well as
applications and case studies of biologically inspired systems.
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In response to the call for papers for this Special Issue, 79
manuscripts were received and reviewed, and 30 manuscripts
were accepted for publication, making an acceptance rate of
approximately 38%. These manuscripts have been classified
into three groups. Below, we highlight the main features of
each article.

II. BIOINSPIRED DECISION AND CONTROL

In [A1], Gao and Yin present a two-level event-triggered
mechanism for neuroadaptive control with exponential con-
vergence property. The two-level event-triggered mechanism,
which incorporates both static and dynamic event-triggered
features, is motivated by how biological systems adapt in
response to low- and high-speed changes in the environment.
The simulation results demonstrate that the proposed method
can guarantee system stability while consuming less commu-
nication resources.

In [A2], Homchanthanakul and Manoonpong propose a
bioinspired control approach based on neuroscientific stud-
ies of cats for lifelong continuous (online) adaptation of
autonomous walking robots. It integrates three main func-
tions of biological neural systems, namely, control, memory,
and learning. The functions are realized through a neural
central pattern generator (CPG)-based control, an artificial
hormone network with embedded temporal memory, and an
unsupervised input correlation-based learning. All these neural
mechanisms rely on information from proprioceptive sensory
feedback, rather than exteroceptive sensory feedback or an
environmental model, to control and continuously adapt robot
leg movement. By doing so, the robot successfully traverses
complex and novel terrains, such as gravel, grass, and extreme
random stepfield, with energy-efficient locomotion. It also
performs proactive obstacle negotiation involving long-lasting
working memory guided by short-term memory.

Spiking neurons are widely used in neuromorphic comput-
ing, a main motivation of which is energy efficiency. Under
similar motivation of spiking neural networks, Wei et al. [A3]
propose a new bioinspired adaptive dynamic programming
(ADP) method, called spiking ADP (SADP). It aims to solve
optimal impulsive control problems for discrete-time nonlinear
systems. By means of the SADP method, where spike train and
spiking interval data are obtained from biological experiments
and modeled as a Poisson process, optimal spiking instances
and optimal spiking control laws at each spiking instance are
obtained. This work advances from previous work that relies
on fixed impulsive intervals.

Inspired by an octopus’s ability to use vacuum grippers and
suction cups to flexibly grip objects, Qian et al. [A4] develop
a new microgripper for deformation control of biological
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samples. An adaptive robust controller is designed to diminish
the influence from model nonlinearities and parameter uncer-
tainties for accurate control. Experiments are carried out using
zebrafish larvae as testing biological samples. Results suggest
that the deformation of a biological sample is well controlled
and the gripping is efficient and functional.

In [A5], Liu et al. propose a novel multi-output selective
ensemble regression (SER) evolving model for online identi-
fication of multi-output nonlinear and time-varying processes.
The method is inspired by the fundamental evolving principle
of biological systems, namely, the ability to acquire new
knowledge into memory and to remove out-of-date knowledge
from the memory so that intelligent decisions can be made
based on the latest and the most relevant memory. Two real-
world industrial case studies have demonstrated that the pro-
posed multi-output selective ensemble identification technique
attains the best online modeling accuracy when compared with
a range of state-of-the-art methods for online identification
of nonlinear and nonstationary multi-output processes, while
imposing a reasonably low online computational complexity
which meets the real-time operation constraint.

Studies of mammalian brain networks have revealed highly
intricate structures about the connections between neurons
that consist of several clusters, where the neurons within
the same cluster establish more connections with one other
while the neurons within different clusters establish less con-
nections. By mimicking this character of the neural system,
Chen et al. [A6] present a diversified multiclustered echo state
network and apply it to deal with modeling uncertainties and
coupling nonlinearities in the control systems. Consequently,
a diversified multiclustered echo state network-based method
is established for the asymptotic tracking control of a class of
uncertain multi-input multi-output systems. The effectiveness
of the proposed method is confirmed by numerical simulation
and by comparing it with a multilayer feedforward network-
based control scheme and a traditional ESN-based control.

Yu et al. [A7] propose a distributed adaptive fault-tolerant
time-varying formation control scheme for multiple unmanned
airships (UAs) to provide safe observation of a smart city in the
presence of actuator faults, limited communication range, and
input saturation. A distinctive feature of the proposed control
scheme is a simultaneous consideration of multiple design
challenges due to time-varying formation flight, actuator faults
including bias and loss-of-effectiveness faults, limited commu-
nication range, and input saturation. It is proven by Lyapunov
stability analysis that all UAs can achieve a safe formation
flight for the smart city observation even in the presence of
actuator faults.

In [A8], Zhao et al. propose an event-triggered ADP for
nonzero-sum games of continuous-time nonlinear systems
with completely unknown system dynamics. Compared with
the traditional time-triggered mechanism, the proposed algo-
rithm updates the neural network weights as well as the inputs
of players only when a state-based event-triggered condition
is violated. It is shown that the system stability and neural
network weight convergence are still guaranteed under mild
assumptions with reduced demand on communication and
computation resources.

Inspired by how some biological organisms make decisions
collectively, such as that of a honeybee swarm searching for
a new colony, Li et al. [A9] study the dynamic collective
choice problem for a large number of heterogeneous agents
under the influence of adversarial disturbances. To address
this problem, they present a new robust mean-field game
(RMFG) with respect to non-convex and non-smooth cost
functions. Optimal control strategies are designed through
Nash certainty equivalence principle. The proposed method
provides a decentralized approach to realizing the collective
decision-making behavior emerged in biological systems.

III. BIO/NEURAL-INSPIRED COMPUTING

Biological brains effectively avoid catastrophic forgetting
through the cooperation of three brain regions: hippocampus,
neocortex and prefrontal cortex. The hippocampus and the
neocortex contribute to specific and generalized forms of
memory, respectively. The interplay of such two memory
systems can be mediated by the prefrontal cortex. Inspired
by such a brain strategy, Wang et al. [A10] propose a novel
approach named triple memory networks for continual learn-
ing. This is the first attempt to model the triple-network theory
(hippocampus-prefrontal cortex-(sensory) cortical modules) of
the brain memory system for continual learning, which bridges
the two fields of artificial neural networks and biological
neural networks.

Neural coding, including encoding and decoding, is a key
subject in neuroscience for understanding how the brain uses
neural signals to relate sensory perception and motor behavior
with neural systems. In [A11], Xu et al. propose a transcod-
ing framework to encode multi-modal sensory information
into neural spikes and then reconstruct stimuli from spikes.
This framework is not only feasible to accurately reconstruct
dynamical visual and auditory scenes, but it also rebuilds the
stimulus patterns from functional magnetic resonance imaging
(fMRI) of brain activities. More importantly, it is characterized
by its immunity to various types of artificial noise and noise
from the ambient environment.

In [A12], Zhang et al. analyze problems that backpropaga-
tion (BP) faces in a deep spiking neural network (deepSNNs),
namely, the nondifferentiable spike function, the exploding
gradient, and the dead neuron problems. To address these
issues, the authors propose a rectified linear postsynaptic
potential function (ReL-PSP) for spiking neurons and a
spike-timing-dependent BP (STDBP) learning algorithm for
DeepSNNs. They evaluate the proposed method on both a
multilayer fully connected SNN and a C-SNN. Evaluations
using the MNIST dataset show an accuracy of 98.5% in the
case of the fully connected SNN and 99.4% with the C-SNN,
which is the state-of-the-art in spike-driven learning algorithms
for DeepSNNs.

In [A13], Galan et al. present a novel digital implementation
of a time difference encoder for temporal encoding on event-
based signals. It translates the time difference between two
consecutive input events into a burst of output events. The
number of output events along with the time intervals between
events encodes the temporal information. The proposed model
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has been implemented as a digital circuit with a configurable
time constant, allowing it to be used in a wide range of sensing
tasks that require encoding of time differences between events,
such as optical flow-based obstacle avoidance, sound source
localization, and gas source localization.

In [A14], using a “divide and conquer” strategy, Wu et al.
propose a chain-structure echo state network (CESN) with
stacked subnetwork modules as a new deep recurrent neural
network. The network structure, mathematical model, training
procedure, and stability analysis are studied for CESN. Then,
the stochastic local search (SLS) algorithm is adopted to
fine-tune the output weights of CESN in order to further
enhance the accuracy and generalization ability of CESN. The
experimental results based on four time series prediction tasks
clearly demonstrate that the proposed SLS-CESN outperforms
the BP, Elman, and ESN benchmarks.

Intrinsic plasticity (IP), which changes the intrinsic
excitability of an individual neuron by adaptively tuning the
firing threshold, has been shown crucial for efficient infor-
mation processing. However, this learning rule imposes an
overhead on computation time at each step, causing addi-
tional energy consumption and compromising computational
efficiency. In [A15], Zhang et al. present two novel event-
driven IP learning rules, namely, input-driven and self-driven
IP, based on the basic IP learning. It is demonstrated that the
two event-based IP rules significantly reduce IP updating oper-
ations, and thus result in sparse computation and accelerated
processing of recognition tasks.

As an alternative approach in emulating biological functions
of the human brain, oscillatory neural networks (ONNs) are
potentially suitable for solving large and complex associative
memory problems. In [A16], Todri-Sanial et al. investigate
the dynamics of coupled oscillators to implement ONNs
and present a novel method based on subharmonic injection
locking (SHIL) for controlling the oscillatory states of coupled
oscillators that allow them to lock in frequency with distinct
phase differences. The circuit-level simulation results indicate
the effectiveness of SHIL and its applicability to large-scale
oscillatory networks for pattern recognition.

Inspired by memory replay and synaptic consolidation
mechanism in the brain, a novel and simple framework termed
memory recall (MeRec) for continual learning with deep
neural network is presented by Zhang et al. [A17]. The authors
propose a memory module to store statistical features from
certain layers of deep networks and an orthogonal regulariza-
tion to update the network. With both modules, deep networks
are expected to remember knowledge from previous tasks.
The experiment results show that MeRec outperforms previous
state-of-the-art approaches with at least 50% accuracy drop
reduction for several compared tasks. Furthermore, MeRec
achieves this performance with a small memory budget (only
two feature vectors for each class) for continual learning on
CIFAR-10 and CIFAR-100 datasets.

Deep-learning-based methods have achieved remarkable
performance in 3-D sensing since they perceive environ-
ments in a biologically inspired manner. Nevertheless, existing
approaches trained by monocular sequences are still prone

to failure in dynamic environments. In [A18], Sun et al.
mitigate the adverse influence of dynamic environments on the
joint estimation of depth and visual odometry (VO) through
hybrid masks. They propose a cover mask and a filter mask
to alleviate the adverse effects, respectively. As the depth
and VO estimation are tightly coupled during training, the
improved VO estimation promotes depth estimation as well.
The experimental results show that both depth prediction and
globally consistent VO estimation are state of the art when
evaluated on the KITTI benchmark.

In [A19], Jang and Simeone investigate the capacity of
probabilistic spiking neural networks (SNNs) to generate
independent outputs when queried over the same input. It
is shown that multiple output samples from probabilistic
SNNs can be used during inference to robustify decisions and
to quantify uncertainties - a feature that deterministic SNN
models cannot provide. They also introduce an online learning
rule based on generalized expectation–maximization (GEM)
that follows a three-factor form with global learning signals
and is referred to as GEM-SNN. The experimental results on
the neuromorphic dataset MNIST-DVS are used to evaluate
multisample inference and GEM-SNN learning rules, which
has improved training and testing performance in terms of
accuracy and calibration result over conventional single sample
schemes.

In [A20], Ladosz et al. present a new bioinspired neural
architecture that combines a modulated Hebbian network
(MOHN) with deep Q-network (DQN), called as modulated
Hebbian plus Q-network architecture (MOHQA), for solving
partially observable Markov decision process (POMDP) prob-
lems. The key idea is to use a Hebbian network with rarely
correlated bio-inspired neural traces to bridge temporal delays
between actions and rewards when confounding observations
and sparse rewards result in inaccurate TD errors. It was shown
that the combination of DQN and MOHN can match and even
outperform advanced algorithms such as A2C, AMRL, and
QRDQN + LSTM on confounding POMDPs.

IV. BIO-INSPIRED APPLICATIONS

Guo et al. [A21] propose a new distributed learning-based
real-time optimization algorithm which mimics how human
minds process information and make decisions by first reach-
ing into their experience library followed by further fine-
tuning. Their design addresses the allocation of power among
all dispatchable and distributed energy resources in an islanded
microgrid system. Under the proposed two-layer distributed
framework, a group of deep neural networks coordinated by
a dynamic average consensus algorithm is used to generate
an approximated optimal solution. It is further finetuned
by a balance generation and demand algorithm to obtain a
global optimal solution. Case studies show that the proposed
distributed learning framework achieves orders of magnitude
speedup in computational time while guaranteeing similar
optimal results to typical distributed numerical optimization
methods.

Surface electromyography (sEMG) signals have been
applied widely in the control of a prosthetic hand. however,
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signal dropping is common during sEMG signal acquisition
due to wireless interference or failure during data transmission.
To recognize hand gestures under mild signal dropping condi-
tions, Duan and Yang [A22] propose a data split reorganization
(DSR) strategy to fully utilize available data. The authors
demonstrate improved performance in dealing with signal
dropping by using a weighted multiple neural network voting
(WMV) approach.

In [A23], Wang et al. propose a multi-objective evolution-
ary nonlinear ensemble learning model with an evolution-
ary feature selection mechanism (MOENE-EFS) for silicon
prediction in a blast furnace. In MOENE-EFS, the input
features of each base-learner are automatically selected by a
multiobjective evolutionary algorithm, which makes it possible
to discover potentially better input feature combinations that
have a significant effect on the change of silicon content.
The experimental results indicate that the proposed strat-
egy is effective in improving the accuracy and stability of
the prediction model and outperforms other prediction mod-
els based on both benchmark data and practical industrial
data.

In [A24], Xing et al. propose a novel spiking neural network
using three biologically plausible modules to imitate how
multiple brain regions work together to create visual guidance
when manipulating fragile objects in a tight operating space.
The three brain regions, which include the visual cortex,
cerebellum, and prefrontal cortex, are emulated to represent
the functions of sensation, reaction, and prediction, respec-
tively. Experimental results validate the proposed algorithm
by showing collision-free movements with high precision.

Inspired by the biological self-repair mechanism of astro-
cytes, Hong et al. [A25] propose a self-repairing neuron
network circuit that utilizes a memristor to simulate changes
in neurotransmitters when a set threshold is reached. When
faults occur in a synapse, the neuron module becomes silent
or near silent because of the low release probability (PR) of the
synapses. The damaged neuron can be repaired by enhancing
the PR of other healthy neurons, analogous to the biological
repair mechanism of astrocytes. This self-repairing circuit
implemented on the robot provides improved tolerance to
failure and effectively improves the dependability and stability
of the robot.

In [A26], Ran et al. propose a novel edge-computing
system for image recognition via memristor-based blaze block
circuit. In the backward propagation, the authors use batch
normalization (BN) layers to accelerate the convergence. In the
forward propagation, the proposed circuit combines depthwise
separable convolution neural network (DwCNN) layers/CNN
layers with nonseparate BN layers, which means that the
required number of operational amplifiers is reduced. The
experimental results show that the proposed memristor-based
circuit achieves an accuracy of 84.38% on the CIFAR-10 data
set with advantages in computing resources, computation time,
and power consumption.

In [A27], Raz and Akbarzadeh propose a chemo-mechanical
cancer-inspired swarm perception (CMCISP) based on online
nano fuzzy haptic feedback for early disease diagnosis and
targeted therapy. Furthermore, a hybrid computational frame-

work of the Cellular Potts Model (CPM) at mesoscale, swarm
perception at the microscale, and fuzzy decision-making at
the nanoscale is presented. Epithelial cancer cell’s scaffold is
performed as a carrier, its properties as a distributed percep-
tion mechanism, and its motility patterns of anti-durotaxis,
blebbing, and chemotaxis as swarm movements. Cancer site
convergence with CMCISP is analytically proved using swarm
control theory and artificial potential functions. The numerical
experiment results, based on actual clinical data from in
vivo experiments, demonstrate the merits of the CMCISP in
early cancer detection, converging to the cancer tumor, and
improved normoxic cell density, even in a noisy environment.

Head direction cells (HDCs), found in the limbic system of
animals, are proven to play an important role in identifying
the directional heading allocentrically in the horizontal plane.
However, practical HDC models that can be implemented
in robotic applications are rarely investigated. In [A28],
Bing et al. propose a computational HDC network that is
consistent with several neurophysiological findings concerning
biological HDCs. The authors demonstrated its implementa-
tion in robotic navigation tasks. The experiment results show
higher accuracy of estimating the directional heading of the
robot than the previous work and better robustness than the
method that directly integrates the angular velocity.

In [A29], Wang et al. propose a multivariate varia-
tional mode decomposition and canonical correlation analysis
(MVMD-CCA) algorithm to improve the recognition capa-
bility of steady-state visual-evoked potential (SSVEP) elec-
troencephalogram signals. The algorithm takes advantage of
electroencephalogram (EEG) signals characterized by multi-
variate modulated oscillations and multi-channel representa-
tion. First, MVMD is used to decompose non-linear and non-
stationary EEG signals into a fixed number of sub-bands, so as
to enhance the effect of SSVEP-related sub-bands. Then, CCA
is performed between multivariate oscillations and reference
signals, and the target frequency is identified according to
the correlation coefficients. Offline experiments on a public
dataset and the SSVEP-based online grasping experiment of
Baxter robots are used to demonstrate the performance. It
is shown that the recognition accuracy and the information
transfer rate of the MVMD-CCA algorithm are significantly
improved over the filter bank canonical correlation analysis
(FBCCA) algorithm.

In [A30], Zhang et al. investigate the bin-packing problem
in a changing environment, where a number of items of
different shapes are to be packed at different time instances. By
mimicking the experience-based reasoning process of humans,
they propose a novel brain-inspired experience reinforcement
model, which takes advantage of both biological and engi-
neering systems, to derive an optimal decision process that
maximizes the utilization of bins. The proposed model mimics
functional coordination among brain regions by employing
knowledge representation and knowledge extraction mod-
ules. The first module emulates the function of information
processing and experience storage, and the second module
is for training reasoning strategies and improve the decision
performance. Experimental results validate that the proposed
model is capable of adapting under information uncertainty
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and outperforms the state-of-the-art methods in solving bin
packing problems in varying environments.
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