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Informative Feature Disentanglement for
Unsupervised Domain Adaptation

Wanxia Deng , Lingjun Zhao, Qing Liao , Deke Guo , Gangyao Kuang, Dewen Hu ,
Matti Pietikäinen , and Li Liu

Abstract—Unsupervised Domain Adaptation (UDA) aims at
learning a classifier for an unlabeled target domain by transferring
knowledge from a labeled source domain with a related but
different distribution. The strategy of aligning the two domains in
latent feature space via metric discrepancy or adversarial learning
has achieved considerable progress. However, these existing
approaches mainly focus on adapting the entire image and ignore
the bottleneck that occurs when forced adaptation of uninformative
domain-specific variations undermines the effectiveness of learned
features. To address this problem, we propose a novel component
called Informative Feature Disentanglement (IFD), which is
equipped with the adversarial network or the metric discrepancy
model, respectively. Accordingly, the new network architectures,
named IFDAN and IFDMN, enable informative feature refinement
before the adaptation. The proposed IFD is designed to disentangle
informative features from the uninformative domain-specific
variations, which are produced by a Variational Autoencoder
(VAE) with lateral connections from the encoder to the decoder. We
cooperatively apply the IFD to conduct supervised disentanglement
for the source domain and unsupervised disentanglement for the
target domain. In this way, informative features are disentangled
from the domain-specific details before the adaptation. Extensive
experimental results on three gold-standard domain adaptation
datasets, e.g., Office31, Office-Home and VisDA-C, demonstrate
the effectiveness of the proposed IFDAN and IFDMN models for
UDA.
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I. INTRODUCTION

R ECENT advancements in Deep Neural Networks (DNNs),
have brought a huge success in a broad range of com-

puter vision tasks, such as image classification [1], object detec-
tion [2], image segmentation [3], [4], and face recognition [5].
Nevertheless, the impressive progress depends on strong su-
pervision, i.e., massive amounts of annotated data which are
painstakingly labeled by numerous workers or specialists. Man-
ual labels are often difficult or expensive to obtain, and espe-
cially for data-sensitive domains such as medical imagery and
industrial inspection, labeled samples may be even impossible.

To address the aforementioned problems, an alternative ap-
proach (e.g., transfer learning) is to leverage the massively avail-
able labeled data on the related domain (dubbed source domain),
to improve the model for the interested domain (dubbed target
domain) [6]. However, the recent evidence [7] indicates that
DNNs have a strong dependency on the dataset with which they
are originally trained, and the learned features cannot be eas-
ily transferred to a different domain without adjusting [8], [9].
This difficulty in transferring is caused by domain shift [10]; i.e.,
predictors trained on a source domain undergo a drastic drop in
performance when applied to the target domain. Illustratively,
the domain shift refers to the difference in data distributions be-
tween source and target domains and is caused by many factors,
such as different backgrounds, changes in viewing angles, occlu-
sions and volatile illumination conditions. To tackle the above
domain shift problem, Domain Adaptation (DA), as a subfield of
transfer learning, has been proposed. The objective of DA is to
leverage labeled data from one or more similar domains (source
domain) to improve the learning of the interested domain (target
domain) that has a distribution different from but related to the
source distribution.

In this paper, we address one category of DA, i.e., the problem
of Unsupervised DA (UDA), where the source domain contains
abundant labeled data while the target domain is fully unlabeled.
The general idea of UDA is to make extracted features similar
between the two domains [11], [12]. Therefore, most existing
UDA approaches are devoted to embedding adaptation mod-
ules in deep architectures to extract transferable features [13]–
[16]. The state-of-the-art methods realize this goal by either
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Fig. 1. (a) and (b) denote the “bike” samples of source and target domain,
respectively. (c) denotes the informative features, e.g., handlebar, saddle, wheel
and paddle, which are more transferable. (d) shows some useless information,
e.g., background and colors, for the domain adaptation and the object task.

conducting adversarial learning or minimizing a metric that de-
fines the distribution discrepancy.

Metric discrepancy-based methods [17]–[23] explicitly de-
crease the distribution discrepancy by measuring the dissimi-
larity between distributions and are widely used due to their
efficient implementation. Recently, adversarial network-based
methods [24]–[31] have emerged as some of the most promi-
nent UDA methods. They train a domain discriminator to distin-
guish whether the features are from the source or target domain
and then borrow adversarial ideas from Generative Adversar-
ial Networks (GANs) [32] to deceive the domain discriminator
in order to obtain indistinguishable features. Despite their gen-
eral simplicity and efficacy for UDA, these methods may still
be constrained by the bottleneck caused by application of the
whole image to conduct the feature adaptation. Intuitively, not
all image regions are transferable, and forcefully aligning the
domain-specific variations may lead to negative transfer. There
are domain-specific details in an image that may be unsuitable
for the adaptation and useless for improving the classification,
as illustrated in Fig 1. From Fig. 1(c), we can see that important
object parts are informative for adaptation and object classifica-
tion tasks, while some parts, as shown in Fig. 1 (d), representing
domain-specific variations such as background and object color,
are uninformative. To address this issue, we propose Informative
Feature Disentanglement (IFD) module to select regions that can
be adapted, which is integrated into the adversarial network and
metric discrepancy module, leading to the novel architectures
named IFDAN and IFDMN, respectively.

The proposed IFD realizes two complementary disentangle-
ment strategies: supervised representation disentanglement of
the source domain by focusing on transferable regions, and un-
supervised disentanglement of the target domain by suppressing
the less useful domain-specific details of an image. In the su-
pervised strategy, inspired by the Information Bottleneck (IB)
principle [33], we use an adversarial excitation and inhibition
mechanism to encourage the disentanglement of the latent vari-
ables via Variational Information Bottleneck (VIB) [34]. Our
goal is to learn an encoding that is maximally informative about
the object classification task while being maximally compres-
sive about the original input, as shown in Fig. 2(a). The mu-
tual information maximization of the learned representation and
the object classification task is excited while the mutual in-
formation maximization of the learned representation and the
original input is inhibited. By this means, only the features
most conducive to the downstream classification task can pass
through, which reveals that the learned representation is more
generalizable and transferable.

Fig. 2. The motivation of the proposed IFD module. (a) The encoding only
encourages the most informative features, e.g., handlebar, saddle, wheel and
paddle, for the classification task to pass through and inhibits the irrelevant
domain-specific information, e.g., background and colors, so that the down-
stream task only obtains the most representative, high-level discriminative fea-
tures. (b) The informative features, e.g., handlebar, saddle, wheel and paddle,
which are what we care about, are enough for classification but not enough for
reconstruction. For example, if we learn these object parts such as saddle and
wheel, we can infer that the target is a bicycle. But we do not know the com-
positional information and other details of the seat and wheel, so we can not
reconstruct it well. Some useless information, e.g., background and colors, can
not contribute to the classification task, but can help generate images. Inspired
by this, we are committed to gradually disentangle informative features for the
object classification task in the process of unsupervised reconstruction.

In the unsupervised paradigm, since the target domain is un-
labeled, the information bottleneck principle is not applicable.
We intend to introduce an alternative way to learn disentangled
representations by crafting a network architecture that prefers to
hierarchically learn high-level features from certain parts of the
latent code. In this way, we can disentangle the high-level ab-
stract features only, which are applied to the adaptation. Figure 2
(b) shows that high-level salient features are often sufficient for
classification but are not sufficient for the good image genera-
tion task, which requires preservation of low-level image details.
Motivated by this, we are devoted to gradually separating useful
features for the downstream task in the process of the unsuper-
vised reconstruction of the target domain. Recent research on
the Variational Ladder Autoencoder (VLAE) [35] discloses that
the Variational Autoencoder (VAE) with lateral connections can
extract high-level representations that are helpful for discrimi-
native tasks by the encoder pipeline, and can achieve the goal of
image generation. Inspired by this insight, we introduce VLAE
for UDA. We apply VLAE to disentangle the target domain and
extract the transferable latent representations hierarchically. We
combine the supervised disentanglement of the source domain
and the unsupervised disentanglement of the target domain. In
this way, the learned encoding is transferable high-level seman-
tic features. We equip the IFD with the representative adversar-
ial network, enabling an informative feature purification before
adversarial adaptation. In summary, the main contributions of
this paper are as follows.
� We propose an IFD module to extract more transferable

high-level semantic features combining the supervised dis-
entanglement of the source domain and the unsupervised
disentanglement of the target domain. The two disentan-
glement strategies are achieved via IB theory and VLAE,
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respectively. To the best of our knowledge, we are the first
to successfully disentangle the two domains via IB and
VLAE for UDA.

� We propose incorporating the proposed IFD into the adver-
sarial network and the metric discrepancy model for UDA.
The new networks, named IFDAN and IFDMN, inherit the
advantages and overcome the drawbacks (i.e., applying the
entire image to implement adaptation) of existing adversar-
ial learning and metric discrepancy-based UDA methods,
thus leading to significant performance improvement.

� Experiments on the Office31, Office-Home and VisDA-C
datasets are provided to demonstrate the proposed IF-
DAN and IFDMN outperform existing methods. In addi-
tion, we conduct careful ablation studies on benchmark
UDA datasets, verifying the efficacy of the proposed IFD
module.

The remainder of the paper is organized as follows. In Sec-
tion II, we review the related work. Section III introduces the
formulation of our network. Section IV reports the experimen-
tal results and analysis on Office-31, Office-Home and VisDA-
C datasets. Our conclusion and future work are presented in
Section V.

II. RELATED WORKS

Research in UDA is so vast that only closely related work
is discussed in this section. In general, UDA can be coarsely
classified into two categories, i.e., the feature-level and the pixel-
level.

A. Feature-Level UDA

Most existing feature-level UDA methods align source and
target domains by minimizing discrepancy metrics or adversarial
learning of domains.

Metric discrepancy-based methods Minimizing the domain
distribution discrepancy with the metric paradigm is one more
classical approach for UDA. Some representative metric meth-
ods include Maximum Mean Discrepancy (MMD) [17]–[23],
[36], [37], CORrelation (CORAL) ALignment [38] and Central
Moment Discrepancy (CMD) [39]. In [17], [19], the DAN is
proposed to explore the multi-kernel MMD (MK-MMD) [40]
metric to minimize marginal distributions of two domains. The
JAN [18] aligns the joint distributions of multiple domain-
specific layers via a Joint Maximum Mean Discrepancy (JMMD)
criterion. The paper [21] exploits the class prior probability
on source and target domains via a weighted MMD model
which introduces class-specific auxiliary weights into the orig-
inal MMD. The Contrastive Adaptation Network (CAN) [22]
explicitly models the intra-class domain discrepancy and the
inter-class domain discrepancy based on MMD metric. The
D-CORAL [41] extends CORAL to learn a nonlinear transfor-
mation that aligns correlations of layer activations in deep neural
network by adding the adaptation layer. The Central Moment
Discrepancy (CMD) [39] is suggested to match the higher-order
central moments of probability distributions.

Adversarial learning-based methods An alternative branch
of UDA is based on the adversarial learning of domains, which

is inspired by the Generative Adversarial Network (GAN) [32].
Adversarial learning has been widely applied in UDA to de-
ceive the domain discriminator. RevGrad [24], DANN [26], Ad-
versarial Discriminative Domain Adaptation (ADDA) [25] and
Conditional Domain Adversarial Network (CDAN) [30] utilize
a domain discriminator to represent the domain discrepancy.
The domain discriminator is confused the domain discrimina-
tor in a two-player minimax game. MADA [29] trains multiple
class-wise domain discriminators to capture multi-mode struc-
tures to enable fine-grained alignment of different data distribu-
tions. Domain symmetric Networks (SymNets) [42] constructs
an additional classifier that shares with source and target classi-
fiers for DA. The Wasserstein Distance Guided Representation
Learning (WDGRL) [27] estimates empirical Wasserstein dis-
tance between the source and target samples in domain critic net-
work and optimizes the feature extractor network to minimize
the estimated Wasserstein distance in an adversarial manner.
Similar to the motivation of WDGRL, Re-weighted Adversarial
Adaptation Network (RAAN) [43] minimizes the optimal trans-
port (OT) based Earth Mover (EM) distance and reformulates
it to a minimax objective function. Unlike the above domain
adversarial learning methods, Maximum Classifier Discrepancy
(MCD) [44] defines a new adversarial standard in developing
generic DA frameworks. The MCD utilizes task-specific clas-
sifiers as discriminators and aligns distributions of source and
target by the adversarial learning of two task-specific classifiers.
Similar to the adaptation standard of the MCD, Sliced Wasser-
stein Discrepancy (SWD) [45] adopts the Wasserstein metric to
minimize the cost of moving the marginal distributions between
the task-specific classifiers. Many other adversarial DA meth-
ods are extensions of the representative DANN, such as Moving
Semantic Transfer Network (MSTN) [46], Transferable Adver-
sarial Training (TAT) [47] and so on.

In addition, there are other feature-level UDA approaches,
e.g., the work [48] combines the adversarial learning with the
metric discrepancy, which adjusts the weight of the adversar-
ial loss to confuse the domains and employs the triplet loss
to achieve the class-level alignment. Minimum Centroid Shift
(MCS) [49] is built upon the subspace learning, aiming to seek
a subspace where the centroids in the target domain are shifted
from those in the source domain. Structurally Regularized Deep
Clustering (SRDC) [50] applies the clustering to conduct the
discriminative features assignment which mines the target dis-
crimination using the clustering learning of intermediate net-
work features. Stepwise Adaptive Feature Norm (SAFN) [51]
achieves more transferable features via progressively adapting
the feature norms of the two domains to a large range of values.

B. Pixel-Level UDA

Pixel-level UDA methods generate a new version of images.
The generated images and original images are applied together
to learn domain-invariant features.

Generative adversarial networks (GAN) based methods
There are more popular DA approaches which incorporate the
generative model into the feature learning process using Gen-
erative Adversarial Networks (GAN). The pixel-level domain
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adaptation (PixelDA) [52] learns to generate a new version of
the source images in the style of the target domain, so that one
shared classifier can accommodate both domains. Couple GAN
(CoGAN) [53] trains coupled generators and discriminators by
weight-sharing to learn the joint distribution across the two do-
mains. The Domain Transfer Network (DTN) [54] synthesizes
source domain samples that resemble target domain ones by the
extra consistency constraint that the same asymmetric transfor-
mation should keep the target domain samples identical. Gener-
ate To Adapt (GTA) [55] proposes an adversarial image gener-
ation approach to learn the feature embedding using a combina-
tion of generated source-like images classification loss and an
image generation procedure. The Cycle-consistent Adversarial
Domain Adaptation (CyCADA) [56], the UNsupervised Image-
to-image Translation (UNIT) [57], Deep Adversarial Attention
Alignment (DAAA) [58] and SBADA-GAN [59] constrain the
mapping to be well covered across two domains by imposing cy-
cle consistency: the mapping in one direction (source-to-target
or target-to-source) should get back where it started. The Image
to Image translation (I2I) [60] combines domain-agnostic fea-
ture extraction, domain generation and cycle consistency into a
single unified framework for domain knowledge.

Autoencoder reconstruction based methods The DA ap-
proaches based on autoencoder reconstruction typically learn
the domain-invariant feature with a shared encoder and a re-
construction loss of the autoencoder. DRCN [61] is proposed to
jointly learn common encoding representation combining the su-
pervised classification of source domain and the unsupervised
reconstruction of the target domain. Domain Separation Net-
work (DSN) [62] proposes to separate the feature into the shared
feature and the private feature. These two features are encour-
aged to be orthogonal while both the features can be decoded
back to images. The shared feature is adopted for classification.
On the basis of the DSN, the work [63] proposes that orthog-
onal regularization is applied between private features across
domains, in addition to private features and shared features in
each domain.

The DSN and the extension of the DSN have the same motiva-
tion as ours. They explicitly disentangle the domain-specific and
domain-shared features. Our proposed method implicitly dis-
entangle the task-related high-level features and task-unrelated
details. Apart from the above two methods, there are other
types of newly proposed methods similar to our intention. The
Transferable Attention for Domain Adaptation (TADA) [64]
proposes to apply the attention mechanism for UDA, which
present transferable attention, focusing the adaptation model
on transferable regions not all regions of an image. The
Domain-Specific Batch Normalization (DSBN) [65] is pro-
posed to separate domain-specific information for UDA using
two branches of batch normalization, each of which is in charge
of a single domain exclusively.

III. PROPOSED METHODOLOGY

In this section, we first give the UDA problem formulation and
then introduce the proposed Information Features Disentangle-
ment (IFD) module, mainly including supervised disentangle-
ment of the source domain and unsupervised disentanglement
of the target domain. Finally, we show how to train the IFDAN,

which is a combination of adversarial network and the proposed
IFD, and the IFDMN, which integrates the metric discrepancy
model with IFD. The proposed IFDAN and IFDMN are depicted
in Fig. 3.

A. The UDA Problem Formulation

Consider an input space (or a feature representation space)X ,
and an output space (or a label space) Y . We focus on the prob-
lem of UDA in image classification, where we consider two
different domains defined with different but related probabil-
ity distributions p(x, y) over the input-label space pair X × Y .
Specifically, the domain of interest is denoted the target do-
main with the distribution pt(x, y), and the available domain
with labeled data is called the source domain with the distribu-
tion ps(x, y). Let |Y| = C; then we have y ∈ 1, 2, . . ., C. The
goal of the UDA task is to predict the labels of samples drawn
from a target domain as accurate as possible, given Ns labeled
samples Ds = {(xsi , ysi )}Ns

i=1 drawn from a source domain and
Nt unlabeled samples Dt = {(xti)}Nt

i=1 sampled from the target
domain itself. Our goal is to learn feature transformations to
map the input space X to a feature space F , where distribu-
tions of the two domains are well aligned in order to obtain the
domain-invariant feature so that the target domain images can
be classified into Y correctly.

Formally, our proposed IFDAN can be formulated as follows.
We define the shared encoder of IFDAN as F with parameters θ,
the decoder as G with parametersα, and the classification block
as H with parametersφ. F consists of convolutional, ReLU, and
downsampling layers. G consists of convolutional, ReLU, and
upsampling layers.

B. IFD: Informative Feature Disentanglement

In this section, we introduce how to conduct the supervised
disentanglement of the source domain and the unsupervised dis-
entanglement of the target domain, respectively.

1) Supervised Disentanglement of the Source Domain: To
extract the general high-level features for UDA, we choose the
Variational Information Bottleneck (VIB) built upon the recently
developed information theories for deep learning [34] to disen-
tangle the source domain. To facilitate the discussion, we de-
note Xs as the input images from the source domain. Let Y s

denote the corresponding output variables (e.g., the desired la-
bel), whose information we want to preserve. We regard the
internal representation of some intermediate layer as a stochas-
tic encoding Zs of the input images Xs, defined by the shared
parametric encoder pθ(zs|xs). For clarity, we denote xs, ys and
zs as the instances of Xs, Y s and Zs, respectively. Our goal
is to learn an encoding that is maximally informative about our
output variables Y s, measured by the mutual information be-
tween our encoding Zs and the output variables I(Zs, Y s;θ),
while the mutual information I(Xs, Zs;θ) between the input
images Xs and the encoding Zs is minimized. Thus, we assume
the following Markov chain constraint introduced in the Infor-
mation Bottleneck (IB) theory [33]: Y s ↔ Xs ↔ Zs, and the
objective function that is maximized is defined as follows:

I(Zs, Y s;θ)− βI(Xs, Zs;θ), (1)
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Fig. 3. Framework of the proposed IFDAN and IFDMN. The IFDAN is the combination of adversarial network and the proposed IFD, and similarly, IFDMN
combines the metric discrepancy module with IFD. The IFD module is constructed with Variational Information Bottleneck (VIB) and variational ladder autoencoder
(VLAE). The encoder is shared by the source images and target images. The IFD module mainly includes two strategies: supervised disentanglement of the source
domain and unsupervised disentanglement of the target domain. The source domain is disentangled by VIB, and the target domain is disentangled by the VLAE.

where β denotes Lagrange multiplier. The first term
I(Zs, Y s;θ) =

∫
dzsdyspθ(zs, ys)log pθ(zs,ys)

pθ(zs)pθ(ys)
1 encourages

Zs to be predictive of Y s. The second term I(Xs, Zs;θ) =∫
dzsdxspθ(zs, xs)log pθ(zs|xs)

pθ(zs) encourages Zs to inhibit as many
details of Xs as possible.

However, computing mutual information is computationally
challenging. We write the first term out in full, as follows:

I(Zs, Y s;θ) =

∫
dzsdyspθ(z

s, ys)log
pθ(zs, ys)

pθ(zs)pθ(ys)

=

∫
dzsdyspθ(z

s, ys)log
pθ(ys|zs)
pθ(ys)

. (2)

Since the pθ(ys|zs) is intractable, we apply qφ(ys|zs) to be a
variational approximation to pθ(ys|zs). The qφ(ys|zs) is the de-
fined decoder of VIB, which we will take to be the classifica-
tion block Hφ with its own set of parameters φ. According to
the Kullback Leibler divergenceKL[pθ(Y

s|Zs), qφ(Y
s|Zs)] �

0, we have the following inequality:
∫
dys logpθ(ys|zs) �∫

dys logqφ(ys|zs). Thus 2 can be rewritten as:

I(Zs, Y s;θ,φ) �
∫

dzsdyspθ(z
s, ys)log

qφ(ys|zs)
pθ(ys)

=

∫
dzsdyspθ(z

s, ys)logqφ(y
s|zs)−

∫
dyspθ(y

s)logpθ(y
s)

=

∫
dzsdyspθ(z

s, ys)logqφ(y
s|zs) +H(Y s),

(3)

where H(Y s) is the entropy of our labels, which is independent
of the optimization procedure and so can be ignored. Recalling

1Note that in the present discussion, Y s is the ground truth label which is
independent of our parameters θ, so pθ(ys) = p(ys).

the Markov chain constraint, I(Zs, Y s;θ) can achieve a new
lower bound, and hence we can write:

I(Zs, Y s;θ,φ) �∫
dxsdzsdyspθ(x

s)pθ(y
s|xs)pθ(zs|xs)logqφ(ys|zs). (4)

We now consider the second term I(Xs, Zs;θ) of 1. The
I(Xs, Zs;θ) can be further computed as follows:

I(Xs, Zs;θ) =

∫
dxsdzspθ(z

s, xs)logpθ(z
s|xs)

−
∫

dzspθ(z
s)logpθ(z

s). (5)

However, it might be intractable to compute the
marginal distribution of the zs directly, since pθ(zs) =∫
dxspθ(xs)logpθ(zs|xs) requires solving an integral over

latent feature space. We apply an alternative way r(zs) as the
variational approximation of the pθ(zs). The r(zs) denotes
the prior distribution of the latent features zs. We choose
r(zs) as a standard Gaussian distribution N (0, I). Since
KL[pθ(zs), r(zs)] � 0, we can obtain the following inequal-
ity:

∫
dzspθ(zs)logpθ(zs) �

∫
dzspθ(zs)logr(zs). Thus, the

I(Xs, Zs;θ) can yield the following upper bound:

I(Xs, Zs;θ) �
∫

dxsdzspθ(x
s)pθ(z

s|xs) logpθ(z
s|xs)

r(zs)
. (6)

Combining the I(Zs, Y s;θ,φ) and I(Xs, Zs;θ), we can get
the resulting evidence lower bound (ELBO):

I(Zs, Y s;θ,φ)− βI(Xs, Zs;θ)

�
∫

dxsdzsdyspθ(x
s)pθ(y

s|xs)pθ(zs|xs)logqφ(ys|zs)

− β

∫
dxsdzspθ(x

s)pθ(z
s|xs) logpθ(z

s|xs)
r(zs)

= Lsup
ELBO(θ,φ) (7)
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Following the VAE [34], we define the pθ(zs|xs) as a Gaussian
distribution pθ(zs|xs) = N (zs|Fμ

IB(x
s),Fσ

IB(x
s)), where FIB

denotes the information bottleneck layers (Fc layers in Fig. 3),
which outputs the mean μ and the variance σ of latent fea-
tures zs. Then, we can use the reparameterization trick [66] to
write pθ(zs|xs)dz = pθ(ε)dε, where zs = F(xs, ε) denotes the
deterministic function of x and the Gaussian random variable ε.
Thus, we can obtain the following loss function, which we try to
minimize:

Lsup =
1

Ns

Ns∑
i=1

Eε∼pθ(ε)[−logqφ(y
s
i |F(xsi , ε))]

+ βsupKL[pθ(z
s|xsi ), r(zs)], (8)

where the first term is a form of the classification loss of
the source domain and the second term denotes the informa-
tion bottleneck loss, which is minimized to filter out the ir-
relevant part of the input image Xs. Interestingly, maximiz-
ing a variational lower bound of the mutual information be-
tween learned representations Zs and the labels Y s in the
source domain is equivalent to minimizing the classification
loss, and minimizing the mutual information of learned rep-
resentations Zs and the input Xs corresponds to finding the
transferable features. βsup is used to replace the β for easy
understanding.

2) Unsupervised Disentanglement of the Target Domain: In
this section, we introduce the unsupervised disentanglement of
the target domain. Since there is no label in the target domain,
the supervised disentanglement is impossible. We apply an al-
ternative way to disentangle the target domain, e.g., Variational
Ladder Autoencoder (VLAE), which can skillfully reconstruct
the target domain to mine the features of the target domain, at
the same time, it can ensure that the encoder can only capture
the task-related part.

We denote the Xt as the input images from the target domain,
and for simplicity, let the xt be the instance of Xt. The input
image undergoes the encoder to generate hierarchical feature
representations:

ztl =

{
Fl(xt), l = 1
Fl(ztl−1), 2 � l � L,

(9)

where L represents the total number of layers of the en-
coder, and l denotes the variable of layers. ztl denotes the ex-
tracted encoding of the target domain at layer l. We decompose
the latent representations into subparts zt = {zt1, . . .z

t
l , . . ., ztL},

where zt1 relates to xt with a shallow network F1, and in-
crease network depth up to ztL, which relates to xt with a deep
network FL.

The latent representations zt from the encoder are deliv-
ered into the variational ladder module (Conv layers in Fig-
ure 3) to generate the new hierarchical representations wt =
{wt

1, . . .w
t
l , . . .,wt

L} for the decoder. The hierarchical rep-
resentations mainly pay attention to the details of the im-
ages. In this way, the shared encoder can gradually cap-
ture the task-related features and suppress the task-related de-
tails via the variational ladder module. The new hierarchi-
cal representations wt = {wt

1, . . .w
t
l , . . .,wt

L} are defined as

follows:

wt
l ∼ N (μt

l , σ
t
l ), (10)

where μt
l and σt

l are the mean and variance of ztl . wt
l is subject

to the Gaussian distribution with mean μt
l and variance σt

l . The
latent representation zt from the ladder module undergoes the
decoder to reconstruct x̂t via the following:

ŵt
l =

{
Gl(Repara.(μt

l , σ
t
l )), l = L

Gl(wt
l ⊕ ŵt

l+1), L > l ≥ 1
, (11)

where ŵt
l indicates the lth layer reconstruction feature of the

target domain in the decoder. ŵt
1 is the reconstructed output x̂t.

x̂t is the output of the decoder, i.e., it is the reconstruction of
xt. Here, ⊕ indicates the element-wise sum operator. Repara.
denotes the reparameterization operator [66] using the mean μt

l

and the variance σt
l .

Next, the disentanglement learning of the target domain is pre-
sented. Formally, in VLAE, the main task is to generate images
similar to the original images. Thus, we would like to maximize:

logvα(X
t) =

Nt∑
i=1

logvα(x
t
i), (12)

where we hope to discover a meaningful representation for the
data xt by maximizing 12. We introduce the shared encoder
with ladder connections pθ(wt|xt) as the inference model. We
can rewrite 12 as:

logvα(x
t) =

∫
dwtpθ(w

t|xt)logvα(xt)

=

∫
dwtpθ(w

t|xt)log
(
vα(wt, xt)
pθ(wt|xt)

)

+

∫
dwtpθ(w

t|xt)log
(
pθ(wt|xt)
vα(wt|xt)

)

=

∫
dwtpθ(w

t|xt)log
(
vα(wt, xt)
pθ(wt|xt)

)

+KL[pθ(w
t|xt), vα(wt|xt)], (13)

where KL[pθ(wt|xt), vα(wt|xt)] � 0. Thus, we have the evi-
dence lower bound (ELBO):

logvα(x
t) �

∫
dwtpθ(w

t|xt)log
(
vα(wt, xt)
pθ(wt|xt)

)

= Lunsup
ELBO(θ,φ). (14)

The ELBO of the target domain can be further deduced as:

Lunsup
ELBO(θ,φ,α) =

∫
dwtpθ(w

t|xt)log(pθ(wt|xt))

+

∫
dwtpθ(w

t|xt)log
(

vα(wt)

pθ(wt|xt)
))

= Epθ(wt|xt)[logvα(xt|wt)]

−KL[pθ(w
t|xt), vα(wt)]. (15)

We define vα(wt) = vα(wt
1, . . .,wt

L) as the simple prior on
all latent variables. Therefore, we choose vα(wt) to be a standard
Gaussian distribution vα(wt) = N (0, I). Then, we can obtain
the final objective function of the unsupervised disentanglement
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for the target domain:

Lunsup =
1

Nt

Nt∑
i=1

[−Epθ(wt|xti)[logvα(x
t
i|wt)]

+ βunsup

L∑
l=1

KL[pθ(w
t
l |xti), vα(wt

l)]], (16)

where the first term is the pixel-level reconstruction loss and
the second term is to make the conditional distribution of ladder
latent features closer to the prior distribution for each variational
layer. Thus, we call the second term the variational loss. The
βunsup is used to balance the losses.

C. IFDAN: Informative Feature Disentanglement Adversarial
Network

In this section, we will introduce the learning of Informa-
tive Feature Disentanglement Adversarial Network (IFDAN)
which combines the proposed IFD with the popular adversar-
ial network. We apply IFD to a well-known adversarial model,
e.g., Domain Adversarial Neural Network (DANN) [26] and a
state-of-the-art adversarial domain adaptation model, e.g., Con-
ditional Domain Adversarial Network (CDAN) [30], respec-
tively. Correspondingly, we name the integrated methods as
IFDAN-1 and IFDAN-2 for clarity, respectively.

1) IFDAN-1: Naturally, we embed the domain discrimina-
tor D with the gradient reversal layer in the IFD. The domain
discriminator D is parameterized with ω.

2) IFDAN-2: CDAN exploits the cross-covariance between
feature representations and classifier predictions to improve the
discriminability. We denote the input image x from the source
domain or target domain. The adversarial model conditions do-
main discriminator D on the classifier prediction H through the
multilinear map:

z = F(x)

ỹ = H(z)

T⊗(z, ỹ) = z ⊗ ỹ, (17)

where ⊗ denotes multilinear map. D(z, ỹ) = D(z ⊗ ỹ). For sim-
plicity, we use the joint variable o = (z, ỹ).

As such, the adversarial loss is defined as:

Lad=
1

Ns +Nt

[ Ns∑
i=1

Exsi∼Ds
log(D(vsi ))

+

Nt∑
i=1

Exti∼Dt
log(D(vti))

]
, (18)

where vti = zti, Lad points to DANN which is employed for
IFDAN-1, and when vti = T⊗(ot

i), Lad is for CDAN which
constructs IFDAN-2.

D. IFDMN: Informative Feature Disentanglement Metric
Discrepancy Network

In this section, we will introduce the learning of Infor-
mative Feature Disentanglement Metric Discrepancy Network

(IFDMN) which embeds the proposed IFD into the metric dis-
crepancy based method. We integrate IFD into a state-of-the-art
domain adaptation model based metric discrepancy, e.g., Con-
trastive Adaptation Network (CAN) [22].

CAN aims to minimize the intra-class domain discrepancy
and maximize the inter-class domain discrepancy via Maximum
Mean Discrepancy (MMD) [40]. The metric discrepancy loss
can be calculated:

L′
md =

1

C

C∑
c=1

Lcc − 1

C(C − 1)

C∑
c=1

C∑
c′=1,c′ 	=c

Lcc′ , (19)

where Lcc and Lcc′ can be defined according to the following
formation:

Lc1c2= e1 + e2 − 2e3,

e1=

Ns∑
i=1

Ns∑
j=1

1c1c1(y
s
i , y

s
j )k(z

s
i , zsj)∑Ns

i=1

∑Ns

j=1 1c1c1(y
s
i , y

s
j )
,

e2=

Nt∑
i=1

Nt∑
j=1

1c2c2(ŷ
t
i , ŷ

t
j)k(z

t
i, ztj)∑Nt

i=1

∑Nt

j=1 1c2c2(ŷ
t
i , ŷ

t
j)
,

e3=

Ns∑
i=1

Nt∑
j=1

1c1c2(y
s
i , ŷ

t
j)k(z

s
i , ztj)∑Ns

i=1

∑Nt

j=1 1c1c2(y
s
i , ŷ

t
j)
, (20)

where k represents the kernel function [17]. ys denotes the true
label of the source domain, and ŷt means the pseudo label of the
target domain, which is predicted via the spherical K-means.
The element of 1c1c2(yi, yj) is defined as: 1c1c2(yi, yj) = 1,
if yi = c1, yj = c2;1c1c2(yi, yj) = 0, otherwise. When c1 =
c2 = c, Lc1c2 changes to Lcc, which is the intra-class domain
discrepancy. When c1 = c, c2 = c′ and c 	= c′, Lc1c2 becomes
to Lcc′ , which is the inter-class domain discrepancy. In the deep
neural network, CAN minimizes the discrepancy loss over mul-
tiple FC layers, i.e., minimizing the total discrepancy loss:

Lmd =
∑
L′

L′
md, (21)

where L′ denotes the total number of FC layers of the classifi-
cation block.

Combine the supervised disentanglement loss, unsupervised
disentanglement loss and the adaptation loss (i.e., adversarial
loss and metric discrepancy loss), the overall objective can be
formulated as:

L = Lsup + Lunsup + βadaLada, (22)

here, when Lada = Lad, L denotes for IFDAN. When Lada =
Lmd,Ldenotes for IFDMN.βada can balance the losses. The ob-
jective function is minimized to train the IFDAN or IFDMN. The
transferable informative representations across domains can be
learned by embedding the proposed IFD into adversarial learn-
ing modules.

By combining the supervised disentanglement of the source
domain and the unsupervised disentanglement of the target do-
main, the shared encoder is constrained by the classification task
of the source domain, so that the shared encoder can only capture
the high-level semantic features. By introducing the adversar-
ial network or metric discrepancy model, IFDAN and IFDMN
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Fig. 4. Example Images from the Office31, Office-Home and VisDA-C datasets used in our experiments.

can impose additional representation structures on the high-level
abstract features to achieve the adaptation of the informative fea-
tures, respectively.

E. Discussion

The proposed IFD disentangles the informative features via
VIB and VLAE, which is not explored by existing methods. The
disentanglement is based on the hypothesis that the informative
feature is a high-level semantic feature that can be shared and
adapted by two domains. Thus unlike the works [62], [63], we
implicitly disentangle the high-level semantic feature from task-
unrelated details.

There is a claim [67] that completely unsupervised disentan-
gling is impossible for arbitrary generative models. Inductive bi-
ases, e.g., some form of supervision or constraints on the latent
space, are necessary to find ways that match the real generative
model. Consequently, IFD uses the supervised disentanglement
of the source domain to add constraint and guidance for the
unsupervised disentanglement of the target domain.

IV. EXPERIMENTS

A. Datasets

To evaluate the effectiveness of the proposed IFDAN (in-
cluding IFDAN-1 and IFDAN-2) and IFDMN approaches, we
conducted extensive experiments on three datasets: Of-
fice31 [68], Office-Home [69] and VisDA-C [70]. Fig. 4 gives
examples of these three datasets.

Office-31 is a benchmark dataset for evaluating different DA
methods for object recognition, which consists of three different
domains: Amazon (A), Dslr (D), and Webcam (W), including
4652 images in 31 classes. Amazon images are collected from
amazon.com, Webcam and Dslr images were manually gath-
ered in an office environment. Office-Home is a large bench-
mark dataset with around 15500 images and contains images of
65 classes. The dataset contains four domains: Artistic (Ar), Clip
Art (Cl), Product (Pr) and Real-World (Rw), and there are 12 DA
tasks. VisDA-C is a very challenging dataset with the domain
shift from synthetic data to real imagery. In this experiment, we
validated our method on its classification task. It has two do-
mains where the Synthetic one consists of 152397 synthetic 2D
renderings of 3D objects, and the Real one consists of 55388 real
images from real-world images from MS-COCO [71] dataset.
The two domains have 12 classes in common.

B. Network Setting

We applied a standard DCNN trained on source domain, e.g.,
ResNet-50 [72] that has been pretrained on ImageNet as the en-
coder branch of the IFDAN and IFDMN. The final classification
branch contains a linear layer after global average pooling. For
the reconstruction pipeline, we applied 5 3× 3 convolutional
layers with feature dimensions of 2048, 1024, 512, 256, 64 in the
decoder of the IFDAN and IFDMN. Each convolutional layer is
followed by a Leaky-ReLU [73] nonlinearity and an upsampling
layer except the layer before the output layer. For the informa-
tion bottleneck layer, we apply a linear layer with the number of
neurons 256 to compute the mean of latent features, and a linear
layer with the number of neurons 256, followed by a Softplus
to produce the variance. For the ladder variational connections,
there are two convolution layers with kernel 3× 3 at each con-
nected layer to compute the mean and variance of each inter-
mediate representation. The information bottleneck and ladder
variational connections are stochastic structures in the model,
and we applied the reparameterization trick introduced in [66] to
back-propagate unbiased estimated gradients. For the adversar-
ial network, we adopted a similar structure with [30], which con-
sists of three linear layers. Each linear layer is followed by ReLU
nonlinearity and Dropout layers except the final output layer.

C. Implementation Details

We implemented all experiments using Pytorch [74]. The
network was trained using the mini-batch stochastic gradient
descent (SGD) optimizer with a momentum of 0.9. We used
a batch size of 28 samples for IFDAN, and a batch size of
30 samples for IFDMN. The learning rate annealing strategy
was adopted as [22], [30]: ηp = η0(1 + αp)−β , where p was
the training progress changing from 0 to 1, α = 10, β = 0.75
for Office31 and Office-Home and β = 2.25 for VisDA-C. The
η0 was the initial learning rate i.e., 1e-3 for the convolutional
layers, and 1e-2 for the task-specific FC layer and the adver-
sarial discriminator. In our model IFDAN, we set the hyper-
parameters βunsup = 1e− 4 and βada = 1, and we empirically
vary βsup ∈ [1e− 4, 1e− 3]. For IFDMN, βunsup is set to 1e-4,
andβada is set to 0.3, andβsup varies from 1e-4 to 1e-3 gradually.

D. Comparative Studies

In this section, we conducted extensive experiments to demon-
strate the performance of the proposed IFDAN and IFDMN. For
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TABLE I
CLASSIFICATION ACCURACIES (%) ON OFFICE31 DATASET FOR UDA. ALL MODELS UTILIZE RESNET-50 AS BASE ARCHITECTURE. THE BOLD NUMBERS DENOTE

THE BEST RESULTS FOR EACH COLUMN

Office31 and Office-Home datasets, the results of most compar-
ison methods are directly quoted from their original papers to
facilitate fair comparison. For VisDA-C, we use the released
code of DAN,2 DANN,3 CDAN,4 BSP+CDAN,5 MCD6 and
CAN7 to conduct comparison experiments with the ResNet-50
backbone. In addition, we further choose the IFDMN to con-
duct experiments using ResNet-101 backbone network to more
fairly compare with existing algorithms. For these three datasets,
we use ResNet-50 as the backbone following the same protocol
of our methods and only apply the source domain to train the
network without any adaptation and process, which acts as the
lower bound.

Results on Office31 Table I shows the detailed comparison re-
sults of the proposed approaches and many existing approaches
in 6 transfer tasks. Table I shows that the proposed IFDMN
achieves the highest accuracy on four tasks, which is superior to
the recently proposed SRDC [50] by 0.5% in all. Compared to
the baselines DANN and CDAN, IFDAN-1 and IFDAN-2 im-
prove the performance by incorporating the IFD module. For
the two complex tasks D → A and W → A, the improvement
of the integrated method IFDMN over existing excellent meth-
ods is by 1.3% and 0.7%, respectively. The images from the

2[Online]. Available: https://github.com/thuml/Xlearn
3[Online]. Available: http://sites.skoltech.ru/compvision/projects/grl/
4[Online]. Available: https://github.com/thuml/CDAN
5[Online]. Available: https://github.com/thuml/Batch-Spectral-Penalization
6[Online]. Available: https://github.com/mil-tokyo/MCD_DA
7[Online]. Available: https://github.com/kgl-prml/Contrastive-Adaptation-

Network-for-Unsupervised-Domain-Adaptation

background of Amazon (A) domain are relatively clear, while
the images taken in real world from Webcam (W) and Dslr (D)
domains posses a certain degree of complexity. When transfer-
ring from the Webcam (W) or Dslr (D) domains to Amazon (A)
domain, the proposed IFDMN enforces the shared encoder to
concentrate on the task-related features of complex domains via
the VIB component. Besides, IFDMN reconstructs the target
domain to mine the structure of the target domain, and further
uses the ladder variational connections to suppress the redun-
dant information of the target domain. In this way, the network
architecture not only achieves the potential characteristics of the
target domain, but also suppresses domain-specific information.
From the results of these two tasks D → A and W → A, we
can see the proposed IFDMN has a considerable advantage in
dealing with the adaptation from a complex domain to a simple
domain.

Results on Office-Home Table II lists the accuracy of the
proposed approaches and existing several representative meth-
ods over 12 tasks on the Office-Home dataset. The Office-Home
dataset is a very challenging dataset for DA due to the large cat-
egories in each domain. Not surprisingly, our method IFDMN
outperforms the other baseline methods. The mean accuracy of
the proposed IFDMN (73.7%) outperforms the state-of-the-art
SRDC [50] by 2.4%. From Table II, we can see the proposed
method dramatically improves the performance on most adapta-
tion tasks, demonstrating the efficiency of the proposed IFDMN
in disentangling the informative features. In addition, the inte-
grated approach IFDAN-2 is also superior to many methods,
which further verifies the efficiency of the proposed IFD. From

https://github.com/thuml/Xlearn
http://sites.skoltech.ru/compvision/projects/grl/
https://github.com/thuml/CDAN
https://github.com/thuml/Batch-Spectral-Penalization
https://github.com/mil-tokyo/MCD_DA
https://github.com/kgl-prml/Contrastive-Adaptation-Network-for-Unsupervised-Domain-Adaptation
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TABLE II
CLASSIFICATION RESULTS (%) ON OFFICE-HOME DATASET FOR UDA. ALL MODELS UTILIZE RESNET-50 AS BASE ARCHITECTURE. THE BOLD NUMBERS DENOTE

THE BEST RESULTS FOR EACH COLUMN

TABLE III
CLASSIFICATION ACCURACIES (%) ON THE VISDA-C DATASET FOR UDA. ALL MODELS UTILIZE RESNET-50 AS THE BASE ARCHITECTURE EXCEPT THE METHODS

MARKED WITH *, WHICH USES RESNET-101. THE BOLD NUMBERS DENOTE THE BEST RESULT

the results of IFDAN-1, IFDAN-2 and IFDMN, we can see the
proposed module can be applied to many current DA algorithms
successfully and dramatically improves performance.

Results on VisDA-C Table III presents the accuracy over 12
classes on VisDA-C with the validation set as the target do-
main. Slightly superior results are achieved by our algorithm
IFDMN. We can see that our proposed methods yield increas-
ingly good results compared with their corresponding baseline
models e.g., DANN [26], CDAN [30] and CAN [22], verifying
the efficiency of the proposed IFD. Notably, the performance of
IFDMN outperforms BSP+CDAN [78] and MCD [44] which
use the ResNet-101 as the backbone verifying the effectiveness
of the proposed IFD.

E. Ablation Studies

To demonstrate the efficiency of the supervised disentangle-
ment and unsupervised disentanglement, we choose IFDAN-2
and IFDMN to conduct a series of ablation experiments on Of-
fice31, Office-Home and Visda-C. For IFDAN-2 and IFDMN,
the proposed IFD is embedded in CDAN [30] and CAN [22],
respectively; thus we regard the results of CDAN and CAN as
our benchmark where there is no disentanglement. In addition,
we also explored the component IFD where the features are dis-
entangled but not adapted. Importantly, we explored two other
main factors: IFDAN-2 (w/o sup) and IFDMN (w/o sup) rep-
resenting the lack of the supervised disentanglement, IFDAN-2
(w/o unsup) and IFDMN (w/o unsup) denoting that the unsu-
pervised disentanglement is not considered.

Table IV shows the experimental results on the above two
datasets. IFD can not achieve better performance, because it is
devoted to extracting informative features without concentrat-
ing on the features adaptation. It is worth noting that the ex-
perimental methods with the only supervised disentanglement,

e.g., IFDAN-2 (w/o unsup) and IFDMN (w/o unsup), or with
only unsupervised disentanglement, e.g., IFDAN-2 (w/o sup)
and IFDMN (w/o sup), achieve some improvements in the per-
formance, which demonstrates the importance of the informa-
tive feature disentanglement. Combining the two types of dis-
entanglement, IFDAN-2 and IFDMN can further improve the
performance.

F. Further Remarks

Feature Visualization A popular method to visualize high-
dimensional data in 2D is t-SNE [80]. We are interested in the
distribution of embeddings for target domain when we employ
our training scheme. We chose the A → W DA task of Office31
dataset and plotted it in Fig. 5 to visualize the learned feature
representations. The first row shows the features of domain-level
distributions. The second row represents the features of class-
level distributions. Fig. 5(a) depicts the learned feature of source
and target domains by ResNet-50. We can see that the samples of
source and target are rarely aligned. Fig. 5(b) shows the visual-
izations of features learned by CDAN. Some of the same classes
can gather together, but the feature distribution is still discrete.
The feature representations of IFDAN-2 (w/o sup) and IFDAN-2
(w/o unsup) are described in Fig. 5(c) and (d). We can see that the
clusters become compact, but some categories have been mixed
up in the feature space. The feature representation of IFDAN-2
is shown in Fig. 5(e). We can see the domain distributions align
well from the first row. Moreover, the features of the two do-
mains can be discriminated very well from the second row. By
contrast, combining supervised disentanglement and unsuper-
vised disentanglement can learn more informative transferable
representations.
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TABLE IV
CLASSIFICATION ACCURACIES (%) ON OFFICE31 AND OFFICE-HOME DATASETS FOR UDA. ALL MODELS UTILIZE RESNET-50 AS BASE ARCHITECTURE. THE

BOLD NUMBERS DENOTE THE BEST RESULTS FOR EACH COLUMN IN EACH BOX

Fig. 5. (a)-(e) The t-SNE visualization of network activations on the source and target domains generated by ResNet-50, CDAN, IFDAN-2 (w/o sup), IFDAN-2
(w/o unsup) and IFDAN-2, respectively. Different shapes denote different domains. The “*” and “o” represent the source and target domain, respectively. In the
first row, different colors represent different domains. In the second row, different colors represent different classes. (a) ResNet-50. (b) CDAN. (c) IFDAN-2 (w/o
sup). (d) IFDAN-2 (w/o unsup). (e) IFDAN-2.

Convergence We verified the performance of the experi-
mental method IFDAN-2 on the convergence from the test-
ing loss and accuracy as illustrated in Fig 6 (a–d). From the
loss curve, we can see that our proposed model IFDAN-2 con-
verges faster than the baseline method. As the training pro-
ceeds, the loss of IFDAN-2 has always been at a lower level.
From the Fig. 6 (c), there is an interesting scenario that the
convergence speed of CDAN is not stable. However, when
CDAN is integrated with IFD, i.e., IFDAN-2, converges sta-
bly and fast. Furthermore, from the accuracy curve illustrated in
Figure 6, we see that disentangling informative features leads
to notable accuracy improvement of IFDAN-2, compared to
CDAN.

Reconstruction analysis To further analyze the disentan-
glement structure, we reconstructed the source and target do-
mains with the trained model IFDAN-2 as shown in Figure 7.
Figures 7 (a) and (b) denote images of the source domain
(Amazon) and the target domain (Webcam), respectively. Fig-
ure 7 (c) and (d) show the reconstruction result of source
and target domains, respectively. We can see some objects
of images can be reconstructed, but some details (e.g., back-
ground) are lost, which verifies the disentanglement of infor-
mative features. The reconstruction results show that IFDAN-2
is at the expense of reconstructing complete images to dis-
entangle the informative transferable features in the learning
process.
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Fig. 6. (a)-(b) The curve of loss and accuracy during training on the task of A → W. (c)-(d) The curve of loss and accuracy during training on the task of W → A.

Fig. 7. Data reconstruction after training from Amazon to Webcam via IFDAN. (a)-(b) samples from source (Amazon) and target (Webcam), (c) the reconstruction
images of source domain (Amazon), (d) the reconstruction images of target domain (Webcam).

Fig. 8. Empirical analysis: Proxy A-Distance of different features on A → W
and W → A.

Discrepancy Distance The theory of DA [81], [12] denotes
the A-distance as a measure of the cross-domain discrepancy,
which will bound the target risk together with the source risk.
The way to estimate the proxy A-distance (PAD) is defined as
d̂A = 2(1− 2ε), where ε is the generalization error of a binary
classifier of discriminating source and target. We applied a kernel
SVM to estimate the A-distance. Figure 8 shows PADs on tasks
A → W and W → A with features of CDAN, IFDAN-2 (w/o
sup), IFDAN-2 (w/o unsup) and IFDAN-2. We observe that PAD
of IFDAN-2 is much smaller than the baseline method, which
suggests that our features can reduce the cross-domain gap more
effectively.

V. CONCLUSION

In this paper, we propose a novel module named Informa-
tive Feature Disentanglement (IFD) aiming at only applying the

high-level semantic features to adapt and filtering out the redun-
dant information. Technically, we conduct the supervised disen-
tanglement of the source domain and the unsupervised disentan-
glement of the target domain via VIB and VLAE, respectively.
We combine the proposed IFD with the adversarial networks
and a metric discrepancy network, respectively; thus the Infor-
mative Feature Disentanglement Adversarial Network (IFDAN)
and Informative Feature Disentanglement Metric Discrepancy
Network (IFDMN) emerge as required. By conducting an in-
formative features purification before the features adaptation,
IFDAN and IFDMN ease the following features alignment, thus
improving the adaptation and accelerates convergence. Com-
parative experiments on three gold DA datasets demonstrate
that IFDMN yields leading result compared with many existing
methods in classification accuracy. Besides, extensive ablation
experiments clearly show the effectiveness of IFD in signifi-
cantly improving the performance of the popular domain adap-
tation network.

Despite the effectiveness of the IFD, there are still some as-
pects that can be further improved. The proposed IFD aims at
solving the closed-set UDA problem, i.e., the source domain and
target domain share the identical label space, where there is only
one feature-level difference between domains. Recently, partial-
set [82]–[84], open-set [85]–[87] and universal-set [88] domain
adaptation problems which are more inclined to real-world ap-
plications are put forward, where there are not only differences in
the feature level, but also variances in the category level, e.g., tar-
get labels are only a subset of source labels in partial-set scenar-
ios. IFD is designed to disentangle the feature-level divergence
for closed-set UDA without considering the category-level dif-
ference of several extended UDA settings. A better understand-
ing of informative category information disentanglement would
play a great role in this field of research. Thus, we will extend
the IFD to category information disentanglement for open-set,
partial-set and universal-set domain adaptation problems in our
future work.
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