
IN PREPARATION FOR SUBMITTING TO IEEE TRANSACTIONS ON MULTIMEDIA 1

Uncertainty-Guided Semi-Supervised Few-Shot
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Abstract—Class-Incremental Learning (CIL) aims at incre-
mentally learning novel classes without forgetting old ones.
This capability becomes more challenging when novel tasks
contain one or a few labeled training samples, which leads
to a more practical learning scenario, i.e., Few-Shot Class-
Incremental Learning (FSCIL). The dilemma on FSCIL lies in
serious overfitting and exacerbated catastrophic forgetting caused
by the limited training data from novel classes. In this paper,
excited by the easy accessibility of unlabeled data, we conduct a
pioneering work and focus on a Semi-Supervised Few-Shot Class-
Incremental Learning (Semi-FSCIL) problem, which requires
the model incrementally to learn new classes from extremely
limited labeled samples and a large number of unlabeled samples.
To address this problem, a simple but efficient framework is
first constructed based on the knowledge distillation technique
to alleviate catastrophic forgetting. To efficiently mitigate the
overfitting problem on novel categories with unlabeled data,
uncertainty-guided semi-supervised learning is incorporated into
this framework to select unlabeled samples into incremental
learning sessions considering the model uncertainty. This process
provides extra reliable supervision for the distillation process and
contributes to better formulating the class means. Our extensive
experiments on CIFAR100, miniImageNet and CUB200 datasets
demonstrate the promising performance of our proposed method,
and define baselines in this new research direction.

Index Terms—Few-shot learning, class-incremental learning,
object classification, computer vision, semi-supervised learning,
deep learning, knowledge distillation, uncertainty estimation

I. INTRODUCTION

In the past decade, deep learning has achieved startling
progress in various computer vision tasks, such as image
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classification [1], [2], [3], object detection [4], face recogni-
tion [5], semantic segmentation [6], image synthesis [7], etc.
Very often, the high performance of deep learning networks
has been achieved by the standard form of offline supervised
learning (batch learning) which usually assumes that the
training data contains all interested classes with each class
having abundant labeled samples. This is problematic in many
realistic applications such as robotics and streaming data.
Under this setting, the learned model is only as good as the
static training data it builds on, may be unable to recognize
any object that is not in the training data. The model needs to
be retrained from scratch with enough additional data relevant
to the new categories, thus is very expensive to adapt and
robustly generalize [8]. This, however, is in stark contrast with
common real-world conditions that the model operating in the
deployment scenario may encounter new categories that were
not present in the initial training [9]. Therefore, it is of great
importance to enable the model to have the ability to learn
new categories incrementally without forgetting the previously
learned categories. To this end, Class Incremental Learning
(CIL) which aims at incrementally learning deep learning
networks to recognize new categories has been receiving
increasing attention in recent years [10], [11].

CIL is certainly a challenging problem, as it has to learn
a number of different tasks sequentially while still perform
well on old ones by reserving the knowledge learned from
previous tasks. Current CIL works are mainly divided into
replay methods [10], regularization-based methods [11] and
parameter-isolation methods [12], [13]. Replay methods aim
to store part of samples belonging to previous categories
in raw format or generate pseudo samples with generative
models. Regularization-based methods focus on introducing
an additional regularization term in the loss function, and
the most popular line for this family method is knowledge-
distillation-based [14]. Parameter-isolation methods try to
preserve significant parameters of the model. However, these
three kinds of methods all require the model to be well trained
with a massive number of labeled samples in order to select
preserved samples or important parameters. However, in CIL
scenario, with more and more classes arriving, it is costly and
time-consuming to collect abundant labeled data for each new
class. It is very realistic that one can only obtain very limited
labeled samples but lots of unlabeled data due to various
factors such as privacy or security issues. Thus, to overcome
the aforementioned limitations, label-efficient techniques like
FSL techniques are useful, leading to several works on a
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Fig. 1. The task configuration. The first session’s training set is a large-scale
labeled training set D1. The sets of following sessions are all N-way K-shot
semi-supervised few-shot task settings with labeled data Dl and unlabeled
data Du.

very realistic setting, i.e., Few-Shot CIL (FSCIL)[15], [16].
There is the biological inspiration for this learning paradigm
[17], as human learning is knowledge-driven and we maintain
knowledge learned from all previous tasks, apply them to help
us solve new tasks with one or several examples (few-shot
learning ability) [18], [19], [20] without forgetting old tasks,
and incrementally learn and accumulate new knowledge.

There are only several works on the FSCIL setting [15],
[21], [22], [23]. Tao et al.[15] first proposed to use neural
gas to model the topology of each category in feature space.
Zhu et al.[23] proposed a novel incremental prototype learning
scheme to solve FSCIL tasks. Although these methods can
accomplish remembering seem categories before and adapting
fast to new categories with limited samples, the model
still suffers from class-imbalance and overfitting problems.
Moreover, the radical problem of FSCIL, the inadequate
labeled samples in each incremental session, has not been
solved. Fortunately, in the field of natural object classification,
a huge number of unlabeled images (e.g., the massive
amounts of unlabeled images available from the Internet)
are significantly cheap to obtain. Making good use of such
unlabeled data to complement the insufficient of labeled data
becomes crucial, which is also the target of Semi-Supervised
Learning (SSL). As we discussed above, semi-supervised
approaches [24], [25] that can leverage unlabeled data are
of particular interest. Therefore, in this paper, we present a
study aiming to go beyond the aforementioned limitations
by considering a very practical learning setting, i.e., Semi-
Supervised FSCIL (Semi-FSCIL), where new classes are
registered incrementally and with only a few labeled samples
and many unlabeled data. To the best of our knowledge, we
are the first to study this Semi-FSCIL setting.

The task configuration of Semi-FSCIL is illustrated in
Fig. 1. In the first session, the model is trained with a large-
scale training set. In the following session, few-shot labeled
data with unseen categories and an available unlabeled dataset
arrive. Significantly, the model can be guaranteed to skillfully
memorize all previously seen categories in each session.
Compared to FSCIL, considering that the imported unlabeled

dataset can facilitate the training process, the proposed Semi-
FSCIL setting can alleviate the negative effect caused by the
class imbalance between old and new categories.

To address the Semi-FSCIL problem, with the Uncertainty-
guided semi-supervised learning method, we propose a simple
Knowledge Distillation-based FSCIL framework termed Us-
KD. The distillation-based method, a more popular strategy
for addressing CIL tasks, can memorize the old knowledge
by forcing the network to maintain the same output logits as
the previous model. Nevertheless, Tao et al. [15] point out
that existing distillation-based CIL methods are inappropriate
for solving FSCIL tasks where limited labeled samples of
new categories bring difficulty in maintaining the output
logits for old classes because of a larger learning rate and
stronger gradients. Since we introduce unlabeled data into each
incremental session of FSCIL and it can be approximately
treated like general CIL where a massive number of labeled
samples belonging to novel categories are contained, our
proposed distillation-based framework for Semi-FSCIL setting
can perform better.

In each incremental learning session, the semi-supervised
learning paradigm is implemented via pseudo-labeling-based
strategies. To decrease the prediction uncertainty on unlabeled
samples, we propose to apply a novel uncertainty-guided
semi-supervised learning method for the new Semi-FSCIL
setting. Specifically, we select unlabeled samples and the
corresponding pseudo labels using the uncertainty-guided
module in the semi-supervised learning process.

This paper is an extended version of our prior publica-
tion [26] in ICIP 2021. In comparison with our previous
ICIP version, this submission features several significant
improvements extending the preliminary conference version
as follows. (1) Deep learning networks express uncertainty
(like under-confident or over-confident) in their prediction,
especially when they are trained with noisy data, or very
limited data like FSL and FSCIL, or when they face novel
categories. Understanding this can help get better performance
out of it. However, the preliminary conference version [26] did
not consider the impact of noisy pseudo-labels of unlabelled
data, leading to suboptimal performance. In this study, we take
this issue into consideration and propose an effective solution
by exploring uncertainty guidance to improve the performance
of Semi-FSCIL. (2) This work is a much more comprehensive
study of the novel Semi-SFCIL problem in terms of several
aspects, including motivations, literature review, approach
analysis, and experiments. Finally, the main contributions of
this paper are summarized as follow.
• To the best of our knowledge, we are the first to focus

on the Semi-Supervised Few-Shot Class-Incremental
Learning (Semi-FSCIL), which is devoted to the under-
explored challenging semi-supervised form of FSCIL.
The detailed problem description and configuration are
provided.

• With the unlabeled data, the knowledge distillation-based
CIL framework is applicable for the FSCIL task. Based
on the developed distillation-based framework, we embed
an uncertainty-guided module to guarantee an efficient
semi-supervised learning procedure.
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• To better model the data distributions of classes with lim-
ited labeled samples, we use the popular nearest-mean-of-
exemplars classification in the proposed framework and
propose a weighted class-mean calculation with labeled
data and incorporated unlabeled data.

• Extensive experiments on the CIFAR100, CUB200,
miniImageNet benchmark datasets are provided to
demonstrate the proposed Us-KD achieves remarkable
results. In addition, we conduct careful ablation studies
on benchmark FSCIL datasets, verifying the efficacy of
the proposed method.

The remainder of the paper is organized as follows.
In Section II, we review the related work. Section III
introduces the formulation of the novel Semi-FSCIL. We
present our proposed framework in Section IV. Section V
reports the experimental results and analysis on CIFAR100,
miniImageNet, and CUB200 datasets. Our conclusion and
future work are presented in Section VI.

II. RELATED WORK

This paper conducts a pioneering work, i.e., embedding
the semi-supervised learning into the FSCIL process. In this
section, closely-related works on semi-supervised learning,
few-shot learning, and class-incremental learning are discussed
in detail.

A. Few-Shot Learning

Few-shot learning (FSL) aims to solve the target task with
limited labeled samples per class and a related source dataset
whose knowledge can be transferred to the few-shot target
task. Vanilla FSL can be categorized into data-augmentation-
based methods [27], [28] targeting at enlarging the limited
labeled dataset in the instance level or the feature level,
and prior-knowledge-based methods containing two series of
methods: meta-learning-based methods and transfer learning-
based methods [29], [30], [31], [32]. The paradigm of transfer
learning-based methods simply pretrain a model with a large-
scale dataset and further finetune the model on the FSL task
with the strategies of alleviating overfitting.

Recent efforts on meta-learning-based FSL develop toward
the following three directions. (i) Metric learning-based
methods [33], [34], applying the metrics to measure the
distance or similarity among support images and query images.
Vinyals et al.[33] first introduce the metric learning into the
FSL task, where the training image and the test image are
mapped into embedding space. Then, the attention mechanism
is used to obtain the similarity of images. (ii) Optimization-
based methods [35], [36] focus on optimizing parameter
configurations of a given neural network such that it can
effectively be fine-tuned on FSL tasks within a few gradient-
descent update steps. MAML [35] aims at obtaining optimal
initialization parameters of the model through training. (iii)
Memory-based methods [37], [38] model the support set
of the FSL task as a sequence and formulating it as a
sequence learning task. The query samples are required to
match with the previously obtained knowledge. Santoro et
al. [37] demonstrate the ability of a memory-augmented neural

network to rapidly assimilate new data and leverage this data
to make accurate predictions after being trained on only a few
samples.

Recently, several challenging settings of FSL have been
proposed, e.g., semi-supervised FSL and unsupervised FSL.
In the semi-supervised FSL scenario, some unlabeled samples
of the source/target dataset are also available. The work [39]
extends the prototypical network by incorporating unlabeled
data to update the original prototypes. Liu et al.[40] use the
transductive propagation network to propagate labels from
labeled images to unlabeled images along with the constructed
graph. In unsupervised FSL, the source dataset is totally
unlabeled. CACTUs [41] applies clustering on source data
to obtain pseudo labels and constructed meta-tasks from
clusters randomly by regarding every cluster as a specific class.
UMTRA [42] selects N samples from unlabeled training set
randomly, and the probability that these N pictures belonged
to different categories is very high, so these N pictures
are constituted as one N -way 1-shot meta-task. Progressive
clustering and episodic training are used in UFLST [43] to
implement unsupervised meta-training.

B. Class-Incremental Learning

The Class-Incremental Learning (CIL) aims at incremen-
tally learning a unified classifier to recognize all encountered
categories. The main challenge of CIL is the catastrophic
forgetting [44] on previous categories when learning new ones.
To overcome the difficulty, great efforts have been devoted to
the following two directions. The first direction is to identify
and preserve significant parameters of the original model [12],
[13], and the second one is preserving the knowledge of the
old model through some strategies like knowledge distillation
[45], [46].

We name the methods following the first direction as
parameter-based approaches which try to assess the importance
of each parameter in the previous model and set high penalty
values of significant parameters learning. The work [12]
remembers old tasks by selectively learning the weights that
are important for those tasks. Inspired by biological neural
networks, Zenke et al.[13] introduce intelligent synapses
that bring some biological complexity into artificial neural
networks. Moreover, each synapse accumulates task-relevant
information over time and exploits this information to rapidly
store new memories without forgetting old ones. Memory
Aware Synapses (MAS) [47] computes the importance of the
parameters of a neural network in an unsupervised and online
manner. Nevertheless, these methods are difficult to make a
reasonable metric to evaluate the significance of parameters.

Transferring knowledge [48], [49] from one network to
another is a solution to retain the previous capabilities of
the original network. Knowledge distillation technique [14]
is an effective and simple method to transfer the knowledge.
Another type of CIL method [50], [45], [46], [11] is to
memorize via the distillation technique. Expert gate [50] uses
only new task data to train the network while preserving the
original capabilities. In this work, a set of gating autoencoders
are introduced to learn a representation for the current task,
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and automatically forward the test sample to the relevant
expert at the test stage. iCaRL [10] learns strong classifiers
and a data representation simultaneously. Hou et al.[11] aims
to solve the class-imbalance problem in CIL by introducing
three constraints.

To bypass the difficulty of labeled data acquisition, some
works are devoted to introducing few-shot learning into CIL,
and lead to a new realistic scenario, i.e., Few-Shot CIL
(FSCIL) [15], [16]. Existing methods for FSCIL mainly follow
two strategies. The first one is knowledge representation
and refinement. Tao et al.[15] propose TOPIC to model the
topology of feature space using neural gas. TOPIC preserves
the old knowledge by stabilizing the topology of neural
gas, and adapts the feature space by pushing the new class
training sample towards a correct new neural gas node with
the same label and pulling the new nodes of different labels
away from each other. Zhang et al.[51] adopts a simple
but effective decoupled learning strategy of representations,
and Continually Evolved Classifier (CEC) is proposed by
employing a graph model to propagate context information
between classifiers for adaptation. Zhu et al.[23] proposes
a novel incremental prototype learning scheme to solve the
FSCIL task. The other strategy is via knowledge distillation.
Cheraghian et al.[21] employs the word embedding as
the semantic information during training and an attention
mechanism on multiple parallel embeddings of visual data is
proposed to align visual and semantic vectors, which reduces
issues related to catastrophic forgetting.

C. Semi-Supervised Learning

Semi-Supervised Learning (SSL) focuses on learning a
robust model by leveraging a few labeled data and a large
amount of unlabeled data. There are many SSL approaches
which are mainly divided into consistency-regularization
methods [24], [25], pseudo-labeling [52], [53], transductive
model [54], generative modeling [55] and graph-based
methods [56], [57].

Consistency-regularization methods target making the net-
work’s outputs invariant to small input perturbations. However,
this method always relies on an extensive set of data
augmentations requiring domain-specific knowledge. Miyato
et al.[24] applies perturbations to the input that changes the
output predictions. A recent work [58] incorporates a time-
consuming metric to choose time-consuming examples for
consistency regularization effectively. Pseudo-labeling is to
generate pseudo labels for unlabeled data by using the model
trained on labeled data. The pseudo labels of unlabeled data
can be created by the predictions of trained neural network
[53] or assigned based on neighborhood graph [59].

Transductive models aim to optimize the models using the
training set and the testing set for the prediction process.
TSVMs [60] propose transductive support vector machines
by taking into account a particular test set and minimizing
misclassifications of just those particular examples. Joachims
et al.[54] presents a transductive version of k nearest-
neighbor classifier. Graph-based methods aim to build a
graph connecting similar observed information, and the label

information propagates through the graph from labeled to
unlabeled nodes. In [56], labeled and unlabeled data are
represented as vertices in a weighted graph, with edge weights
encoding the similarity between instances. Liu et al.[57]
presents that the label propagation scheme could be highly
effective when the similarity metric used for propagation was
transferred from other related domains.

Our proposed scenario, a very practical learning setting, i.e.,
Semi-Supervised FSCIL (Semi-FSCIL), where new classes are
memorized incrementally with only a few labeled samples
and many unlabeled data, extends semi-supervised learning
into FSCIL. For the Semi-FSCIL task, by incorporating
pseudo-labeling-based semi-supervised learning method into
the FSCIL learning framework, the unlabeled data will
participate in distillation-based class-incremental learning to
alleviate overfitting and class-imbalance problems of FSCIL.

III. THE SEMI-FSCIL PROBLEM FORMULATION

The goal of Semi-FSCIL is to incrementally learn novel
classes in a semi-supervised manner on top of a base session
initializing the model. Once the training is completed, the
model F (·) will be able to classify samples from all the seen
classes so far. As for the model F (·), it usually contains the
backbone Θ (·) for extracting features and the classification
model Γ (·).

Fig. 1 presents an illustration of the Semi-FSCIL task
configuration. Commonly, we present a sequence of disjoint
datasets by D = {D1, D2, ..., Dm}, where D1 is the large-
scale base dataset used in the first base session and the
followings are all novel few-shot datasets. We first conduct
the base session using a large-scale labeled base dataset
D1 = {(xj , yj)}|D1|

j=1 where yj ∈ C1 and C1 denotes the
category set. After that, we incrementally inject novel data
with new categories to the model in the following incremental
sessions. In the i-th session, we train the model on the dataset
Di = Dl

i ∪ Du
i , Dl

i and Du
i denote the labeled training data

and unlabeled training data, respectively. The labeled training
data Dl

i = {(xj , yj)}N×Kj=1 consists of N classes Ci with K
labeled examples per class, i.e., a N -way K-shot problem.
The unlabeled training data Du

i = {xj}Mj=1 only comprises
unlabeled samples, where M � K. Noteworthy, there is
no overlap between the categories of different sessions, i.e.,
Ci ∩ Ci′ = ∅, where i 6= i′. With this configuration, we
give the distribution formulation of Semi-FSCIL. In traditional
supervised learning, the domain required to learn encompasses
the feature space X and marginal probability distribution
p(x). The task is made of the label space y and conditional
probability distribution p(y|x). For any session i and i′ in
Semi-FSCIL, Xi = Xi′ , while pi(x) 6= pi′(x), yi 6= yi′ and
pi(y|x) 6= pi′(y|x). Moreover, the unlabeled dataset shares the
same feature space and label space with the labeled dataset.
This configuration is inspired by real-world applications: lots
of unlabeled samples can be more easily collected, while
annotations are only assigned for a few samples due to the
costly labeling.
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Fig. 2. The proposed Semi-FSCIL framework. Our incremental learning framework is knowledge-distillation-based. We apply the nearest-mean-of-exemplars
rule on classification and prioritize exemplars selection based on herding. Moreover, we combine the uncertainty-guided module for selecting unlabeled
samples, conducting knowledge distillation and updating prototypes with labeled and unlabeled samples. Only classification loss is computed in the base
session, and an extra distillation loss is performed in the following incremental sessions.

IV. KNOWLEDGE DISTILLATION-BASED SEMI-FSCIL
FRAMEWORK

In this section, we introduce the proposed Us-KD frame-
work for Semi-FSCIL. We first present the overview of
the framework, then the uncertainty-guided semi-supervised
learning and knowledge distillation process in Us-KD, and
lastly the computation of class-means in the Semi-FSCIL.

A. Overview

Our Us-KD is illustrated in Figure. 2. First, the model
is trained with D1 by computing the classification loss to
obtain F1. At the end of session 1, we select an exemplar
set E2 used in session 2 from D1 following [10] for distilling
the knowledge. When it comes to the second session, F2

is initialized by F1 and F1 is regarded as the reference
model, i.e., the teacher. With the labeled dataset and unlabeled
dataset together, uncertainty-guided semi-supervised learning
is conducted to learn novel categories. First, Dl

2 is fed to the
model for supervised learning. After that, unlabeled iterations
are conducted to add unlabeled samples together with the
obtained pseudo labels into the training process of F2. During
training in this session, we compute the classification loss
and the distillation loss on the exemplar set E2. Finally, by
adding samples from the current dataset, E2 is updated into
the labeled exemplar set E l3 with the ground-truth and the
unlabeled exemplar set Eu3 with the obtained pseudo labels.
The procedure of session 2 will be iteratively implemented for
the rest sessions to accomplish the FSCIL task. The pseudo-
code about the whole procedure of Semi-FSCIL with Us-KD
is illustrated in Algorithm 1.

B. Uncertainty-Guided Semi-Supervised Learning

To alleviate the overfitting problem on new categories, we
propose to add unlabeled data into each incremental learning
session, which is the semi-supervised learning setting. Pseudo-
labeling-based and consistency-regularization-based methods
are the two main series of methods for SSL. One issue
with consistency-regularization-based methods is that they
often rely on a rich set of augmentations that require
domain knowledge. In the few-shot learning setting, domain
knowledge is too limited to conduct the augmentation process.
Pseudo-labeling-based SSL methods do not inherently require
augmentation and can be generally applied to most domains.
In this way, we apply the pseudo-labeling-based SSL method
on the proposed Semi-FSCIL framework.

There are several methods to generate pseudo-labels. We
adopt the approach in which pseudo labels are obtained
directly from network predictions. Assuming an unlabeled
dataset Du = {xj}Mj=1 in a specific incremental learning
session and the pseudo labels set is Ỹ = {ỹj}Mj=1. The
probability outputs of a trained model on the unlabeled sample
xj is set to pj , and pcj represents the probability of the sample
xj belonging to class c. Based on the probability outputs, the
pseudo labels of xj can be created as:

ỹj = 1
[
pcj == max(pj)

]|pj |
c=0

, (1)

where max(pj) is the maximum of pj .
The common assumption in SSL is that the decision

boundary should move from high-density regions to low-
density regions in the learning process [61]. Pseudo-labeling-
based methods select unlabeled samples with high confidence
predictions, and this indeed makes decision boundaries move
in the right direction. Nevertheless, consistency-regularization-
based methods outperform pseudo-labeling-based methods in
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recent works. The reason is that incorrect predictions can have
high confidence scores in poor calibration neural networks
[62]. In the Semi-FSCIL setting, the model is introduced
with a few labeled data of novel classes and updated for
several epochs in each incremental learning session. Then
the prediction on unlabeled data is conducted. In this way,
the prediction uncertainty is very high since the distribution
of novel categories can not be modeled with very limited
labeled data. For the Semi-FSCIL, unlabeled data is used
to complement the inadequate of novel categories; thus the
quality of pseudo labels is significant for improving the
overall performance on seen categories. Although confidence-
based selection reduces the error rates of pseudo labels, it is
not satisfied for Semi-FSCIL since the number of unlabeled
samples is much larger than that of labeled samples. Unlabeled
data contributes more to update the model, and the quality of
pseudo labels is of great significance. To tackle this problem
of high uncertainty, we combine an uncertainty-guided module
into our Semi-FSCIL.

Assuming u (·) is the uncertainty function of a prediction
for a specific unlabeled data. In order to compute the
uncertainty of prediction in a specific session i, we obtain
the predictions for a certain unlabeled xj with random
crop and random horizontal flip for L times represented as
[p1

j , p
2
j , ..., p

L
j ], and final pj is defined as

pj =

(∑L
l=1 p

l
j

)
L

, (2)

and u(pj) is defined as

u(pj) = std
(
{plj}Ll=1, pj

)
, (3)

where std is the standard deviation function.
Let gj = [g1

j , g
2
j , ..., g

Ci
j ] ⊆ {0, 1}Ci be a one-hot vector

representing the pseudo label of sample xj , where gcj = 1
when ỹcj is selected as the pseudo label and otherwise gcj = 0.
With the definitions above, we set gj as

gj = 1
[
pcj == max(pj)

]|pj |
c=0

1[u(pj) ≤ κu], (4)

where κu is the uncertainty threshold. We add the additional
uncertainty-guided module u(pj) into the pseudo label
selection process to ensure that the model is sufficiently stable
to select the correct pseudo labels.

C. Knowledge Distillation in Semi-FSCIL

Class-incremental learning aims to incrementally learn
new categories that are never seen previously. When new
categories are encountered, the classification model is updated
by learning the novel samples. The discriminative ability of
old categories is undermined, which refers to catastrophic
forgetting. To mitigate this forgetting issue, the knowledge
distillation technique is employed in class-incremental learn-
ing framework with the achieved state-of-the-art results [10],
[11]. The core of knowledge distillation-based methods is
to maintain the network’s output logits corresponding to old
categories in two neighboring sessions. Specifically, with new
classes arriving, an extra distillation loss is introduced to

the existing cross-entropy loss to ensure that the current
model mimics the teacher model’s performance in the previous
session. In this way, the incremental learning loss function is
computed as:

L(Di, Ei,F) = Lce(Di, Ei,F) + λLdl(Ei,F), (5)

where Lce means the cross-entropy loss and Ldl denotes
the distillation loss. Di is the training set of current session
i, and Ei is old class exemplars drawn from previous sets
{D1, . . . ,Di−1}. Ldl can be implemented in various ways and
holds the form generally:

Ldl(Ei,F) = −
|Ei|∑
j=0

τ(Fi−1(xj))log(τ(Fi(xj))), (6)

where Fi is the model obtained in the ith session, and
τ(νi) = ν

1/Ω
i /

∑
j ν

1/Ω
j is the rescaling function, where

Ω is usually set to be greater than 1. To remember the
performance of old classes, the distillation loss mainly
measures variations on the predictions of old samples obtained
by the models in two neighboring sessions. To summarize,
knowledge distillation encounters between two neighboring
sessions with the exemplar set containing the chosen samples
of all seen categories in previous sessions, which is the
dependencies among all sessions.

In general CIL tasks, the distillation loss defined above is the
common scenario where predictions are prone to new classes.
This bias is caused by the class-imbalance problems, since
only part of samples of previous sessions will be introduced
to the next sessions while the incoming new categories
contain large-scale sets. Many novel distillation-based CIL
works [10], [11] target at solving this class-imbalance problem.
However, in FSCIL, a few labeled samples of new classes
are provided in the following session, so the class-imbalance
problem is different from general CIL tasks. In this way,
the current state-of-the-art distillation-based class-incremental
learning methods are redundant for the Semi-FSCIL setting.
In this paper, we propose a simple yet efficient knowledge
distillation-based framework for Semi-FSCIL.

As described above, knowledge distillation-based incremen-
tal learning approaches target keeping the prediction results on
old categories in the current session the same as the reference
model obtained in the last learning session. In this way, to
compute the distillation loss in each incremental session i, part
of samples of previous sessions, termed the exemplar set Ei,
are chosen from the datasets of all previous sessions. Ei takes
part in not only the distillation process but also the supervised
training process together with the current training dataset.

In our proposed framework, we employ the prioritized
based on herding strategy [10]. To adapt to our framework,
we further put forward to prioritize the labeled and selected
unlabeled samples of previous sessions together to generate the
exemplar set. Consequently, labeled exemplars and unlabeled
exemplars all contribute to the knowledge distillation process.
With the standard knowledge distillation formula 6, we define
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Algorithm 1 Us-KD Framework for Semi-FSCIL
Input: D1, D2, ..., Dm

Output:F that can classify all seen categories
1: for n in m do
2: if n==1 then
3: F (·) updates with Dl

1 by computing classification
4: loss to obtain F1;
5: Sample exemplars E l2 from D1;
6: Eu2 =∅;
7: else
8: Fref = Fn−1;
9: Ftarget = Fref ;

10: for supervised epochs do
11: Ftarget updates with Ei ∪ Dl

n by compute
12: classification loss and distillation loss;
13: D̂u

n = ∅;
14: for unlabeled iteration do
15: Select unlabeled samples and add them to D̂u

n

16: based on uncertainty-guided manner;
17: Remove them from Du

n;
18: Feed Dl

n and D̂u
n to Ftarget;

19: Compute the classification loss and the distil-
20: lation loss;
21: Fn = Fn−1;
22: Update En to En+1 by sampling from Dl

n and D̂u
n;

23: Compute class-means for classification;
24: return F (·) obtained after m sessions.

the new distillation loss as

Ldl(Ei,F) = −λl
|Eli |∑
j=0

τ(Fi−1(xj))log(τ(Fi(xj)))

−λu
|Eui |∑
j=0

τ(Fi−1(xj))log(τ(Fi(xj))),

(7)

where E li and Eui represent the labeled exemplars and
unlabeled exemplars, respectively. λu and λu are the weights
for the two parts of distillation loss.

In the supervised set of FSCIL, since the dataset is large-
scale in the first session and each category in the incremental
session contains a few labeled samples, the class-imbalance
problem may exist in the exemplar set. This problem will
generate an extra bias in the distillation process, and the
target model only better memorizes the categories with the
more significant number of samples in the exemplar set. In
our proposed Semi-FSCIL task, unlabeled data is added in
each incremental session, and the class imbalance between
old and new categories is well alleviated. Moreover, when
constructing the exemplar set, few-shot categories can contain
adequate samples to be prioritized and selected. By the two
parts of distillation loss, the target model can fairly handle the
categories with the class-balanced exemplar set.

D. Weighted Class Mean Computation in Semi-FSCIL

In our proposed framework, we use nearest-mean-of-
exemplars classification, i.e., computing the class-means (i.e.,
prototypes) in the first step and assigning the labels to the
test samples based on the distances with class-means in the
feature space. The class-mean is a prototype by averaging
features of all reserved samples for each class. In the FSCIL
scenario, there are only a few labeled samples per class in
incremental sessions. If the prototype of a particular category
is generated based on the features of a few samples in each
class, the classification performance would not be satisfied.
Since a few samples can not model the data distributions or
the averaging features of a few examples can not stand for
the class means, the overfitting problems will be too severe to
perform classification tasks better.

In the proposed Semi-FSCIL, unlabeled samples together
with generated pseudo labels are selected, and join the training
process with the labeled dataset in each incremental session.
The exemplar set is sampled from the labeled datasets and
selected unlabeled samples of previous sessions after being
prioritized by herding. In this way, we compute the prototypes
with labeled data and unlabeled data together. Assuming Pc

as the prototype of class c, the Pc is defined as

Pc =
γl
∑|Elc|

i=0 Θ(xi) + γu
∑|Euc |

i=0 Θ(xi)

|E lc|+ |Euc |
, (8)

where E lc and Du
c are the labeled exemplars and unlabeled

exemplars of class c respectively, and Θ (·) is the feature
extractor model. γl and γu are the weights for the two
parts of the contributions for prototypes. When we conduct
classification tasks, the distances O between a particular
unlabeled sample xu and the prototypes are computed first
as follows:

O = [fdis(Θ(xu),Pc)]
|P|
c=0, (9)

where P is the set of prototypes, and fdis is the distance
function. The label of xu is assigned by

ŷ = 1 [Oc == min(O)]
|O|
c=0 , (10)

where min is the minimum function. By combining the
selected unlabeled data into computing prototypes, the
overfitting problem can be alleviated since more data can better
model the distributions. After computing the prototypes, the
framework completes the training and testing process of a
specific session.

E. Discussion

The proposed Semi-FSCIL is a novel task that is not
explored by existing methods. We solve this task by a
distillation-based incremental learning framework, in which
one of the important parts is uncertainty-guided semi-
supervised learning. The uncertainty-guided strategy used for
pseudo-labeling-based semi-supervised learning first appeared
in [62]. In this paper, we employ a simple implementation of
the uncertainty-guided module.
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In our proposed framework, we apply nearest-mean-of-
exemplars for classification, and update class means by labeled
and unlabeled samples together. In this way, it can approximate
to the average features of all samples in a total dataset and
largely alleviate the overfitting problem. Moreover, labeled
data and unlabeled data all contribute to the distillation
process; thus the bias can become less severe when the model
tries to memorize old categories.

V. EXPERIMENTS

A. Dataset

To evaluate the effectiveness of the proposed Us-KD
for Semi-FSCIL, we conducted extensive experiments on
three datasets: CIFAR100 [64], miniImageNet [33] and
CUB200 [65]. Figure 3 gives examples of these three datasets.

CIFAR100 [64] is widely used in class-incremental learn-
ing. It includes 100 classes with 600 RGB images per class.
For each category, 500 images are used for training and
100 images for testing. The size of the image is 32 × 32.
miniImageNet [33] is a subset of the ImageNet with small
number of classes. It includes 600 images for each of 100
classes. These images are in the size of 84× 84. This dataset
is also widely-used in few-shot learning tasks. CUB200 [65]
contains about 6, 000 training images and 6, 000 test images of
over 200 bird categories. The images are resized to 256×256
and then cropped to 224× 224 for training.

For CIFAR100 and miniImageNet, we set 60 and 40 classes
as the base and novel categories, respectively, and chose a
5-way 5-shot setting. In total, we had 9 training sessions,
i.e., one session for base classes and 8 sessions for novel
classes. While for CUB200, we adopted the 10-way 5-shot
setting by choosing 100 classes as base classes and splitting the
remaining 100 classes into 10 incremental learning sessions.
For the sessions of learning novel categories, each session’s
training set was constructed by randomly choosing 5 training
instances per class from the original training set to construct
5/10-way 5-shot tasks, and some instances were also picked
randomly from the rest of the training set, and their labels were
discarded to construct the unlabeled set. In each incremental
learning session, the size of unlabeled dataset is 500. We
used the whole test set for the evaluation purpose, which was
enough to evaluate the model’s generalization ability.

B. Network Setting and Implementation Details

In our proposed framework, we applied ResNet-18 [2] for
CIFAR100, miniImageNet and CUB200, which follows the
same setting as [15]. For CIFAR100 and miniImageNet, we
load the ResNet-18 model without pre-training. While for
CUB200, pre-trained ResNet-18 is applied. This configuration
also follows previous FSCIL methods for the fair comparison.
We implemented the models using Pytorch and trained on
GeForce RTX 2080 GPUs. For the first session of CIFAR100
and miniImageNet, the learning rate started from 0.1 and was
divided by 10 after 80 and 120 epochs (160 epochs in total).
For the rest sessions of CIFAR100, the learning rate was 0.01,
and we used early stopping to avoid overfitting. For the rest
sessions of miniImageNet, the learning rate was 0.001, and

the supervised epoch number was 160. For CUB200, the base
learning rate in the first session was 0.0005, and divided by 10
after 80 and 120 epochs (160 epochs in total). The learning rate
of the following sessions was 0.001 used in 160 supervised
epochs.

The models were trained by SGD with the training batch
size of 128 for CIFAR100 and miniImageNet, and 32 for
CUB200. The test batch size for CIFAR100 and miniImageNet
is 100, and for CUB200, this batch size is 50. For the
class means, the dimension was set as 512. The learning
process for each dataset was repeated 10 times, and we
reported the average overall test accuracy. In the uncertainty-
guided module of semi-supervised learning, the threshold κu
was assigned dynamically. In our experiments for the three
datasets, we selected unlabeled samples from an unlabeled
set with a size of 500. The uncertainties of the prediction
on 500 unlabeled samples were ranked in ascending order.
κu was set as the 100-th value in the rank. For each
unlabeled iteration, we chose 5 unlabeled samples to join the
training procedure. For CIFAR100, we selected 150 unlabeled
samples in the 30 unlabeled iterations. For miniImageNet,
we selected 150 unlabeled samples in around 30 unlabeled
iterations. For CUB200, 75 unlabeled samples were added
into the labeled dataset during around 15 unlabeled iterations.
In each unlabeled iteration, the model was trained on the
labeled dataset and the selected unlabeled dataset with pseudo
labels for extra 10 epochs. The model was not trained on
labeled data and selected unlabeled data from the reference
model with more epochs to guarantee that labeled samples
contributed more to the training process. Moreover, during the
10 epochs, the training dataset was not set randomly to ensure
that the model was trained on labeled data first and losses
could be generated from unlabeled samples. In Equation 7
and Equation 8, the weights were all set to 1. We did not
give different weights, since the unlabeled exemplars selected
in the uncertainty-guided semi-supervised learning process
and prioritized based on herding ensures that the quality of
unlabeled data can have an equal contribution with labeled
samples to the knowledge distillation process.

For CIFAR100, we preserve 20 exemplars for each previous
category, which maintains the same as class-incremental
learning task [11]. miniImageNet contains the same number
of categories, i.e., 100 categories, so we also preserve 20
exemplars per category. CUB200 has 200 categories, so we
store 10 exemplars per category.

C. Comparative studies
In this section, we conducted extensive experiments to

demonstrate the performance of the proposed Us-KD for Semi-
FSCIL. For the three datasets, the results of most comparison
methods are directly quoted from their original papers to
facilitate fair comparison. As for the evaluation indicators,
we used the overall accuracy (%) on the test set of all seen
categories in the current sessions and a performance dropping
rate (PD) [51] that measures the absolute accuracy drops in
the last session w.r.t. the accuracy in the first session.

CIFAR100 Figure 4 (a) shows the detailed comparison
results of the proposed approaches and many existing
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Fig. 3. Example images from the CIFAR100, CUB200 and miniImageNet datasets used in our experiments.
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Fig. 4. Comparative study on CIFAR100 dataset (a) and miniImageNet (b). We obtain the state-of-the art results with the proposed methods.

Fig. 5. Performance dropping rate of CIFAR100 and miniImageNet. The
deterioration from the first session to the last session in our method is much
slighter than other related methods.

approaches in 9 learning sessions. It shows that the proposed
Us-KD achieves the highest overall accuracy in the last
incremental learning session, which is superior to the recently
proposed SPPR [23] by around 5.92% in the final session.
Compared to the baselines SPPR [23] and CEC [51], the
performance of Us-KD is sometimes inferior in the first 5
sessions. In our experiments, we introduced an extra indicator
PD to demonstrate the efficiency of our proposed method.
Figure 5 illustrates the PD results, and our methods suffer
light deterioration.

miniImageNet Figure 4 (b) lists the accuracy of the
proposed approach and existing several representative methods
on the miniImageNet dataset. Our method Us-KD outperforms

the other baseline methods. The overall accuracy of the
proposed Us-KD (50.47%) outperforms the state-of-the-art
[23] by around 0.67% in the last session. Moreover, from
Figure 5, we can see the proposed method dramatically
alleviate the deterioration of incremental learning sessions,
demonstrating the efficiency of the proposed Us-KD in the
distillation process.

CUB200 Table I presents the accuracies over 11 learning
sessions on CUB200. Our proposed Us-KD outperforms the
other related methods with only one strategy for incremental
learning. Although our method did not achieve the state-of-the-
art result (57.81%) [22] in the last session, superior results of
PD are achieved by our algorithm Us-KD.

D. Ablation studies

To demonstrate the efficiency of Us-KD, we conducted a
series of ablation experiments.

The impact of the uncertainty-guided module. Table
II show the ablation study results. Ss-KD stands for the
framework obtained by replacing uncertainty-guided semi-
supervised learning with the standard one (i.e., Equation 1).
As shown in Table II, Us-KD can not perform better
without the uncertainty-guided module in the semi-supervised
learning process, because much noise information was added
when unlabeled samples were combined into incremental
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TABLE I
THE CLASSIFICATION ACCURACIES (%) OF CUB200. PD IS THE PERFORMANCE DROPPING RATE FROM THE FIRST SESSION TO THE LAST SESSION. S1

REPRESENTS THE KNOWLEDGE REPRESENTATION AND REFINEMENT STRATEGY, AND S2 STANDS FOR THE KNOWLEDGE DISTILLATION STRATEGY. OUR
RESULTS ACHIEVE LESS PD THAN OTHER RELATED METHODS ONLY WITH THE S2.

Method S1 S2 Session ID PD↓1 2 3 4 5 6 7 8 9 10 11
Ft-CNN [15] 68.68 44.81 32.26 25.83 25.62 25.22 20.84 16.77 18.82 18.25 17.18 51.50
Joint-CNN [15] 68.68 62.43 57.23 52.80 49.50 46.10 42.80 40.10 38.70 37.10 35.60 33.08
EEIL [63] X 68.68 53.63 47.91 44.20 36.30 27.46 25.93 24.70 23.95 24.13 22.11 46.57
iCaRL [10] X 68.68 52.65 48.61 44.16 36.62 29.52 27.83 26.26 24.01 23.89 21.16 47.52
NCM [11] X 68.68 57.12 44.21 28.78 26.71 25.66 24.62 21.52 20.12 20.06 19.87 48.81
TOPIC [15] X 68.68 62.49 54.81 49.99 45.25 41.40 38.35 35.36 32.22 28.31 26.28 42.40
SAKD [21] X 68.23 60.45 55.70 50.45 45.72 42.90 40.89 38.77 36.51 34.87 32.96 35.27
SPPR [23] X 68.68 61.85 57.43 52.68 50.19 46.88 44.65 43.07 40.17 39.63 37.33 31.35
CEC [51] X 75.85 71.94 68.50 63.50 62.43 58.27 57.73 55.81 54.83 53.52 52.28 23.57
Us-KD (ours) X 74.69 71.71 69.04 65.08 63.60 60.96 59.06 58.68 57.01 56.41 55.54 19.15

(a) (b) (c) (d)

Fig. 6. (a)-(d) The t-SNE visualization of network activations on miniImageNet. We present four visualization examples in the figure. The tops illustrate the
visualization results on unlabeled samples when assigned the labels only based on the confidence predictions. The bottoms show the visualization results on
the unlabeled samples when the pseudo labels are assigned and filtered based on the proposed uncertainty-guided module.

TABLE II
THE ABLATION STUDY ON THE UNCERTAINTY-GUIDE SEMI-SUPERVISED LEARNING. PD IS THE PERFORMANCE DROPPING RATE FROM THE FIRST

SESSION TO THE LAST SESSION. SS-KD STANDS FOR THE FRAMEWORK WITH THE STANDARD SEMI-SUPERVISED LEARNING (i.e., EQUATION 1). FROM
THE TABLE, WE CAN CONCLUDE THAT THE MODEL CAN PERFORM BETTER WITH THE UNCERTAINTY-GUIDED OPERATION IN THE SEMI-SUPERVISED

LEARNING PROCESS.

Dataset Method Session ID PD↓1 2 3 4 5 6 7 8 9 10 11

CIFAR100 Ss-KD 76.85 69.82 65.43 62.25 59.65 57.46 55.73 54.89 53.47 - - 23.38
Us-KD 76.85 69.87 65.46 62.36 59.86 57.29 55.22 54.91 54.42 - - 22.43

miniImageNet Ss-KD 72.35 67.05 61.97 58.45 55.77 53.48 50.56 50.15 49.26 - - 23.09
Us-KD 72.35 67.22 62.41 59.85 57.81 55.52 52.64 50.86 50.47 - - 21.88

CUB200 Ss-KD 74.69 70.92 66.73 63.68 61.94 58.74 56.94 55.75 53.65 53.15 52.95 21.74
Us-KD 74.69 71.71 69.04 65.08 63.60 60.96 59.06 58.68 57.01 56.41 55.54 19.15

TABLE III
COMPARATIVE RESULTS OF HARD AND SOFT PSEUDO LABELS.

Type Session ID PD↓1 2 3 4 5 6 7 8 9
Soft 76.85 64.77 61.49 57.63 54.20 52.13 51.14 49.77 48.83 28.02

Soft (with sharpening) 76.85 67.40 62.06 59.47 57.81 55.71 53.51 51.08 50.02 26.83
Hard 76.85 69.87 65.46 62.36 59.86 57.29 55.22 54.91 54.42 22.43

learning sessions, which demonstrates the importance of
the uncertainty-guided module. Moreover, in Figure 6, we
show the t-SNE [66] visualization results on miniImageNet.
When we assigned and filtered pseudo labels based on
our uncertainty-guided module (bottoms) in semi-supervised
learning, the decision boundary is much clearer than that of

TABLE IV
THE ABLATION STUDY OF CUB200 ON THE NUMBER OF UNLABELED

SAMPLES ADDED IN EACH INCREMENTAL LEARNING SESSION. PD IS THE
PERFORMANCE DROPPING RATE FROM THE FIRST SESSION TO THE LAST

SESSION.

Num U
Session ID PD↓1 2 3 4 5 6 7 8 9 10 11

25 74.69 70.31 67.06 63.17 60.90 57.65 56.44 54.77 52.50 52.99 51.45 23.24
50 74.69 71.33 68.43 64.14 61.84 59.36 57.30 55.67 54.65 55.10 54.45 20.24
75 74.69 71.71 69.04 65.08 63.60 60.96 59.06 58.68 57.01 56.41 55.54 19.15
100 74.69 72.13 68.80 64.99 63.51 61.37 58.65 58.26 56.63 55.82 54.97 19.72
125 74.69 71.59 68.98 65.67 63.68 60.43 59.05 58.36 56.42 55.53 54.94 19.75

only based on the confidence prediction (tops).
The impact of the pseudo label type. In the semi-

supervised learning process, we compare the overall classi-
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(a) (b) (c) (d)

Fig. 7. Ablation study results on the number of unlabeled samples (a, c) and the learning rate (b, d). (a) Ablation study on the number of unlabeled samples
by CIFAR100. With 150 unlabeled samples in each incremental learning session, we obtain the highest overall classification accuracy. (b) Ablation study on
the learning rate by CIFAR100. When the learning rate is 0.1, the model performs better than that when the learning rate is 0.01. (c) Ablation study on the
number of unlabeled samples by miniImageNet. With 150 unlabeled samples in each incremental learning session, we obtain the highest overall classification
accuracy. (d)Ablation study on the learning rate by miniImageNet. When the learning rate is 0.001, the model performs better than that when the learning
rate is 0.01 or 0.1.

fication performance with hard pseudo labels and soft pseudo
labels. The results are illustrated in Table III. We also sharpen
the pseudo labels by assigning the temperature as 0.5. Soft
pseudo labels contains more semantic information than one-
hot labels, while they may also be noisy. In this way, if we
use the soft pseudo labels directly, the overall classification
performance is inferior to that of using hard pseudo labels.
Then, we sharpen the soft pseudo labels to enhance the
quality of soft pseudo labels, and the overall classification
performance is promoted. When hard pseudo labels is used in
our proposed method, the superior performance is obtained.

The impact of the number of unlabeled samples added
in each incremental learning session. From different curves
in Figure 7 (a) and Figure 7 (c), we can conclude that
the model achieves the best performance on CIFAR100 and
miniImageNet dataset when 150 unlabeled samples added
in each incremental learning sessions. The ablation study
results of CUB200 is illustrated in Table IV. With 75
unlabeled samples added, our framework can achieve the best
performance.

The impact of the learning rate in each incremental
learning session. Figure 7 (b) presents the results of
CIFAR100. When setting the learning rate as 0.1, the
performance of the model suffered from a sharp decrease first,
and then reduced slightly; thus the overall accuracy of the last
session is higher than that of when setting the learning rate
as 0.01. The ablation study results on the learning rate with
miniImageNet is shown in Figure 7 (d). When the learning
rate is 0.001 in the incremental learning session, the model
outperforms in all sessions.

The impact of τ . τ is the temperature for the distillation
loss in Equation 6. As described in the paper, τ(νi) =

ν
1/Ω
i /

∑
j ν

1/Ω
j , and the hyperparameter is Ω in this function.

In our paper, Ω is termed 3. In this way, we conduct the
experiment on the impact of Ω, which results of CIFAR100
are illustrated in Table V. We can conclude that the framework
has the superior performance when Ω is 3.

The impact of γl and γu. γl, and γu are the weights that
labeled data and unlabeled data contribute to the prototype,
respectively. Table VI shows the ablation study results on the
weights. When γl and γu are all assigned to 1, superior results

TABLE V
ABLATION STUDY RESULTS ON Ω.

Ω
Session ID PD↓1 2 3 4 5 6 7 8 9

2 76.85 68.03 64.26 61.00 58.46 56.98 55.62 54.44 52.72 24.13
3 76.85 69.87 65.46 62.36 59.86 57.29 55.22 54.91 54.42 22.43
4 76.85 69.46 66.40 62.57 60.33 57.21 55.87 55.43 53.36 23.49

TABLE VI
ABLATION STUDY RESULTS ON γl AND γu WITH CIFAR100.

γl γu
Session ID PD↓1 2 3 4 5 6 7 8 9

1.0 0.8 76.85 69.18 65.50 61.93 60.06 58.16 56.49 55.32 53.24 23.61
0.8 1.0 76.85 66.91 63.46 60.68 58.11 56.34 55.24 54.49 53.02 23.83
1.1 0.9 76.85 69.09 65.87 62.19 59.17 57.22 56.29 55.15 53.98 22.87
0.9 1.1 76.85 68.83 65.93 61.72 59.67 57.09 55.90 54.80 53.29 23.56
1 1 76.85 69.87 65.46 62.36 59.86 57.29 55.22 54.91 54.42 22.43

are obtained.
The impact of the backbone. In our existing experiments,

ResNet-18 [2] was applied as the backbone for the fair
comparison with the existing FSCIL methods. In Table VII,
we present the performance of CUB200 with the ResNet-
50 [2] and Vit-Tiny [67] as the backbone, respectively.
The same number of unlabeled samples are combined into
the training process. With our proposed framework, no
matter which backbone you use, FSCIL can be benefited
from unlabeled samples with the semi-supervised learning
technique. By comparing the results, we can find that the
accuracy experiences a slightly decreasing trend by using
ResNet-50 as the backbone than ResNet-18 and ViT-Tiny.
Moreover, with ViT-Tiny, FSCIL can gain more from the
incorporated unlabeled samples.

The impact of the number of exemplars per class. We
show the ablation study results on the number of exemplars
with CUB200 in Table VIII. Theoretically, storing more
exemplars can better preserve old knowledge. However, the
performance trade-off between old and new categories should
be handled, and there may be inadequate samples for being
selected as the exemplar set.

VI. CONCLUSION AND FUTURE WORK

In this paper, we conduct a novel task named semi-
supervised few-shot class-incremental learning (Semi-FSCIL),
aiming at incrementally learning few-shot novel tasks by
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TABLE VII
ABLATION STUDY ON THE BACKBONE WITH CUB200.

Backbone Unlabeled
data

Session ID PD↓1 2 3 4 5 6 7 8 9 10 11

ResNet-50 [2] % 78.19 75.13 72.14 68.82 67.84 66.10 65.13 64.22 62.34 62.66 62.10 16.09
" 78.19 76.07 73.17 71.27 70.26 68.47 66.02 66.12 65.54 64.86 64.21 13.98

ViT-Tiny [67] % 81.84 77.95 74.52 70.92 69.04 66.39 64.54 64.04 61.35 60.65 60.22 21.62
" 81.82 77.82 75.19 72.08 69.22 67.52 66.84 66.32 65.10 64.52 63.93 17.89

ResNet-18 [2] % 74.69 69.17 66.28 62.70 60.51 57.78 56.63 54.30 53.05 52.93 52.02 22.67
" 74.69 71.71 69.04 65.08 63.60 60.96 59.06 58.68 57.01 56.41 55.54 19.15

TABLE VIII
RESULTS OF CUB200 WITH DIFFERENT NUMBERS OF EXEMPLARS PER

CATEGORY.

#exemplars Session ID PD↓1 2 3 4 5 6 7 8 9 10 11
5 74.69 69.62 65.57 60.94 59.71 55.64 53.12 51.88 50.25 49.42 47.93 26.76

10 74.69 71.71 69.04 65.08 63.60 60.96 59.06 58.68 57.01 56.41 55.54 19.15
20 74.69 73.05 70.23 66.87 65.29 63.36 62.25 61.23 59.74 58.76 57.37 17.32
30 74.69 73.57 72.01 68.64 67.80 64.29 63.00 62.82 61.28 60.63 59.67 15.02

incorporating unlabeled data in a semi-supervised manner.
Few-shot class-incremental learning tasks always suffer from
catastrophic forgetting old categories and overfitting on few-
shot novel categories. This paper also provides a simple but
efficient solution to tackle these two problems in Semi-FSCIL.
Technically, we implement Semi-FSCIL by proposing a
knowledge distillation framework with the uncertainty-guided
semi-supervised learning (Us-KD). The uncertainty-guided
operation assigns pseudo labels and filters unlabeled samples
by taking the prediction uncertainty into consideration.
Unlabeled samples can alleviate the class-imbalance problem
first, then contribute to the distillation process and class
means for better memorizing old categories and model the
data distribution, respectively. Comparative experiments on
three gold FSCIL datasets demonstrate that Us-KD yields
remarkable results compared with many existing methods
in overall classification accuracy and performance dropping
rate. Besides, extensive ablation experiments clearly show
the effectiveness of Us-KD in significantly improving the
performance of the proposed novel Semi-FSCIL task.

Despite the effectiveness of the Us-KD, there are still some
aspects that can be further improved. (1) The proposed Us-
KD aims at solving the novel task Semi-FSCIL, i.e., the
training dataset in each incremental learning session contains a
labeled set and an unlabeled set, where the few-shot learning
task is conducted in a semi-supervised manner. The length
of the task sequence in the benchmark dataset is around
10, while our proposed distillation-based framework can not
perform well when the task sequence becomes longer. This
scenario is donated as Large-Scale FSCIL (LSFSCIL) which
is the ultimate goal for FSCIL that has not been explored in
the current literature. In the future work, we will dedicate
to solving the issues in FSCIL task first, then exploring
solutions to the LSFSCIL problem. (2) In Us-KD, unlabeled
samples are selected based on the uncertainty-aware module.
However, we did not take class imbalance between pseudo
labels into consideration. We will extend the Us-KD to solve
this class-balance problem. (3) The proposed approach has
the potential for adapting to other visual recognition tasks,
including medical imagery analysis, but it is beyond the
current scope of this paper. We leave this research on the
generalization ability as the future work.
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[63] F. M. Castro, M. J. Marı́n-Jiménez, N. Guil, C. Schmid, and K. Alahari,
“End-to-end incremental learning,” in ECCV, 2018, pp. 233–248. 10

[64] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009. 8

[65] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, “Efficient
lifelong learning with a-gem,” in ICLR, 2018. 8

[66] V. D. M. Laurens and G. Hinton, “Visualizing data using t-sne,” The
Journal of Machine Learning Research, vol. 9, p. 2579–2605, 2008. 10

[67] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“an image is worth 16x16 words: Transformers for image recognition at
scale,” in International Conference on Learning Representations, 2020.
11, 12

Yawen Cui received B.E. degree in computer
science and technology from Jiangnan University,
Wuxi, China, and the M.S. degree in software
engineering from the National University of
Defense Technology (NUDT), Changsha, China,
in 2016 and 2019, respectively. She is currently
pursuing the Ph.D. degree in Computer Science
from the University of Oulu, Finland. Her
research interests include few-shot learning and
incremental learning.

Wanxia Deng received the university B.E. degree
in electronic information science and technology
from Xiamen University, Xiamen, China in
2014. She received the M.S. and Ph.D. degrees
in information and communication engineer-
ing from the National University of Defense
Technology (NUDT), Changsha, China in 2016
and 2022, respectively. She is an assistant
professor with the School of Meteorology and
Oceanography, National University of Defense
Technology, Changsha, China. Her research

interests include domain adaptation, transfer learning, deep learning and
remote image processing.



IN PREPARATION FOR SUBMITTING TO IEEE TRANSACTIONS ON MULTIMEDIA 14

Xin Xu received the B.S. degree in electrical
engineering from the Department of Automatic
Control, National University of Defense Tech-
nology (NUDT), Changsha, China, in 1996,
and the Ph.D. degree in control science and
engineering from the College of Mechatronics
and Automation, NUDT, in 2002. He has been
a Visiting Professor with The Hong Kong
Polytechnic University, the University of Alberta,
the University of Guelph, and the University of
Strathclyde, U.K. He is currently a Full Professor

with the Institute of Unmanned Systems, College of Intelligence Science
and Technology, NUDT.

Zhen Liu received the Ph.D. degree in Informa-
tion and Communication Engineering from Na-
tional University of Defense Technology (NUDT),
in 2013. He is currently a professor with the
College of Electronic Science, NUDT. He has been
awarded the Excellent Young Scientists Fund on
his project titled “Intelligent Countermeasure for
Radar Target Recognition” in 2020. His current
research interests include radar signal processing,
radar electronic countermeasure, compressed
sensing, and machine learning.

Zhong Liu received the Ph.D. degree in man-
agement science from the National University of
Defense Technology (NUDT), Changsha, China,
in 2000. He is currently a Professor with
NUDT. He was a Vice Dean with the College
of Systems Engineering, NUDT, where he is
a Senior Advisor with the Research Center
for Computational Experiments and Parallel
Systems. His current research interests include
planning systems, computational organization,
and intelligent systems.
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