
IEEE TRANSACTIONS ON MULTIMEDIA 1

Feature Estimations based Correlation Distillation
for Incremental Image Retrieval

Wei Chen, Yu Liu, Nan Pu, Weiping Wang, Li Liu, Senior Member, IEEE, and Michael S. Lew

Abstract—Deep learning for fine-grained image retrieval in an
incremental context is less investigated. In this paper, we explore
this task to realize the model’s continuous retrieval ability. That
means, the model enables to perform well on new incoming data
and reduce forgetting of the knowledge learned on preceding old
tasks. For this purpose, we distill semantic correlations knowledge
among the representations extracted from the new data only
so as to regularize the parameters updates using the teacher-
student framework. In particular, for the case of learning multiple
tasks sequentially, aside from the correlations distilled from the
penultimate model, we estimate the representations for all prior
models and further their semantic correlations by using the
representations extracted from the new data. To this end, the
estimated correlations are used as an additional regularization
and further prevent catastrophic forgetting over all previous
tasks, and it is unnecessary to save the stream of models trained
on these tasks. Extensive experiments demonstrate that the
proposed method performs favorably for retaining performance
on the already-trained old tasks and achieving good accuracy on
the current task when new data are added at once or sequentially.

Index Terms—Incremental learning, fine-grained image re-
trieval, correlations distillation, feature estimation

I. INTRODUCTION

LEARNING is a life-long process for human beings so
that we can learn continuously, devoid of forgetting

previously acquired knowledge. However, this is not the case
for deep neural networks, which suffer from the catastrophic
forgetting problem, a phenomenon that occurs when a network
is trained successively on a series of new tasks and the learning
of these tasks degrades performance on previous tasks [1].
In particular, deep networks for image retrieval have been
widely trained and validated on stationary datasets. As new
data increase over time, these parameters pre-learned on the
stationary datasets cannot be suited well for the non-stationary
scenario. Nevertheless, human-like learning ability is required
for deep networks based image retrieval.

The main challenge is to make the trained model adapt to
new data without losing the knowledge on the seen data. Most
conventional solutions for tackling this challenge suffer from

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org., provided by the authors. The material includes more
visualization of the retrieval results. This material is 2MB in size.

Wei Chen, Nan Pu and Michael S. Lew are with Leiden Institute of
Advanced Computer Science, Leiden University, The Netherlands.

Yu Liu is with DUT-RU International School of Information Science and
Engineering, Dalian University of Technology, China.

Weiping Wang is with College of Systems Engineering, NUDT, China.
Li Liu is with College of Systems Engineering, NUDT, China, and with

Center for Machine Vision and Signal Analysis, University of Oulu, Finland.
Corresponding author: Wei Chen, w.chen@liacs.leidenuniv.nl.

New classes #3

Incremental learning process

(c) Distillation via feature estimation

Accuracy

change

Feature
estimation

Classes #1 Classes #2

Virtual

features

Knowledge distillation

New classes #3

Incremental learning process

(a) Distillation from the penultimate model

Classes #1 Classes #2

Knowledge distillation

New classes #3

Incremental learning process

(b) Distillation from multi-model

Classes #1 Classes #2

Knowledge distillation

Model 3Model 2Model 1
Model 3Model 2Model 1Model 3Model 1 Model 2

New classes #3

Incremental learning process

(c)

Accuracy

change

Feature
estimation

Classes #1 Classes #2

Virtual

features

Knowledge distillation

New classes #3

Incremental learning process

(a)

Classes #1 Classes #2

Knowledge distillation

New classes #3

Incremental learning process

(b)

Classes #1 Classes #2

Knowledge distillation

Model 3Model 2Model 1
Model 3Model 2Model 1Model 3Model 1 Model 2

Fig. 1. Comparison of three knowledge distillation methods. We depict three
steps of distillation. (a) Single-model distillation method only stores and uses
the penultimate model; (b) Multi-model distillation method has to store all
old models and distills from them more knowledge devoid of forgetting; (c)
Our method only stores the penultimate model while can accumulate previous
knowledge learned at each model through feature estimations.

obvious limitations. For example, one can use new data to fine-
tune the model initialized from the optimal parameters pre-
trained on old data. However, the model is driven towards the
new data but forgets what was learned before. Alternatively,
joint training achieves optimal retrieval performance on both
old and new data, while it requires the presence of all the data
during training. This requirement is hard to meet for several
scenarios where legacy data are unrecorded due to privacy
issues or simply too cumbersome to collect all the old data.
Moreover, re-training old data may lead to an imbalance issue
between the quantity of old data and that of new data [2][3].

Two incremental learning methods are developed to tackle
the above limitations. First, the rehearsal based method utilizes
generative adversarial nets (GANs) to synthesize samples
w.r.t. previous data distributions [4][5]. This method faces
the difficulty of generating images with complex semantics.
Second, the regularization based methods can either focus on
network parameters or output activations. Parameters-based
regularization methods estimate the parameter importance of
previous tasks, then penalizes the drastic updates of these
parameters when the model is learning a new task, con-
straining the important parameters to stay close to their old
values. Activation-based regularization methods, relying on
the teacher-student framework, constrain the teacher model
and the student model have similar outputs (e.g. features
or probabilities). Due to its effectiveness and flexibility, the
regularization methods have been widely explored for tasks
such as image classification [2][3][6], but are less-explored for
image retrieval. Recently, Parshotam et al. [7] regularize the
representations via a normalized cross-entropy loss, training
with metric learning for vehicle identification and retrieval.
Chen et al. [8] propose regularizing both the representations
and probabilities by combining a maximum mean discrepancy
loss and a knowledge distillation loss [9] for fine-grained
image retrieval (FGIR) [10]. As depicted in Figure 1(a), they
only store and use the penultimate model to transfer previously

http://ieeexplore.ieee.org.

IEEE TRANSACTIONS ON MULTIMEDIA 2

learned knowledge on old tasks, demonstrating experimentally
that correlations distillation on the representations is more
effective for reducing catastrophic forgetting on these tasks.

For the case where new tasks are added sequentially, which
is referred to multi-task incremental learning, only distilling
on the penultimate model is insufficient to reduce forgetting
on all previous tasks [11]. In fact, transferring additional
knowledge learned on previous tasks, i.e. , via multi-model
distillation tackles this insufficiency, as shown in Figure 1(b).
In multi-task incremental learning, a stream of deep models is
produced as new tasks are added continuously. Each model is
trained to learn the corresponding new task while remembers
prior knowledge. However, it becomes too cumbersome and
inefficient to store and use these models when more new
data are added. Therefore, an arising question is that how to
use the model stream, not only the penultimate model, for
knowledge distillation? Few researchers address this problem
in incremental tasks. Recently, a multi-model and multi-level
knowledge distillation strategy is presented for incremental im-
age classification [11]. However, the snapshots of all previous
models still need to be saved and depend on network pruning
methods to reconstruct. Thereby, the multi-level knowledge
distillation is at the cost of a higher training complexity.

In this work, we face the above question to improve deep
model’s continuous retrieval ability. Semantic correlations of
features are transferred as knowledge from a teacher model to
a student model when new data are used only. For multi-task
incremental learning, the model stream trained on preceding
tasks is unnecessarily saved. Instead, we estimate represen-
tations for all previous models and further their semantic
correlations, using the features extracted from the current new
task (see Figure 1(c)). These correlations serve as an additional
regularization to further prevent forgetting over previous tasks.
Our contributions are summarized as follows:

(1) Task contribution. We focus on incremental image
retrieval, a less-investigated task, by exploring semantic corre-
lations of samples when training with new data only. Reduc-
ing catastrophic forgetting for image retrieval is challenging
because small changes on retrieval features may have a big
impact on the performance of feature matching.

(2) Technical contribution. We adopt feature correlations
as knowledge for incremental learning. For multi-task incre-
mental learning, we not only consider the knowledge from
the penultimate model but also propose a simple yet effective
feature estimation method to explore the feature correlations
for the stream of models trained on previous tasks.

(3) Empirical contribution. Quantitative and qualitative
experiments on two common benchmarks demonstrate that the
proposed approach is effective for achieving optimal perfor-
mance on both the old and new tasks when new incoming data
are added at once or sequentially.

II. RELATED WORK

Incremental image retrieval. Incremental learning can be
categorized into architectural methods [3][6], rehearsal meth-
ods [4][5][12], and regularization methods [13][14][15][16].
It enables deep models to learn in a lifelong manner and

has been studied for various tasks such as image classifica-
tion [17][6][18], objection detection [19], image captioning
[20], and semantic segmentation [21]. Most of them rely on
classification probabilities to perform. In terms of reducing
forgetting in an incremental setting, these tasks are forgiving
and robust as long as features for old tasks are kept cate-
gorized into the range of classification decision boundaries.
In contrast, retrieval tasks in an incremental setting are more
challenging where the retrieval features are more important
than classification probabilities because small changes on these
features may have a big impact on the performance of fea-
ture matching and forgetting reducing. Recently, incremental
retrieval have been explored in single-modal [8][22][23][24]
and cross-modal [25][26][27], and we focus on single-modal
image retrieval. IBL [22] and CIHR [23] are proposed to
deal with the concept drift issue for hashing retrieval in non-
stationary environments. However, the hash bits learned from
hand-crafted features need to be pre-selected, and the trained
hash functions for existing data need to be stored [22]. Also,
selected images from previous training sessions are combined
with new emerging images to train hash tables [23]. DIHN
[24] is explored for deep incremental hashing retrieval in
which old data are used as a query set to avoid forgetting.
Fine-grained incremental image retrieval is studied with only
using new data in each incremental session [8]. However,
knowledge is only transferred from the penultimate model,
causing the insufficiency to remember previous knowledge
when performing multi-task incremental learning. In this work,
we further distill additional knowledge from the model stream
via a simple yet effective feature estimation method when only
using new data in each incremental session.

Knowledge distillation. In general, a knowledge distillation
system consists of three components: knowledge types, distil-
lation strategies, and teacher-student structures [28]. Knowl-
edge can be distilled from the output of either the final
classifier or the intermediate layers. The distillation strategies
characterize the differences between the teacher model and
the student model, which can be measured by cross-entropy
[9], L1 distance [29][30], L2 distance [31][32][33], Gramian
matrix [34][35], Kullback-Leibler (KL) divergence [9][36],
and maximum mean discrepancy (MMD). For more details
about knowledge distillation, we refer readers to a recent
survey [28]. Knowledge distillation provides an effective
way to retain the learned knowledge devoid of forgetting in
incremental tasks. For instance, the teacher model’s output
logits are used as “soft” labels to transfer knowledge to the
student model for incremental image classification [37], but
it focuses on transferring knowledge from the penultimate
model to the current one (i.e. one-teacher framework). For
this, a multi-teacher structure has been developed for better
knowledge distillation [11][38][39]. For example, Zhou et al.
[11] introduce using all previous models to transfer multi-level
knowledge to train current new tasks. To avoid a great memory
storage requirement, they prune previous models to get several
“necessary” parameters during each training session.

Correlation learning. Correlation learning has been widely
used for multi-modal tasks to explore the relevance between
different layers or data samples [40][41][42][43][44]. It fo-

IEEE TRANSACTIONS ON MULTIMEDIA 3

cuses on the relations between feature representations rather
than the features themselves. These relations enable models
to explore rich contextual information of images such as [43]
where three-level of correlations are integrated for optimal
feature learning. Correlation learning has been combined
into knowledge distillation, based on the observation that
semantically similar inputs tend to elicit similar patterns. For
example, Peng et al. [44] use a symmetric adjacency matrix
to encode a knowledge graph with category correlations and
transfer them via a semantic-visual mapping network. Park et
al. [15] propose a relational knowledge distillation method
to transfer the relations between instances. Similarly, Peng
et al. [45] introduce using the congruence between instances
as knowledge for distillation, which is beneficial for guiding
the student model to learn the correlations between instances.
Similarity between activations of input pairs can also be
extracted as knowledge to transfer into the student model
[46]. The successful applications of correlation learning for
knowledge distillation encourage its exploration for incremen-
tal learning tasks. In this work, we demonstrate experimentally
that correlations among feature representations, characterized
by Gramian matrix [34][35], are more effective for transferring
knowledge to mitigate catastrophic forgetting.

III. CORRELATIONS DISTILLATION FOR INCREMENTAL
IMAGE RETRIEVAL

A. Problem formulation

Given a fine-grained dataset with n classes D =
{(Xc, yc)|c = 1, 2, · · · , n}, each class c includes different
amount of images Xc and they share the same ground-truth
label yc. The label is used to select a positive xp and a
negative xn images for an anchor image xa in each training
iteration [47]. A deep network f(·,θ) learns representations
F =f(X,θ) under the constraint of the triplet loss using hard
sampling strategy, whose goal is to push away the distance
D(xa, xn) = ||f(xa;θ)− f(xn;θ)||22 between xn and xa by
a margin δ > 0 compared to D(xa, xp). Namely,

||f(xa;θ)− f(xp;θ)||22 + δ < ||f(xa;θ)− f(xn;θ)||22 (1)

Before incremental training, the network is well trained on
the n old classes, converging at old parameters θo, i.e.,

θo = argmin
θ

Ltriplet(f0(Xc;θ)) (2)

where Ltriplet(xa, xp, xn) = [δ+D(xa, xp)−D(xa, xn)]+, as
defined in Eq. 1. To train network f0 incrementally, new data
from m classes {(Xc

′
,Yc

′
)} where c′ ∈ (n+1, n+2, ..., n+

m) are added ({Xc} ∩ {Xc
′
} = ∅) at once or sequentially,

corresponding to one-task and multi-task cases, respectively.
As an example, the one-task case is depicted in Figure 2.

At the start of training on m new classes, f0 is copied into
two copies. One is frozen as a teacher net, and another is used
as a temporary initialization f

′

1 for further training (θo = θ
′

n,
including the parameters in the Backbone and Embedding Net
in Figure 2). We only use the m new classes to train to obtain
f1. Thus, the core issue of one-task incremental retrieval is to
make the model f1 with new parameters θn maintain a stable
performance on the n old classes and achieve competitive

Step 1

Step 2

Copy as

initialization

Update

Correlation loss

+

Triplet loss

Frozen

new

classes

only

m

old

classes
Triplet

loss

n
Backbone

Embedding

NetBackbone

Embedding

Net

Model

d
F

0f

0f 0f

1f 1f

Fig. 2. One-task incremental learning includes two training steps. Step 1:
a model f0 is well trained in advance on the n old classes using ranking
loss only. Step 2: the well-trained model f0 is frozen as a teacher network.
Meanwhile, the parameters of the Backbone and the Embedding Net included
in this model f0 are copied as initialization for a temporary model f

′
1, which

is updated to the final model f1 under the constraints of correlation loss and
triplet loss. At Step 2, only the m new classes are used for training.

accuracy on the m new classes. Formally, the overall objective
for this scenario is:

L(Xc
′
;θo;θn) = λ1Ltriplet(Xc

′
;θn)︸ ︷︷ ︸

for plasticity

+λ2Lcorr(Xc
′
;θo;θn)︸ ︷︷ ︸

for stability

(3)
where Ltriplet makes the model perform well on new tasks
while Lcorr is the correlation loss to stabilize prior perfor-
mance. θo and θn are the parameters for old tasks and new
tasks, respectively. λ1 and λ2 are the plasticity and stability
hyper-parameters, which tune the influence of two loss terms.

B. Correlations distillation for one-task incremental learning

One-task incremental learning refers to the case that all the
m new classes are added to the n old classes at once. As shown
in Figure 2, the model f

′

1 serves as a to-be-trained student net.
For the one-task incremental scenario, we propose to distill the
semantic correlations as knowledge.

Specifically, the features with dimension d from the teacher
model f0 are formulated as Fo = f0(X

c′ ,θo) ∈ RN×d, and
that from the student model f1 are Fn=f1(Xc′ ,θn) ∈ RN×d,
see Figure 2. Based on the fact that semantically similar inputs
produce similar patterns in a trained network [46]. Therefore,
a Gram matrix with a kernel function for Fo and Fn is defined:

G(i,j)
o = K(F io, F jo); G(i,j)

n = K(F in, F jn) (4)

Here, we further define the function K(·) as inner product,
i.e., K(F i, F j) =<F i, F j>. Each entry (i, j) in G ∈ RN×N
represents the correlations of the same activation (i = j)
or these between different activations (i 6= j). To compare
the difference between Go and Gn, we first normalize these
correlation matrices with Softmax function σ(·), and then use
Kullback–Leibler divergence to characterize their difference,
which is formulated as correlation loss Lcorr.

Lcorr =
1

N

∑
KL(σ(Go), σ(Gn)) (5)

IEEE TRANSACTIONS ON MULTIMEDIA 4

t = 0 t = 1 t = 2 t = 3

Copied as
initialization

update

Correlation
loss

update

old classes

Sequential tasks proceed

update

Copied as
initialization

Copied as
initialization

Correlation
loss

Correlation
loss

dedda sessalc
we

N

0f 0f

1f 1f

2f

1f

2f 2f

3f 3f

new classes #1

only for t = 1

new classes #2

only for t = 2

new classes #3

only for t = 3

Step 2 in Fig. 1

0f 0f

1f

Fig. 3. Illustration of multi-task incremental learning when three groups of
new classes are added sequentially (from task t=1 to task t=3). For each round
when new classes are added, the model trained on a previous task is frozen its
parameters as a teacher net and is also copied as initializations of the model
for new classes. Each round can be viewed as one-task incremental learning.
As the training proceeds, the previous models are not saved to simplify the
training process. For simplicity, the triplet loss is ignored.

C. Feature estimation for multi-task incremental learning

Compared to the above one-task setting, the multi-task
scenario is more complex where all m new classes are divided
into t groups,Xc′

0 ,...,Xc′

t . For clarity, we illustrate its learning
process in Figure 3. As more new classes added sequentially,
the model, correspondingly, evolutes from the initial model f0
to the current one ft. In practice, it may be difficult to save
the stream of models. For this limit, we only save the model
trained on the penultimate task t− 1 when proceeding current
task t for tth new classes Xc′

t . For example, when training
on the 3rd group of new classes (task t=3), the knowledge
is distilled only from the penultimate models f2, while the
previous models f0 and f1 are not saved. Due to the lack of
previous models, it causes two drawbacks: (1) the knowledge
is distilled only from the penultimate model ft−1 to the model
on the current task t, and (2) the trained model ft may forget
more on old tasks prior to t−1. Therefore, it is natural to raise
a question that how to utilize these unsaved models trained
prior to the penultimate task t − 1 for transferring additional
knowledge to supervise the training of current task t.

Hereafter, for better understanding, we introduce the multi-
task scenario by defining an adaptive model ft for the current
task t, a frozen model ft−1 trained on penultimate task t− 1,
and unsaved models ft−2, ..., f0 for earlier tasks t−2, ..., 0, as
shown in Figure 4. Since the frozen model ft−1 is initialized
from the previous unsaved model ft−2 at the start of training
on task t − 1, the feature distributions of these two models
have some inherent relations, which can be reflected through
their accuracy (e.g., mAP). This accuracy evolution along with
training the models stream gives a hint for feature estimation.

1) Accuracy drops and accuracy gains: We propose a
simple yet effective method to estimate the feature distribu-
tions for all unsaved models, which serve as an additional
regularization term for training on current task t (t≥ 2). For
this purpose, we first focus on the accuracy change during
training from task t − 2 to task t − 1. Parameters of the
penultimate model ft−1 are copied from those of the model
ft−2. Before training on task t − 1, the accuracy on its old
tasks and the new classes Xc′

t−1 are recorded as Accbo and

Accbn, respectively. Naturally, Accbn is far from accurate since
the penultimate model ft−1 is not trained specifically for new
data. After training on task t − 1, the accuracy on these
old tasks and new classes Xc′

t−1 are recorded as Accao and
Accan, respectively. Intuitively, the model ft−1 acquires new
knowledge on new classes Xc′

t−1, and the accuracy increases
from Accbn to Accan (i.e., accuracy gains). In contrast, model
ft−1 may degrade accuracy from Accbo to Accao (i.e., accuracy
drops) because this model is driven towards the new data.

t

60

65

70

75

80

A
cc

ur
ac

y

Accuracy change

Accuracy gain on new classes #(t-1)
Accuracy drop on old classes #(t-2)

actual
t-1F actual

tFvirtual
t-2F

Distribution drift

…

Unsaved models

tftftft-1ftft-2f

new classes
task #t

1ff0

Feature
estimation

Accuracy
change

Current
task

Correlations distillation

…

t-2

Fig. 4. Illustration of feature estimation when performing the task t. The
virtual feature distribution of unsaved model ft−2 can be estimated by that
of frozen model ft−1 under multi-task incremental learning.

The accuracy drops and accuracy gains, related to the
stability-plasticity trade-off, are criteria that correspond to old
tasks and new tasks, respectively. For instance, if a model
has larger stability on previous tasks, both the accuracy drops
and accuracy gains are small. In contrast, if the stability is too
weak, the model suffers obvious accuracy drops and forgetting
on previous tasks. Inspired by [48], we define the accuracy
changes using the accuracy drops and accuracy gains:

αdrop =
(Accao −Accbo)

Accbo
, αgain =

(Accan −Accbn)
Accbn

(6)

As the training proceeds from task t − 2 to task t − 1,
their accuracy changes continuously on old classes (the brown-
color line in Figure 4) and new classes (the blue-color line).
Rather than saving these models, we only need to record
their accuracy drops αdrop|(t−2)→(t−1) and accuracy gains
αgain|(t−2)→(t−1), which are meta-data of these models and
provide implicit information to estimate the feature distribution
drifts. Here, the subscript “(t − 2) → (t − 1)” means the
knowledge is distilled from task t − 2 to penultimate task
t− 1.

2) Distribution drifts estimation: Estimating feature distri-
bution drifts was explored in [49] where the attribute vectors
are learned based on the source set and target set, then the
learned vectors are used to estimate new features. In this work,

IEEE TRANSACTIONS ON MULTIMEDIA 5

new classes
task #1

Feature
estimation

Accuracy
change

0f 1f

0
actualF

0
virtualF

1
actualF

0 0The feature distributions of and actual virtualF F

Fig. 5. We save model f0 for validating its features qualitatively. The circle
denotes the actual features from f0. The triangle indicates the virtual features
estimated by model f1 according to the accuracy change from f0 to f1. The
feature estimation block has been discussed in Eq. 7 and Eq. 8. We visualize
10 samples per class of a total 10 classes on the CUB-Birds dataset.

we estimate feature drifts via the change of model accuracy.
We only save the penultimate model ft−1 when training on
current task t, see Figure 4. The recorded accuracy change
from model ft−2 to model ft−1 has been reflected through the
drifts of their feature distributions. Based on this, we use the
accuracy change (αdrop, αgain) and the available features from
the model ft−1 to estimate the feature drifts which are used to
further compute virtual features for model ft−2. To be specific,
when feeding tth group of new classes Xc′

t into the model
ft−1 and the adaptive model ft, we obtain their corresponding
actual features F actualt−1 = ft−1(X

c′

t) and F actualt = ft(X
c′

t).
Since the accuracy drops and accuracy gains from model ft−2
to model ft−1 have been obtained, we estimate their feature
distribution drifts using a simple yet effective method:

∆|(t−2)→(t−1) ≈ α · F
actual
t−1

s.t. α = Cat(α1, ..., αi, ..., αN), αi ∈ Rd,α ∈ RN×d

αi ∼ U(αdrop|(t−2)→(t−1), αgain|(t−2)→(t−1))

(7)

where Cat(·) means vector concatenation operation. Each raw
vector αi is randomly sampled from the uniform distribution
U(·, ·) according to αdrop and αgain. Thereby, α has the same
dimension with the features F . In theory, the expectation of
each sampling in α is close to 0.5× (αdrop + αgain).

It is assumed that the features change uniformly during
sequential training and the changes can be reflected through
the defined accuracy drops and accuracy gains. With this
hypothesis, the feature drifts ∆|(t−2)→(t−1) can be evaluated
according to actual features F actualt−1 . With the feature drifts,
inspired by [49], the virtual feature distributions for unsaved
model ft−2 are estimated:

F virtualt−2 = F actualt−1 + k∆|(t−2)→(t−1) (8)

where k is a scaling factor, we set k = 1. The reason why
we can estimate the virtual features F virtualt−2 from F actualt−1
is because the parameters of model ft−1 are initialized from
model ft−2 at the start of training ft−1.

Similarly, we can further approximate the virtual feature
F virtualt−3 for model ft−3 according to the already-estimated
F virtualt−2 , its accuracy drops αdrop|(t−3)→(t−2) and accuracy
gains αgain|(t−3)→(t−2) from task t−3 to task t−2. Normally,

task t

new classes

for task t

1

actual

t−F

actual

tF

2

virtual

t−F

…

1tf −

tf

unsaved

models

Gram matrix

Gram

matrix

Gram

matrix

Correlation loss computing

Gram

matrix

(1)t t

corrL
− →

(2)t t

corrL
− →

1 t

corrL
→

0f

0

virtual
F

2tf −

Current

task

Fig. 6. Feature estimations based knowledge distillation. The red arrows
denote feature estimation process. The dash arrows indicate the features are
virtually estimated from the actual features. For instance, the superscript “(t−
2)→ t” refers to the Gram matrix of task (t− 2) is used as supervision for
training current task t, which is formally defined in Eq. 5.

with a recursive scheme, the virtual features of all previous
unsaved models can be estimated using their recorded accuracy
drops, accuracy gains, and already-estimated virtual features.
Finally, the features of first model f0 are estimated as:

F virtual0 = (1 + kα|(t−2)→(t−1))(1 + kα|(t−3)→(t−2))

...(1 + kα|(0)→(1))F
actual
t−1

(9)

Qualitative Validation. We test the hypothesis in Eqs. 7,8
by visualizing and comparing the feature distributions when
training task t = 2 for the 2nd group of new classes in Figure
5. To do this, we save model f0 to visualize its output features.
The output features from model f1 are fed into the feature
estimation module (defined in Eq. 7 and Eq. 8) according
to the range of accuracy changes when training from model
f0 to model f1. Their feature distributions are illustrated in
Figure 5. For almost half of these classes, the estimated virtual
features distribute closely to the actual features from target
model f0, demonstrating that the estimated features can also
provide supervisory information to some extent.

3) Importance for estimated features: The estimated fea-
tures for all previous unsaved models serve as additional
regularization terms. Thus, more Gram matrices Gvirtual are
computed based on these estimated features, as illustrated in
Figure 6. To this end, the additional correlation loss, such as
L
(t−2)→t
corr , based on the estimated features is formulated as:

L(t−2)→t
corr =

1

N

∑(
KL(σ(Gvirtual

t−2), σ(Gactual
t))

)
(10)

When more new classes are added sequentially, more
Gram matrices are computed through the recursively-estimated
features. However, these Gram matrices cannot be treated
identically when used to distill knowledge for training current
task t since the accumulated errors may make the recursively
estimated features more and more unreliable. For tackling this
limitation, the estimations for earlier tasks are assigned with
smaller importance. Naturally, the importance is related to the
indices of old tasks. To this end, we formulate the correlation
loss terms with different importance factors:

IEEE TRANSACTIONS ON MULTIMEDIA 6

Lcorr = L
(t−1)→t

corr +

1

(t− 1)
L

(t−2)→t

corr +
0.1

(t− 2)
L

(t−3)→t

corr + ...+
(0.1)t−2

1
L

1→t

corr︸ ︷︷ ︸
Feature estimation for prior sequential tasks(t≥2)

(11)
For one-task incremental scenario (t=1), Eq. 11 can be re-

written as Eq. 5. If more tasks are performed (t ≥ 2), each
semantic correlation loss based on the estimated virtual fea-
tures are constrained with importance factors (1

(t−1) , 0.1
(t−2) ,...).

Substituting the term Eq. 11 into Eq. 3, we obtain the overall
objective function for incremental FGIR.

IV. EXPERIMENTS

A. Datasets and experimental setup

We evaluate the proposed method on two fine-grained
datasets: CUB-Birds-200 [50] and Stanford-Dogs-120 [51]. To
build training sets and testing sets, we choose 60% images
from each sub-category as training sets and 40% as testing
sets. Afterwards, we split the first 100 sub-categories (60 for
the Dogs dataset) as the old classes (i.e., n=100 or 60) and
the remaining 100 (60 for the Dogs dataset) sub-categories
as new classes (i.e., m=100 or 60), which are added at once
or sequentially. For the sequential case, these new classes are
divided into several groups evenly. Note that all splits are in the
order of official classes. In the following text, we use the class
index of each dataset to denote a group of new classes. For
example, “classes (101-125)” in italic means that the m=25
new classes from the index 101 to 125 are used for training,
the corresponding trained model is f1(101-125). For clarity,
the details of datasets are reported in Table I.

TABLE I
STATISTICS OF TWO DATASETS USED IN OUR EXPERIMENTS.

Datasets
Training set

(#Image/#Class)
Testing set

(#Image/#Class)
Old cls. New cls. Total Old cls. New cls. Total

CUB-200 3504/100 3544/100 7048/200 2360/100 2380/100 4740/200
Stanford-120 6000/60 6000/60 12000/120 4561/60 3929/60 8580/120

Implementation details. We utilize Google Inception as a
backbone net. The whole process includes two stages: initial
model training and incremental training. In the first stage, the
initial model f0 is trained to converge on the n old classes
using triplet loss only and optimized by the Adam optimizer
with a learning rate of 1× 10−6 and a batch size of 80, while
the embedding net (i.e., fully-connected layers) is updated with
a learning rate of 1 × 10−5. In the second stage, we use the
converged model f0 as initialization and train a new model f1
on the images from m new classes using Eq. 3, with the same
learning rate in the first stage. The initial model f0 trained
on the n old classes (1-100) or (1-60) is re-wrote as f0(1-
100) or f0(1-60). Likewise, the model f1 is represented by
the added m new classes, such as f1(101-200) or f1(61-120)
for one-task incremental scenario. We follow the sampling
strategy in [52] and each incremental process is trained 800
epochs until convergence. Following the practice in [53][52],
the output 512-d features (F d in Figure 2) are used for

retrieval. Moreover, the margin in triplet loss is δ = 0.5. Our
code is available at https://github.com/cw1091293482/Deep-
Incremental-Image-Retrieval.

Evaluation metrics. We use the Recall@1 [53][54] and
mean Average Precision (mAP) as retrieval metrics, and use
average incremental accuracy [6][55] and average forgetting
[48] to evaluate incremental learning.

B. Hyper-parameter selection

We first analyze the hyper-parameter λ1 and λ2 in Eq. 3.
They are critical for achieving a trade-off performance on n
old classes and m new classes. Since we explore the stability
of the deep model, we fix λ1 = 1 and discuss the impact of
λ2 when all new classes (101-200) are added at once (i.e.,
m = 100). The results of trained model f1(101-200) on the
CUB-Birds dataset are reported in Table II. “Initial model”
refers to the model f0 that is trained on the n old classes (1-
100) and is directly tested on the m new classes (101-200),
whereas “Reference” denotes the model jointly trained on the
(n+m) classes. According to the averaged accuracy, the best
performing factor is λ2 = 10 where a trade-off performance
on the respective old classes and new classes is achieved.
Therefore, for the following comparison, we choose to set
hyper-parameter λ1 = 1 and λ2 = 10 for our method.

TABLE II
SENSITIVITY ANALYSIS OF PARAMETER λ2 ON THE CUB-BIRDS

DATASET. NOTE THAT λ1 IS FIXED TO 1.

Old (1-100) New (101-200) Average
Configuration Recall@1 mAP Recall@1 mAP Recall@1 mAP
Initial model 79.24 55.78 46.93 19.54 63.09 37.66
λ2 = 25 79.24 55.06 68.91 37.84 74.08 46.45
λ2 = 20 78.81 54.78 71.30 40.35 75.06 47.57
λ2 = 15 77.97 53.81 72.56 42.86 75.27 48.34
λ2 = 10 77.71 52.25 75.00 46.51 76.36 49.38
λ2 = 5 75.68 48.43 76.47 48.63 76.08 48.53
λ2 = 1 72.16 43.28 76.05 49.22 74.11 46.25
λ2 = 0.1 72.03 42.60 75.84 49.24 73.94 45.92
Reference 78.18 52.17 79.24 50.99 78.71 51.58

C. One-task scenario evaluation

Baselines. IBL [22], CIHR [23], and DIHN [24] have
been explored for incremental hashing retrieval. The main
difference with ours is that they used old data for training
to avoid forgetting, while we use new data only. We take [8]
as a baseline, which took feature-level and probability-level
regularization for FGIR. For a fair comparison, we consider
feature-level regularization (i.e., maximum mean discrepancy
loss). We also compare to the popular algorithms including
EWC1, ALASSO2, NCE loss3, and L2 loss. Specifically,
EWC [17] and ALASSO [16] are the network parameters
regularization methods. To deploy these methods, we further
train a classifier on the top of the embedding net so that
these two methods can be reproduced correctly. NCE loss [7]
regularizes the inner product of an anchor-positive feature pair

1https://github.com/joansj/hat/tree/master/src/approaches
2https://github.com/dmpark04/alasso
3https://github.com/ProsusAI/continual-object-instances

https://github.com/cw1091293482/Deep-Incremental-Image-Retrieval
https://github.com/cw1091293482/Deep-Incremental-Image-Retrieval

IEEE TRANSACTIONS ON MULTIMEDIA 7

TABLE III
RECALL@1 AND MAP (%) OF INCREMENTAL FGIR TRAINED FOR THE ONE-TASK SCENARIO, “INITIAL MODEL f0” INDICATES MODEL TRAINED ON THE
FIRST 100 CLASSES ON THE DATASETS (i.e.,“INITIAL MODEL f0(1-100)). SIMILARLY, “REFERENCE MODEL” INDICATES THE MODEL f0 TRAINED ON ALL

CLASSES OF DATASETS (i.e., “INITIAL MODEL f0(1-200) OR f0(1-120)”). THE BEST PERFORMANCE IS REPORTED IN BOLD.

Dataset CUB-Birds-200 Stanford-Dogs-120

Configuration and Results (%) Old classes (1-100) New classes (101-200) Average Old classes (1-60) New classes (61-120) Average
Recall@1 mAP Recall@1 mAP Recall@1 mAP Recall@1 mAP Recall@1 mAP Recall@1 mAP

Initial model f0(1-100) or f0(1-60) 79.24 55.78 46.93 19.54 63.09 37.66 81.27 66.05 69.28 34.13 75.28 50.09

⇒ Model f1 w fine-tuning 70.21 42.57 75.13 48.90 72.67 45.74 73.96 45.24 83.69 67.25 78.83 56.25
⇒ Model f1 w EWC [17] 73.32 45.73 72.84 44.14 73.08 44.94 74.76 46.92 81.45 62.69 78.11 54.81
⇒ Model f1 w ALASSO [16] 72.88 43.87 72.94 45.50 72.91 44.69 75.92 48.35 81.50 63.40 78.71 55.88
⇒ Model f1 w NCEEWC [7] 72.63 43.80 73.07 45.15 72.85 44.48 75.12 47.88 81.62 62.99 78.37 55.44
⇒ Model f1 w L2 loss [21] 75.93 50.23 74.12 47.47 75.03 48.85 78.99 56.57 83.23 66.63 81.11 61.60
⇒ Model f1 w MMD loss [8] 77.03 51.10 74.12 45.05 75.58 48.08 79.49 59.43 83.35 65.21 81.42 62.32
⇒ Model f1 w Our method 77.71 52.25 75.00 46.51 76.36 49.38 79.92 58.37 83.48 66.01 81.70 62.19

Reference model (joint training) 78.18 52.17 79.24 50.99 78.71 51.58 80.37 62.48 83.10 66.78 81.74 64.63

and 9 anchor-negative feature pairs via a normalized cross-
entropy loss. This method is combined into EWC algorithm
for incremental learning. We follow this protocol by mining
9 hard negative samples (termed as NCEEWC). L2 loss
[19][13][14][21] focuses on minimizing the Euclidean distance
between the features from the teacher-student models. For
a fair comparison, the above four methods are trained with
triplet loss Ltriplet, having the same hyper-parameter λ1 = 1.
In terms of the plasticity factor λ2, we tune this factor for
four methods in incremental FGIR until we get their optimal
performance. As a result, the corresponding plasticity factors
are tuned as 8000, 0.2, 10, and 0.1, respectively. Moreover,
the “Reference” by joint learning serves as an upper-bound
performance for all methods. The fine-tuning method is also
used as a reference for the new tasks since there is no
knowledge distillation regularization.

One-task incremental learning refers to the case that m new
classes are added at once (m=100 or m=60). This case is
similar to transfer learning, while incremental training further
emphasizes reducing forgetting on the n old classes. The
results are reported in Table III. Note that only model f0 is
available, thereby it is unnecessary to estimate virtual features.

Naturally, the initial model f0 trained on the n old classes
performs poorly on the m new unseen classes. Take the CUB-
Birds dataset as an example, mAP is 19.54% when the initial
model f0(1-100) is tested on the m new classes without any
re-training. Using the initial model f0, we further re-train on
the m new classes using different incremental algorithms to
obtain the model f1, whose performance is distinct on the old
and new classes, as shown in Table III. The fine-tuning method
achieves the best accuracy on the new classes, it improves the
accuracy (19.54%→48.90% in mAP) on the new classes on
the CUB-Birds dataset but degrades accuracy (i.e., forgetting)
on the old classes (55.78%→42.57% in mAP). Similar trends
can be observed on the Stanford-Dogs dataset.

For other algorithms, the models trained by network pa-
rameters regularization methods such as EWC and ALASSO
show a similar trend that they reduce forgetting on the n old
classes, but their performance on the m new classes is less
competitive compared to the fine-tuning method. NCEEWC

regularises metric learning via cross-entropy loss on the feature
embeddings. We find this method has some limited benefits.
For example, it improves on the Stanford-Dogs dataset in

-9.03

-5.92 -6.36

-7.61

-3.31
-2.21

-1.53

-13.21

-10.05

-11.91 -11.98

-5.55
-4.68

-3.53

-14

-12

-10

-8

-6

-4

-2

0
Fine-tuning EWC ALASSO NCE_EWC L2 loss MMD Loss Ours

A
cc

ur
ac

y
D

ro
p

(%
)

Recall@1 mAP

Fig. 7. Accuracy drop on the CUB-Birds dataset. The model f1(101-200)
trained by different incremental methods is tested on the same testing set.

terms of the average performance. L2 loss and MMD loss
regularize the features directly. For L2 loss, it regularizes the
model f1 to forget less on the old classes of two datasets. For
instance, on the CUB-Birds dataset, it reduces the degradation
by 3.31% of Recall@1 (79.24%→75.93%) and 5.55% of mAP
(55.78%→50.23%), see Table III for details.

MMD loss is more similar to our method in which feature
correlations are also considered [8]. Compared to MMD loss,
our method, in most cases, suffers less accuracy degradation
on two datasets. For instance, our method degrades the Re-
call@1 on the n old classes by 1.53% (79.24%→77.71%) and
1.35% (81.27%→79.92%) on CUB-Birds and Stanford-Dogs,
respectively, whereas the MMD loss degrades the Recall@1
on the old classes by 2.21% (79.24%→77.03%) and 1.78%
(81.27%→79.49%) on two datasets. Moreover, in terms of the
performance on the m new classes, our method also achieves
closer accuracy to that of the fine-tuning method.

We visualize the accuracy drop of different methods on the
n old classes on the CUB-Birds dataset for clarity. The results
are shown in Figure 7, demonstrating that feature correlation
matters for reducing accuracy degradation. Meanwhile, the
accuracy gain for the n new classes is shown in Figure 8. Our
method achieves competitive performance (75.00%) compared
to the upper-bound accuracy from joint training.

Furthermore, we report the mAP evolution during incre-
mental training in Figure 9(a). The activation regularization
methods (e.g., L2 loss) outperform the network parameters
regularization methods (e.g., EWC). Moreover, we visualize
the Gram matrices of three methods. As the training proceeds,
their differences with respect to the reference Gram matrices
are maximized. Namely, the bright area in the three methods

IEEE TRANSACTIONS ON MULTIMEDIA 8

72.84 72.94 73.07 74.12 74.12 75 75.13
79.24

44.14 45.5 45.15
47.47

45.05
46.51

48.9
50.99

40

45

50

55

60

65

70

75

80
A

cc
ur

ac
y

(%
)

Recall@1 mAP
EWC ALASSO NCE_EWC L2 loss Ours Fine-tuning Upper-boundMMD loss

Fig. 8. The accuracy gain for the new classes on the CUB-Birds dataset.
“Upper bound” accuracy is achieved by joint training.

1500 1600 1700 1800 1900 2000 2100 2200 2300
Epoch

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

m
A

P

Reference
w fine-tuning
w EWC
w ALASSO
w NCE-EWC
w L2 loss
w MMD loss
Our method

(a) (b)

Ours

L2

EWC

Epoch 1700

Ref

Epoch 2300

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Fig. 9. (a) mAP evolution of old classes (1-100) tested on the CUB-Birds
dataset under one-task scenario. (b) The Gram matrices of four representative
methods (best viewed in color). More brightness indicates higher semantic
correlations between two samples. The reference performance is obtained
by joint training. Our method retains most semantics (higher brightness)
compared to EWC and L2 loss.

becomes ambiguous. However, our method retains most se-
mantics of old classes (more brightness) than the other two
continual learning strategies even at the last training epoch.

D. Multi-task scenario evaluation

Multi-task scenario refers to the case that m new classes
are divided evenly into several groups and added sequentially.
For the CUB-Birds dataset, the remaining 100 new classes are
split into 4 disjoint groups, with 25 classes per group; For the
Stanford-Dogs dataset, we also get 4 groups with 15 classes
per group. Thus, there are 4 steps incremental training for each
dataset. For each step, the model is trained only on the images
from a new class group (e.g., classes (126-150) of the CUB
dataset) and is tested separately in prior groups (e.g., classes
(1-100) and classes (101-125)) to evaluate the forgetting rate
of this step. Note that incremental performance is insensitive
to the arrival order and choice of new classes since the tasks
do not depend on softmax-based probabilities [56].

Accuracy change range. We estimate the features of previ-
ous models (using Eqs. 7 and 8) based on the accuracy change
defined in Eq. 6. Concretely, we use mAP to calculate the
accuracy range. For instance, on the CUB-Birds dataset, model
f0(1-100) takes as input the first group of new classes (see Fig-
ure 3) and produces an incrementally-trained model f1(101-
125). In terms of mAP, it degrades from 54.20% to 52.44%

on the n = 100 old classes while increases from 29.82% to
52.27% on the m=25 new classes. These recorded mAPs are
used to calculate the accuracy change range (αdrop, αgain)
using Eq. 6. Finally, the mAP change range is (-0.0325,
0.7528) during task t=1 and is used to estimate the features
for model f0 when training the next task t = 2, without
storing this model. The estimated features serve as an extra
regularization for training task t=2 in which the knowledge
is mainly transferred from the model f1(101-125) to f2(126-
150). This process is performed repeatedly until all new class
groups are added. The earlier feature estimation procedure
becomes less reliable as more groups of new classes are added.
We solve this issue by decreasing importance factors in Eq. 11.
Moreover, we demonstrate the efficacy of stability factor λ2
in Table II, which is kept the same in the multi-task scenario.

We adopt forgetting measurement [48] to quantify the
forgetting ratio. Specifically, the forgetting ratio for a partic-
ular task is defined as the difference between the maximum
accuracy gained throughout the incremental training process
in the past and the accuracy the currently-trained model has,
then all t tasks forgetting ratios are averaged:

forgetting=
1

t− 1

t−1∑
j=1

(
max

l∈{1,...,t−1}
Accl,j−Acct,j

)
,∀j < t

(12)
where Acct,j denotes the accuracy of jth group of new classes
evaluated by the model trained on the task t. Concretely, we
employ the mAP metric as Acc for evaluation. When the
model has been incrementally trained up to task t, we measure
and then average all previous forgetting ratios (1, 2, ..., t− 1)
using Eq. 12 as final forgetting evaluation.

The average forgetting ratios are depicted in Figure 10.
Note that we use the task index to indicate the group of new
classes being added. For example, “t=2” on the CUB-Birds
dataset means the model is training on the 2nd group of new
classes and then tested on classes (1-100) and classes (101-
125) separately. Obviously, all methods suffer catastrophic
forgetting on two datasets. In particular, fine-tuning on a new
task leads to significant forgetting on the old tasks. EWC
and ALASSO cannot reduce the forgetting issue ideally in
the multi-task scenario. By contrast, activation regularization
methods perform better on two datasets. Particularly, MMD
loss and our method, by distilling feature correlations, can
significantly reduce the forgetting ratio compared to the L2-
regularized feature alignment method. Our method can further
largely mitigate the forgetting ratio when feature estimation
is considered into correlations distillation. Finally, our method
has the least forgetting ratio (up to 10%) on these two datasets.

After all new tasks are added sequentially (i.e. t = 4),
we get the final model f4(176-200) or f4(106-120) for this
task. We measure the accuracy of each prior task (i.e., class
group) using the final model. We take Recall@1 as a metric
for demonstration, as shown in Figure 11, including the
performance for the previous tasks and the last new task. In
this experiment, we use the performance of joint training as
reference upper bound. In terms of Recall rate tested on the
last new class group (i.e., classes (176-200) and classes (106-

IEEE TRANSACTIONS ON MULTIMEDIA 9

t=0 t=1 t=2 t=3 t=4
Task sequence

0

5

10

15

20

25

A
ve

ra
ge

 f
or

ge
tt

in
g

(%
)

Forgetting evaluation on the CUB-200 dataset
Fine-tuning
EWC
ALASSO
NCE-EWC
L2 loss
MMD loss
Our method w/o EST.
Our method w EST.

t=0 t=1 t=2 t=3 t=4
Task sequence

0

5

10

15

20

25

30

A
ve

ra
ge

 f
or

ge
tt

in
g

(%
)

Forgetting evaluation on the Dogs-120 dataset
Fine-tuning
EWC
ALASSO
NCE-EWC
L2 loss
MMD loss
Our method w/o EST.
Our method w EST.

Fig. 10. Average forgetting evaluation. “w/o EST.” indicates that feature
ESTimation strategy is not included in our method (see Eq. 11). The forgetting
is measured on previous old classes after training on current new classes. The
forgetting ratios over all previous tasks are averaged to show. The higher value
indicates the more severe forgetting.

120)), we find all six incremental learning algorithms and the
fine-tuning method (without any knowledge distillation) have
similar performance, close to the upper bound, especially for
the Stanford-Dogs dataset. However, in terms of Recall on
previous tasks, feature correlations used as knowledge can lead
to a better-performing performance than other counterparts,
closer to the upper bound, which means that our method
suffers less forgetting on these preceding tasks. For instance,
when tested the final model f4(176-200) on the old classes (1-
100) of the CUB-Birds dataset, our method achieves around
73% of Recall@1, 7% lower than the upper bound (80%),
whereas other methods achieve less than 70%.

0

10

20

30

40

50

60

70

80

90

classes(1-100) classes(101-125) classes(126-150) classes(151-175) classes(176-200)

R
ec

al
l@

1(
%

)

Task index
Joint trainig Fine-tuning EWC ALASSO NCE-EWC L2 loss MMD loss Our method

Previous tasks Last task

0
10
20
30
40
50
60
70
80
90

100

classes(1-60) classes(61-75) classes(76-90) classes(91-105) classes(106-120)

R
ec

al
l@

1(
%

)

Task index
Joint trainig Fine-tuning EWC ALASSO NCE-EWC L2 loss MMD loss Our method

Previous tasks Last task

Fig. 11. The Recall@1 evaluation of each task (class group) at the
end of the 4-step incremental learning. For instance, the model f4(176-200)
incrementally-trained on 4th new classes (176-200) at task t = 4 and is tested
on all previously seen class groups. (a) Tested on the CUB-Birds dataset; (b)
Tested on the Stanford-Dogs dataset.

We have demonstrated that our method can reduce the
catastrophic forgetting on the previous tasks effectively. Also,
the performance of the new task is essential to evaluate. As the
incremental training proceeds, we report the Recall@1 on the
new task during each incremental step in Figure 12. That is,

t=0 t=1 t=2 t=3 t=4
70

75

80

85

90

R
ec

al
l@

1(
%

)

Tested on the CUB-200 dataset
Fine-tuning
EWC
ALASSO
NCE-EWC
L2 loss
MMD loss
Our method

cls (1-100) cls (101-125) cls (126-150) cls (151-175) cls (176-200)
t=0 t=1 t=2 t=3 t=4

80

83

86

89

92

95

R
ec

al
l@

1(
%

)

Tested on the Dogs-120 dataset
Fine-tuning
EWC
ALASSO
NCE-EWC
L2 loss
MMD loss
Our method

cls (1-60) cls (61-75) cls (76-90) cls (91-105) cls (106-120)

Fig. 12. The Recall@1 evolution tested on each new incoming class group
during incremental learning.

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9t=10
Task sequence

30

35

40

45

50

55

60

65

70

75

80
82

R
ec

al
l@

1
(%

)

Joint training
Fine-tuning
L2 loss
MMD loss
Our method w/o EST.
Our method w EST.

Upper bound

t=0 t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9t=10
Task sequence

0

10

20

30

40

50

F
or

ge
tt

in
g

ra
ti

o(
%

)

Fine-tuning
L2 loss
MMD loss
Our method w/o EST.
Our method w EST.

Fig. 13. 10-task performance comparison on the old classes (1-100). The
testing model is trained at the end of 10 tasks sequence on CUB-Birds. (a)
Evolution of Recall@1; (b) Forgetting ratio evaluated on Recall@1.

we record the accuracy of new classes every time these classes
are added. The results illustrate the evolution of performance
on new classes. Obviously, we observe that all methods have
similar Recall evolution and their performance is close to each
other, especially for the Stanford-Dogs dataset.

We evaluate the case when more tasks are added sequen-
tially on the CUB-Birds dataset. Concretely, the remaining
m=100 new classes are divided into 10 groups evenly. We
focus on activation regularization algorithms and compare with
L2 and MMD loss regularized methods. After the final model
f10(191-200) is trained at the end of the task sequence (i.e.,
new classes (191-200)), we test this model on the original
classes (1-100), which suffer the most severe forgetting. The
results are reported in Figure 13. Obviously, on the original
classes (1-100), correlations distillation with feature estimation
method reduces the forgetting on classes (1-100) effectively.

E. Ablation study

(1) Efficacy of feature estimation
Feature estimation is introduced in Eq. 11 to reduce forget-

ting in the multi-task scenario. Here, we explore the efficacy
of feature estimation. For this purpose, we consider a vanilla
correlations distillation only from task (t−1) to task t, i.e.,
without using the feature estimation. Therefore, the loss for
training is L = λ1Ltriplet + λ2L

(t−1)→t

corr .
We follow previous experimental protocols and conduct this

study on the CUB-Birds dataset. We depict the Recall@1 and
mAP evolution in Figure 14. Note that it is unnecessary to es-
timate feature drifts when task t = 1. When more new classes
are added, distilling as knowledge feature correlations like
MMD loss and our vanilla distillation method is more effective
than L2 loss for reducing performance degradation. Also,
vanilla distillation without feature estimation has a higher
performance than MMD loss. When feature estimation strategy

IEEE TRANSACTIONS ON MULTIMEDIA 10

t=0 t=1 t=2 t=3 t=4
65

70

75

R
ec

al
l@

1
(%

)
 Evolution of Recall@1 on the CUB-200 dataset

80

w feature estimation
w/o feature estimation
 MMD loss as a constraint
L2 loss as a constraint
Joint training (Upper bound)

t=0 t=1 t=2 t=3 t=4
35

40

45

50

m
A

P
(%

)

 Evolution of mAP on the CUB-200 dataset
55

w feature estimation
w/o feature estimation
MMD loss as a constraint
L2 loss as a constraint
Joint training (Upper bound)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0 6 12 18 24 30 36

Fig. 14. Efficacy exploration for (a) Recall@1 and (b) mAP evolution only
tested on the original classes (1-100). We show the correlation matrices at the
end of incremental training. This visualization further indicates that learning
with feature estimation makes its performance closer to the upper bound.

is used, additional regularization from unsaved models can
effectively retain more previously-learned knowledge, thereby
leading to less forgetting on the original classes (1-100).

(2) Influence of hyper-parameter
We show the efficacy of feature estimation in Figure 14.

However, it seems that the estimated features in Eq. 11 act as
augmented components for reducing catastrophic forgetting. In
other words, the forgetting ratio reducing on the old classes
might be realized by the hyper-parameter. To this end, we
explore the influence of hyper-parameter. Following previ-
ous experimental protocols, we consider two-step incremental
training on the CUB-Birds dataset where only new classes
(101-125) and classes (126-150) are sequentially added. We
do not consider task t = 1 is because there is no feature
estimation in this task. When new classes (126-150) are adding
at task t=2, the deep network is trained, using Eqs. 3 and 11,
under four conditions: case (a) without feature estimation, case
(b) with hyper-parameter augmented, case (c) with feature
estimation, and case (d) with two-model distillation. The case
(a) is viewed as a baseline where the correlations are distilled
only from the penultimate model f1(101-125) to the to-be-
trained model f2(126-150) by using their actual features. The
case (d) is a complete method in which the previous models
f0(1-100) and f1(101-125) are both saved for regularizing the
training of current task t = 2. In contrast, it is unnecessary
for our method (case (c)) to save the model f0(1-100).

The results are reported in Table IV. Naturally, the complete
method in the case (d) produces an optimal performance on
the old classes because all models are available. In terms
of the baseline method, due to no distillation regularization,
the trained model f2(126-150) has the best performance on
the new classes. For instance, its mAP reaches the maximal
52.45%. However, this model degrades performance heavily

on the old classes to a minimal mAP (48.09%). In contrast,
when the hyper-parameter of the baseline is augmented from
λ2 to λ2(1 + 1

(t−1)). The trained model f2(126-150) reduces
forgetting on the old classes but limits the learning on the
new classes. In particular, compared to the baseline method,
the mAP of the case (b) on the old classes (1-100) reaches a
maximal 50.71%, while it has the lowest Recall@1 (75.00%)
and mAP (50.87%) on the new classes (126-150). Therefore,
Simply increasing the hyper-parameter of the stability term
λ2 in Eq. 3 cannot tackle well the stability-plasticity dilemma
on the old tasks and new task because no extra knowledge
is transferred. By contrast, training by using the feature
estimation method can achieve competitive accuracy, taking
both the old classes and new classes into account. Specifically,
the model trained using the feature estimation method has a
similar performance to the “two-model distillation” method on
the old classes (76.19%→ 76.91% of Recall@1). Meanwhile,
the performance on the new classes is close to that of the
baseline method (76.33% → 76.83% of Recall@1).

F. Comparison with image classification

Incremental learning has been widely explored in image
classification tasks [17][6][18]. We claim that incremental
image retrieval is more challenging. As noted, image clas-
sification tasks concentrate on the classification probabilities,
while feature matching is the core for image retrieval tasks.
Thus, a small change on the retrieval features would pro-
duce significant impact on the matching between features. To
demonstrate this, we build an additional classifier on the top of
retrieval features, and further train the deep network by using
the popular LwF method [37] under the one-task scenario on
CUB-Birds. During testing, we add Gaussian noise, sampling
from the distribution N (0, 0.1), to all testing images, which
affect the retrieval features and the final classification proba-
bilities. We vary the ratio of Gaussian noise from 0 to 100%.
We consider the evolution of forgetting degradation for these
two tasks. The results are reported in Figure 16. As a result,
image retrieval task suffers from more serious forgetting than
image classification task with the same distraction noise.

G. Retrieval visualization

We visualize the retrieval results in FGIR by using different
methods on the CUB-Birds dataset. We use the model trained
at the end of the 4-step sequentially incremental training, i.e.,
the model f4(176-200), and test this model on the old classes
(1-100). Considering the differences among images are subtle,
we report the retrieved images and corresponding class names.
The top 6 retrieved results are shown in Figure 15. For other
tasks, their results are reported in the supplemental materials.

We select an image from class “Pied Billed Grebe” as the
query item. This image is difficult to retrieve and is prone to
cause forgetting issue because the color of the object in this
image is similar to the background, as well as its incomplete
appearance. Overall, all methods can return images with sim-
ilar scenes. Other incremental algorithms suffer catastrophic
forgetting and return more incorrect images. By contrast, our
method effectively reduces the forgetting ratio and still returns

IEEE TRANSACTIONS ON MULTIMEDIA 11

TABLE IV
HYPER-PARAMETER EXPLORATION RESULTS (%) ON THE CUB-BIRDS DATASET WHERE TRAINING TASK t = 2. WE SET λ1 = 1 AND λ2 = 10 IN THIS
ABLATION STUDY. Lactual MEANS THAT THE LOSS TERM IS COMPUTED BY USING ACTUAL FEATURES, WHEREAS Lvirtual DENOTES THAT THE LOSS

TERM IS COMPUTED BY USING ESTIMATED VIRTUAL FEATURES.

Configurations Old classes (1-100) New classes (126-150)
Experiment conditions The form of loss function L = Recall@1 mAP Recall@1 mAP

Case (a) Baseline λ1Ltriplet + λ2

(
L

(t−1)→t

actual

)
74.75 48.09 76.83 52.45

Case (b) Hyper-parameter-augmented λ1Ltriplet + λ2

(
L

(t−1)→t

actual + 1
(t−1)

L
(t−1)→t

actual

)
76.69 50.71 75.00 50.87

Case (c) With feature estimation λ1Ltriplet + λ2

(
L

(t−1)→t

actual + 1
(t−1)

L
(t−2)→t

virtual

)
76.19 50.45 76.33 51.79

Case (d) Two-model distillation [11] λ1Ltriplet + λ2

(
L

(t−1)→t

actual + L
(t−2)→t

actual

)
76.61 50.49 76.50 51.92

Task t=0, tested on the Classes (1-100)

Pied Billed Grebe

Pacific LoonPied Billed Grebe Pacific Loon

Pacific Loon Pacific Loon Pied Billed Grebe

Pacific Loon Pied Billed Grebe

Pacific Loon Black Footed Albatross

Pacific Loon Pied Billed Grebe Pacific Loon Pied Billed Grebe Pacific LoonPacific Loon

Pied Billed Grebe

Pied Billed Grebe

ALASSO loss

EWC loss

NCE-EWC loss

Query image

Eared Grebe Eared Grebe Long Tailed Jaeger Brandt Cormorant Pied Billed GrebePied Billed Grebe

Fine-tuning method

Pied Billed GrebePied Billed Grebe Pacific Loon Pied Billed Grebe Pied Billed Grebe Pied Billed Grebe

Our method

Pied Billed Grebe Pied Billed Grebe Pied Billed Grebe Pacific Loon Hooded MerganserPied Billed Grebe

L2 loss

Ranking list from image gallery

Pied Billed GrebePied Billed Grebe Pied Billed Grebe Pied Billed Grebe Pied Billed Grebe Pacific Loon

MMD loss

Fig. 15. Visualization of retrieved images and their class names on the CUB-Birds dataset. The Top 6 images tested on classes (1-100) are listed from left
to right. For all methods, the query image is the same. The red box means an image is retrieved incorrectly, while the green box indicates the retrieved image
has the same class label as the query image.

more correct images of the old tasks after a process of 4-step
incremental learning.

H. Limitations and potential solutions

Although our method has achieved promising results in
these experiments, it still shows several limitations as follows:

First, effectively estimating representations for all previous
models depends on the parameter inheritance of model initial-
ization at the start of each incremental step. However, esti-
mated features from the penultimate model to the first one are
not accurate enough due to the accumulative estimation errors.
We resolved this limitation by aligning estimated features with
descending importance and demonstrated its effectiveness ex-

IEEE TRANSACTIONS ON MULTIMEDIA 12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Added Noise Ratio

-35

-30

-25

-20

-15

-10

-5

A
cc

ur
ac

y
D

eg
ra

da
tio

n(
%

)

Evolution of Image Classification
Evolution of Image Retrieval

Fig. 16. Evolution for Incremental image classification and incremental
image retrieval with respect to forgetting ratio.

perimentally. Nevertheless, distilling knowledge on the stream
of models is worth further investigation theoretically. Sequence
modelling via the recurrent network [57] may be a direction
deserved to be explored.

Second, we focused on the representations extracted from
the teacher-student structure to distill correlations. Thus, both
old tasks and new tasks are trained on the same represen-
tations. However, regularizing directly on the representations
may be overly restrictive for the learning on the new tasks. We
find the accuracy of new tasks on the CUB-Birds dataset is
still lower than the upper bound of joint training, see Table III.
For this limitation, instead of regularizing the representations,
it may be promising to project them into a sub-space using
an auto-encoder or a variational auto-encoder. Afterwards,
informative parts of the representations for the old tasks
are captured and kept unchanged, while others that are not
meaningful for the old tasks allow the learning for new tasks.

Third, we only evaluated our method on fine-grained
datasets where training images share similar semantic com-
monalities, which is beneficial for reducing catastrophic for-
getting. Despite its effectiveness, it is still far from the
practical scenario where data from old tasks and new tasks
are heterogeneous. Therefore, additional regularization terms
are needed to examine for the heterogeneous data.

V. CONCLUSION

In this work, we explored fine-grained image retrieval in the
context of incremental learning, where one-task and multi-task
scenarios are validated. To achieve a trade-off performance
for old tasks and new tasks, we used new data only and
regularized their features extracted from the teacher model and
the student model. In terms of multi-task incremental learning,
saving all previous models for correlations distillation may
cause a great demand in memory storage. We made an attempt
to address the issue via a feature estimation method. That
is, instead of storing a stream of old models, we saved the
accuracy of models to compute the accuracy change during
training each task. The semantic correlations of the estimated
features, as an additional regularization, further mitigated the
catastrophic forgetting ratio on previous tasks. Compared to

previous approaches, the advantages of the proposed method
were verified by thorough quantitative and qualitative results
on two fine-grained datasets. Now, incremental image retrieval
methods still need supervisory information. In the future, it is
potentially valuable to explore incremental image retrieval in
an unsupervised learning manner. Further, the data used in old
tasks and new tasks share similar semantic commonalities, it
is also interesting to examine for heterogeneous data.

ACKNOWLEDGMENT

This work was supported by LIACS MediaLab at
Leiden University, China Scholarship Council (CSC No.
201703170183), and the National Natural Science Foundation
of China under Grant 71701205, 62022091. We would like to
thank NVIDIA for the donation of GPU cards.

REFERENCES

[1] M. McCloskey and N. J. Cohen, “Catastrophic interference in connec-
tionist networks: The sequential learning problem,” in Psychology of
learning and motivation, 1989, vol. 24, pp. 109–165.

[2] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, and Y. Fu, “Large
scale incremental learning,” in CVPR, 2019, pp. 374–382.

[3] D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual
learning,” in NeurIPS, 2017, pp. 6467–6476.

[4] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with deep
generative replay,” in NeurIPS, 2017, pp. 2990–2999.

[5] G. M. van de Ven and A. S. Tolias, “Generative replay with feedback
connections as a general strategy for continual learning,” arXiv preprint
arXiv:1809.10635, 2018.

[6] X. Yao, T. Huang, C. Wu, R.-X. Zhang, and L. Sun, “Adversarial feature
alignment: Avoid catastrophic forgetting in incremental task lifelong
learning,” Neural computation, vol. 31, no. 11, pp. 2266–2291, 2019.

[7] K. Parshotam and M. Kilickaya, “Continual learning of object instances,”
in CVPR Workshops, 2020, pp. 224–225.

[8] W. Chen, Y. Liu, W. Wang, T. Tuytelaars, E. M. Bakker, and M. Lew,
“On the exploration of incremental learning for fine-grained image
retrieval,” in BMVC, 2020, pp. 1–10.

[9] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[10] L. Xie, J. Wang, B. Zhang, and Q. Tian, “Fine-grained image search,”
IEEE Transactions on Multimedia, vol. 17, no. 5, pp. 636–647, 2015.

[11] P. Zhou, L. Mai, J. Zhang, N. Xu, Z. Wu, and L. S. Davis, “M2kd: Multi-
model and multi-level knowledge distillation for incremental learning,”
in BMVC, 2020, pp. 1–10.

[12] S. Hou, X. Pan, C. Change Loy, Z. Wang, and D. Lin, “Lifelong learning
via progressive distillation and retrospection,” in ECCV, 2018, pp. 437–
452.

[13] C. Wu, L. Herranz, X. Liu, J. van de Weijer, B. Raducanu, et al.,
“Memory replay gans: Learning to generate new categories without
forgetting,” in NeurIPS, 2018, pp. 5962–5972.

[14] H. Jung, J. Ju, M. Jung, and J. Kim, “Less-forgetful learning for domain
expansion in deep neural networks,” in AAAI, 2018, pp. 3358–3364.

[15] W. Park, D. Kim, Y. Lu, and M. Cho, “Relational knowledge distilla-
tion,” in CVPR, 2019, pp. 3967–3976.

[16] D. Park, S. Hong, B. Han, and K. M. Lee, “Continual learning by
asymmetric loss approximation with single-side overestimation,” in
ICCV, 2019, pp. 3335–3344.

[17] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins,
A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska,
et al., “Overcoming catastrophic forgetting in neural networks,” PNAS,
vol. 114, no. 13, pp. 3521–3526, 2017.

[18] Y. Wang, X. Fan, Z. Luo, T. Wang, M. Min, and J. Luo, “Fast online
incremental learning on mixture streaming data,” in AAAI, 2017, pp.
2739–2745.

[19] K. Shmelkov, C. Schmid, and K. Alahari, “Incremental learning of object
detectors without catastrophic forgetting,” in ICCV, 2017, pp. 3400–
3409.

[20] R. Del Chiaro, B. Twardowski, A. Bagdanov, and J. van de Weijer, “Ratt:
Recurrent attention to transient tasks for continual image captioning,”
NeurIPS, vol. 33, 2020.

IEEE TRANSACTIONS ON MULTIMEDIA 13

[21] U. Michieli and P. Zanuttigh, “Incremental learning techniques for
semantic segmentation,” in ICCV Workshops, 2019.

[22] W. W. Ng, X. Tian, W. Pedrycz, X. Wang, and D. S. Yeung, “Incre-
mental hash-bit learning for semantic image retrieval in nonstationary
environments,” IEEE transactions on cybernetics, vol. 49, no. 11, pp.
3844–3858, 2018.

[23] X. Tian, W. Ng, H. Wang, and S. Kwong, “Complementary incremen-
tal hashing with query-adaptive re-ranking for image retrieval,” IEEE
Transactions on Multimedia, pp. 1–15, 2020.

[24] D. Wu, Q. Dai, J. Liu, B. Li, and W. Wang, “Deep incremental hashing
network for efficient image retrieval,” in CVPR, 2019, pp. 9069–9077.

[25] D. Mandal, Y. Annadani, and S. Biswas, “Growbit: Incremental hashing
for cross-modal retrieval,” in ACCV. Springer, 2018, pp. 305–321.

[26] J. Qi, Y. Peng, and Y. Zhuo, “Life-long cross-media correlation learn-
ing,” in ACM MM, 2018, pp. 528–536.

[27] D. Mandal and S. Biswas, “A novel incremental cross-modal hashing
approach,” arXiv preprint arXiv:2002.00677, 2020.

[28] J. Gou, B. Yu, S. J. Maybank, and D. Tao, “Knowledge distillation: A
survey,” International Journal of Computer Vision, pp. 1–31, 2021.

[29] M. Zhai, L. Chen, F. Tung, J. He, M. Nawhal, and G. Mori, “Lifelong
gan: Continual learning for conditional image generation,” in ICCV,
2019, pp. 2759–2768.

[30] M. Yuan and Y. Peng, “Ckd: Cross-task knowledge distillation for text-
to-image synthesis,” IEEE Transactions on Multimedia, vol. 22, no. 8,
pp. 1955–1968, 2019.

[31] L. Yu, V. O. Yazici, X. Liu, J. v. d. Weijer, Y. Cheng, and A. Ramisa,
“Learning metrics from teachers: Compact networks for image embed-
ding,” in CVPR, 2019, pp. 2907–2916.

[32] B. Zhang, D. Xiong, J. Su, and J. Luo, “Future-aware knowledge
distillation for neural machine translation,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 27, no. 12, pp. 2278–
2287, 2019.

[33] Z. Yu, L. Chen, Z. Cheng, and J. Luo, “Transmatch: A transfer-learning
scheme for semi-supervised few-shot learning,” in CVPR, 2020, pp.
12 856–12 864.

[34] H.-T. Li, S.-C. Lin, C.-Y. Chen, and C.-K. Chiang, “Layer-level knowl-
edge distillation for deep neural network learning,” Applied Sciences,
vol. 9, no. 10, p. 1966, 2019.

[35] J. Yim, D. Joo, J. Bae, and J. Kim, “A gift from knowledge distillation:
Fast optimization, network minimization and transfer learning,” in
CVPR, 2017, pp. 4133–4141.

[36] Y. Chebotar and A. Waters, “Distilling knowledge from ensembles of
neural networks for speech recognition.” in Interspeech, 2016, pp. 3439–
3443.

[37] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 40, no. 12, pp. 2935–
2947, 2017.

[38] X. Huang and Y. Peng, “Tpckt: two-level progressive cross-media
knowledge transfer,” IEEE Transactions on Multimedia, vol. 21, no. 11,
pp. 2850–2862, 2019.

[39] K. Lee, K. Lee, J. Shin, and H. Lee, “Overcoming catastrophic forgetting
with unlabeled data in the wild,” in ICCV, 2019, pp. 312–321.

[40] X. Ma, T. Zhang, and C. Xu, “Multi-level correlation adversarial hashing
for cross-modal retrieval,” IEEE Transactions on Multimedia, vol. 22,
no. 12, pp. 3101–3114, 2020.

[41] Y. Peng and J. Qi, “Show and tell in the loop: Cross-modal circular
correlation learning,” IEEE Transactions on Multimedia, vol. 21, no. 6,
pp. 1538–1550, 2018.

[42] Y. Peng, J. Qi, X. Huang, and Y. Yuan, “Ccl: Cross-modal correlation
learning with multigrained fusion by hierarchical network,” IEEE Trans-
actions on Multimedia, vol. 20, no. 2, pp. 405–420, 2017.

[43] Z. Li, J. Tang, and T. Mei, “Deep collaborative embedding for social
image understanding,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 41, no. 9, pp. 2070–2083, 2018.

[44] Z. Peng, Z. Li, J. Zhang, Y. Li, G.-J. Qi, and J. Tang, “Few-shot image
recognition with knowledge transfer,” in ICCV, 2019, pp. 441–449.

[45] B. Peng, X. Jin, J. Liu, D. Li, Y. Wu, Y. Liu, S. Zhou, and Z. Zhang,
“Correlation congruence for knowledge distillation,” in ICCV, 2019, pp.
5007–5016.

[46] F. Tung and G. Mori, “Similarity-preserving knowledge distillation,” in
ICCV, 2019, pp. 1365–1374.

[47] W. Li, J. Huo, Y. Shi, Y. Gao, L. Wang, and J. Luo, “Online deep metric
learning,” arXiv preprint arXiv:1805.05510, 2018.

[48] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr, “Riemannian
walk for incremental learning: Understanding forgetting and intransi-
gence,” in ECCV, 2018, pp. 532–547.

[49] P. Upchurch, J. Gardner, G. Pleiss, R. Pless, N. Snavely, K. Bala, and
K. Weinberger, “Deep feature interpolation for image content changes,”
in CVPR, 2017, pp. 7064–7073.

[50] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie, “The
Caltech-UCSD Birds-200-2011 Dataset,” California Institute of Tech-
nology, Tech. Rep. CNS-TR-2011-001, 2011.

[51] A. Khosla, N. Jayadevaprakash, B. Yao, and F.-F. Li, “Novel dataset for
fine-grained image categorization: Stanford dogs,” in CVPR Workshop,
vol. 2, no. 1, 2011.

[52] X. Wang, X. Han, W. Huang, D. Dong, and M. R. Scott, “Multi-
similarity loss with general pair weighting for deep metric learning,”
in CVPR, 2019, pp. 5022–5030.

[53] H. Oh Song, Y. Xiang, S. Jegelka, and S. Savarese, “Deep metric
learning via lifted structured feature embedding,” in CVPR, 2016, pp.
4004–4012.

[54] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 33, no. 1, pp. 117–128, 2010.

[55] R. Aljundi, P. Chakravarty, and T. Tuytelaars, “Expert gate: Lifelong
learning with a network of experts,” in CVPR, 2017, pp. 3366–3375.

[56] J.-M. Perez-Rua, X. Zhu, T. M. Hospedales, and T. Xiang, “Incremental
few-shot object detection,” in CVPR, 2020, pp. 13 846–13 855.

[57] C. Fu, W. Pei, Q. Cao, C. Zhang, Y. Zhao, X. Shen, and Y.-W. Tai,
“Non-local recurrent neural memory for supervised sequence modeling,”
in CVPR, 2019, pp. 6311–6320.

