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Quasi-SLCA based Keyword Query
Processing over Probabilistic XML Data

Jianxin Li, Chengfei Liu, Rui Zhou and Jeffrey Xu Yu, Member, IEEE,

Abstract—The probabilistic threshold query is one of the most common queries in uncertain databases, where a result satisfying
the query must be also with probability meeting the threshold requirement. In this paper, we investigate probabilistic threshold
keyword queries (PrTKQ) over XML data, which is not studied before. We first introduce the notion of quasi-SLCA and use it
to represent results for a PrTKQ with the consideration of possible world semantics. Then we design a probabilistic inverted
(PI) index that can be used to quickly return the qualified answers and filter out the unqualified ones based on our proposed
lower/upper bounds. After that, we propose two efficient and comparable algorithms: Baseline Algorithm and PI index-based
Algorithm. To accelerate the performance of algorithms, we also utilize probability density function. An empirical study using real
and synthetic data sets has verified the effectiveness and the efficiency of our approaches.

Index Terms—Probabilistic XML, Threshold Keyword Query, Probabilistic Index.
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1 INTRODUCTION

Uncertainty is widespread in many web applications,
such as information extraction, information integra-
tion, web data mining, etc. In uncertain database,
probabilistic threshold queries have been studied ex-
tensively where all results satisfying the queries with
probabilities equal to or larger than the given thresh-
old values are returned [1], [2], [3], [4], [5]. However,
all of these works were studied based on uncertain
relational data model. Because the flexibility of XML
data model allows a natural representation of un-
certain data, uncertain XML data management has
become an important issue and lots of works have
been done recently. For example, many probabilistic
XML data models were designed and analyzed [6],
[7], [8], [9], [10]. Based on different data models, query
evaluation [7], [10], [11], [12], [13], algebraic manipu-
lation [8] and updates [6], [10] were studied. However,
most of these works concentrated on structured query
processing, e.g., twig queries. In this paper, we pro-
pose and address a new interesting and challenging
problem of Probabilistic Threshold Keyword Query
(PrTKQ) over uncertain XML databases based on
quasi-SLCA semantics, which is not studied before as
far as we know.

In general, an XML document could be viewed as
a rooted tree, where each node represents an element
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or contents. XIRQL [14] supports keyword search in
XML based on structured queries. However, users
may not have the knowledge of the structure of XML
data or the query language. As such, supporting
pure keyword search in XML has attracted extensive
research. The LCA-based approaches will identify the
LCA node first, which contains every keyword under
its subtree at least once [15], [16], [17], [18], [19], [20],
[21]. Since the LCA nodes sometimes are not very
specific to users’ query, Xu and Papakonstantinou
[20] proposed the concept of SLCA (smallest lowest
common ancestor), where a node v is regarded as an
SLCA if (a) the subtree rooted at the node v, denoted
as Tsub(v), contains all the keywords, and (b) there
does not exist a descendant node v′ of v such that
Tsub(v

′) contains all the keywords. In other words, if
a node is an SLCA, then its ancestors will be definitely
excluded from being SLCAs. The SLCA semantics of
model keyword search result on a deterministic XML
tree are also applied [22], [16], [19].

Based on the SLCA semantics, [23] discussed top-k
keyword search over a probabilistic XML document.
Given a keyword query q and a probabilistic XML
document (PrXML), [23] returned the top k most
relevant SLCA results (PrSLCAs) based on their prob-
abilities. Different from the SLCA semantics over de-
terministic XML documents, a node v being a PrSLCA
can only exclude its ancestors from being PrSLCAs
by a probability. This probability can be calculated
by aggregating the probabilities of the deterministic
documents (called possible worlds) W implied in the
PrXML where v is an SLCA in each deterministic
document ∈ W .

However, it is not suitable to directly utilize the
PrSLCA semantics for evaluating PrTKQs because the
PrSLCA semantics are too strong. In some applica-
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tions, users tend to be confident with the results to
be searched, so relatively high probability threshold
values may be given. Consequently, it is very likely
that no qualified PrSLCA results will be returned. To
solve this problem, we propose and utilize a so-called
quasi-SLCA semantics to define the results of a PrTKQ
by relaxing the semantics of PrSLCA with regards to
a given threshold value, i.e., besides the probability
of v being a PrSLCA in PrXML, the probability of a
node v being a quasi-SLCA in PrXML may also count
the probability of v′s descendants being PrSLCAs in
PrXML if their probabilities are below the specified
threshold value. In other words, a node v being a
quasi-SLCA will exclude its ancestors from being
quasi-SLCAs by a probability only when this prob-
ability is no less than the given threshold; otherwise,
this probability will be included for contributing to its
ancestors. This is different from the PrSLCA semantics
that excludes the probability contribution from child
nodes.

r
e
g
i
o
n
 
(
a
1
)


0
.
5

I
N
D
1


s
u
b
_
r
e
g
i
o
n
1

(
a
2
)


s
u
b
_
r
e
g
i
o
n
2

 
(
a
3
)


a
r
e
a
1
 
(
a
4
)
 a
r
e
a
2
 
(
a
5
)


I
N
D
2


I
N
D
3


I
N
D
4

M
U
X


r
o
a
d
 
(
c
1
)
 l
i
b
r
a
r
y
 
(
c
2
)
m
a
r
k
e
t
 
(
c
3
)


s
h
o
p
p
i
n
g

c
e
n
t
e
r
 
(
c
4
)
 r
o
a
d
 
(
c
5
)


p
a
r
k
 
(
c
6
)
 h
e
l
i
p
o
r
t
 
(
c
7
)
 s
t
a
t
u
m
 
(
c
8
)


r
o
a
d
 
(
c
9
)

1
.
0


0
.
8


1
.
0

1
.
0


0
.
8

0
.
8


0
.
5
 0
.
5
0
.
3
 0
.
3


0
.
4
 0
.
1


.
.
.
 
h
a
z
a
r
d
 .
.
.
 
h
a
z
a
r
d

b
u
i
l
d
i
n
g


.
.
.
 
b
u
i
l
d
i
n
g


.
.
.
 
h
a
z
a
r
d


.
.
.
 
h
a
z
a
r
d


.
.
.
 
h
a
z
a
r
d


.
.
.
 
b
u
i
l
d
i
n
g


.
.
.
 
b
u
i
l
d
i
n
g
 .
.
.
 
h
a
z
a
r
d

b
u
i
l
d
i
n
g


h
a
z
a
r
d
 
-
 
k
1

b
u
i
l
d
i
n
g
 
-
 
k
2


Fig. 1. A probabilistic XML data tree

Example 1: Consider an aircraft-monitored battle-
field application, where the useful information will
be taken as Aerial photographies. Through analysing
the photographies, we can extract the possible objects
(e.g., road, factory, airport, etc.) and attach some text
description to them with probabilities, which can be
stored in the format of PrXML. Figure 1 is a snapshot
of an aircraft-monitored battlefield XML data. By is-
suing a keyword query {hazard, building}, a military
department would find the potential areas containing
hazard buildings above a probability threshold.

Based on the semantics of PrSLCA, any of the nodes
library (probability = 0.3), area1( = 0.14), sub region1(
= 0.168), heliport( = 0.24), sub region2( = 0.32) and
region( = 0.088) can become an PrSLCA result. The
detailed procedure of calculating the probabilities of
results will be shown later. As we know, the users
generally specify a threshold value σ as the confidence
score with their issued query, e.g., σ = 0.40 represent-
ing that the users prefer to see the answers with their

probabilities up to 0.40. In this condition, no results
can be returned to the users.

However, from Figure 1, we can see that if the
probabilities of library and area2 could contribute to
their parent nodes, area1 and sub region2 would be-
come quasi-SLCA results. Unfortunately, the PrSLCA
semantics exclude them from being results. This mo-
tivates us to relax the PrSLCA semantics to the quasi-
SLCA semantics. According to the quasi-SLCA se-
mantics, the probabilities of area1 and sub region2

being the quasi-SLCA results are 0.44 and 0.56 with
the contributions of their child nodes library and
area2, respectively. As such, area1 and sub region2

are deemed as the interesting places to be returned.

Given a PrTKQ, our problem is to quickly com-
pute all the quasi-SLCA nodes with their probabilities
meeting the threshold requirement. For users issuing
PrTKQs, they generally expect to see the complete
quasi-SLCA answer set as early as possible and do not
need to know the accurate probability of each answer,
which motivates us to design a Probabilistic Inverted
(PI) index and PI-based efficient algorithm for quickly
identifying quasi-SLCA result candidates.

We summarize the contributions of this paper as
follows:

• Based on our proposed quasi-SLCA result defi-
nition, we study probabilistic threshold keyword
query over uncertain XML data, which satisfies
the possible world semantics. To the best of our
knowledge, this problem has not been studied
before.

• We design a probabilistic inverted (PI) index
that can quickly compute the lower bound and
upper bound for a threshold keyword query, by
which lots of unqualified nodes can be pruned
and qualified nodes can be returned as early as
possible. To keep the effectiveness of pruning, the
probability density function is employed based
on the assumption of Gaussian distribution.

• We propose two algorithms, a comparable base-
line algorithm and a PI-based Algorithm, to ef-
ficiently find all the quasi-SLCA results meeting
the threshold requirement.

• Experimental evaluation has demonstrated the
efficiency and effectiveness of the proposed ap-
proaches.

The rest of this paper is organized as follows. In
Section 2, we introduce the probabilistic XML model
and the problem definition of probabilistic threshold
keyword query. Section 3 shows the procedure of effi-
ciently finding quasi-SLCA results using an example.
Section 4 first presents the data structure of PI index,
discusses the basic building operations and pruning
techniques of PI index, and provides the building
algorithm of PI index. In Section 5, we propose a com-
parable baseline algorithm and a PI-based algorithm
to find the qualified quasi-SLCA results. We report the
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experimental results in Section 6. Section 7 discusses
related works and Section 8 concludes the paper.

2 PROBABILISTIC DATA MODEL AND
PROBLEM DEFINITION

Probabilistic Data Model: A PrXML document de-
fines a probability distribution over a space of de-
terministic XML documents. Each deterministic doc-
ument belonging to this space is called a possible
world. A PrXML document represented as a labelled
tree has ordinary and distributional nodes. Ordinary
nodes are regular XML nodes and they may appear in
deterministic documents, while distributional nodes
are only used for defining the probabilistic process of
generating deterministic documents and they do not
occur in those documents.

In this paper, we adopt a popular probabilistic XML
model, PrXML{ind,mux} [12], [23], which was first
discussed in [7]. In this model, a PrXML document
is considered as a labelled tree where distributional
nodes have two types, IND and MUX. An IND node
has children that are independent of each other, while
the children of a MUX node are mutually-exclusive, that
is, at most one child can exist in a random instance
document (called a possible world). A real number
from (0,1] is attached on each edge in the XML tree,
indicating the conditional probability that the child
node will appear under the parent node given the
existence of the parent node. An example of a PrXML
document is given in Fig. 1. Unweighted edges have
1 as the default conditional probability.

The Semantics of PrSLCA in PrXML: According to
the semantics of possible worlds, the global probabil-
ity of a node v being a PrSLCA with regard to a given
query q in the possible worlds is defined as follows:

PrGslca(q, v) =

m
∑

i=1

{Pr(wi)|slca(q, v, wi) = true} (1)

where w1, . . . , wm denotes the possible worlds implied
by slca(q, v, wi) = true indicates that v is an SLCA
in the possible world wi for the query q. Pr(wi) is
the existence probability of the possible world wi. The
symbol G means PrGslca(q, v) is the global probability of
a node v being an SLCA w.r.t. q in all possible worlds.

a
4


I
N
D
4


c
1
 c
2
 c
3


0
.
5

0
.
3


0
.
4


k
1
 k
1
,
k
2
 k
2


a
4


c
1
 c
2
 c
3

k
1
 k
1
,
k
2
 k
2


(
b
)
 
 
0
.
0
6


a
4


c
1
 c
2
 c
3

k
1
 k
1
,
k
2
 k
2


a
4


c
1
 c
2
 c
3

k
1
 k
1
,
k
2
 k
2


a
4


c
1
 c
2
 c
3

k
1
 k
1
,
k
2
 k
2


a
4


c
1
 c
2
 c
3

k
1
 k
1
,
k
2
 k
2


a
4


c
1
 c
2
 c
3

k
1
 k
1
,
k
2
 k
2


a
4


c
1
 c
2
 c
3

k
1
 k
1
,
k
2
 k
2


a
4


c
1
 c
2
 c
3

k
1
 k
1
,
k
2
 k
2


(
d
)
 
 
0
.
0
6


(
a
)


(
c
)
 
 
0
.
2
1
 (
e
)
 
 
0
.
1
4


(
f
)
 
 
0
.
0
9
 (
g
)
 
 
0
.
1
4
 (
h
)
 
 
0
.
0
9
 (
i
)
 
 
0
.
2
1


Fig. 2. A small PrXML and its possible worlds

Example 2: Consider a small PrXML in
Figure 2.a and all generated possible worlds
in Figure 2.{b,c,d,e,f,g,h,i} where the solid line
represents the existence of the edge while the dashed
line represents the absence of the edge. Given a
possible world, we can compute its global probability
based on the existence/absence of the edges in the
possible world, e.g., Pr(wd) = (1−0.5)∗0.3∗0.4 = 0.06.

Given a keyword query q = {k1, k2}, we can com-
pute the global probability of c2 being a PrSLCA w.r.t.
q by using PrGslca(q, c2) = Pr(wb)+Pr(wd)+Pr(wf )+
Pr(wh) = 0.06 + 0.06 + 0.09 + 0.09 = 0.30. Similarly,
we have the global probability of a4 being a PrSLCA
w.r.t. q by using PrGslca(q, a4) = Pr(we) = 0.14.

The Semantics of quasi-SLCA in PrXML:

Definition 1: Quasi-SLCA: Given a keyword query
q and a threshold value σ, a node v is called a quasi-
SLCA if and only if (1) v or its descendants are SLCAs
in a set W of possible worlds; (2) the aggregated
probability of v and its descendants to be SLCAs in W
is no less than σ; (3) no descendant nodes of v satisfy
both of the above conditions in any set of possible
worlds that overlaps with W .

In other words, if a descendant node vd of v is
a quasi-SLCA, then the probability of vd has to be
excluded from the probability of v being a quasi-
SLCA. It means that the set of possible worlds that
vd appears does not overlap with the set of possible
worlds that v or its other descendants appear.

Given a query q, we can compute PrLslca(q, v) in
a bottom-up manner, where PrLslca(q, v) stands for
the local probability for v being an SLCA in the
probabilistic subtree rooted at v. For example, a4 in
Figure 2(a) is a subtree of Figure 1. PrLslca(q, a4) can
be used to compute the PrSLCA probability of a2 and
a1. From PrLslca(q, v), we can easily get PrGslca(q, v)
by PrGslca(q, v) = Pr(pathr→v) × PrLslca(q, v) where
Pr(pathr→v) indicates the existence probability of v
in the possible worlds. It can be computed by mul-
tiplying the conditional probabilities along the path
from the root r to v.

Now, we define quasi-SLCA based on PrSLCA and
the parent-child relationship. For an IND node v, we
have:

PrGquasi−slca(q, v) = PrGslca(q, v) + Pr(pathr→v)×
(1−∏

v′∈child(v)∧v′ /∈Vquasi
(1− PrLslca(q, v

′)))
(2)

where the child node v′ of v is an SLCA node, but not
a quasi-SLCA node.

For MUX node v, we have:

PrGquasi−slca(q, v) = PrGslca(q, v) + Pr(pathr→v)×
∑{PrLslca(q, v

′)|v′ ∈ child(v) ∧ v′ /∈ Vquasi}
(3)

Note, IND or MUX nodes are normally not allowed
to be SLCA result nodes because they are only distri-
butional nodes. As such, for the above IND or MUX
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node v, we may use its parent node vp (with v as a
sole child) to represent the SLCA result node.

Example 3: Let’s consider Example 2 again. First
assume the specified threshold value is 0.40, then
the global probability of a4 being a quasi-SLCA re-
sult can be calculated by using PrGquasi−slca(q, a4) =
PrGslca(q, a4) + Pr(pathr→a4) * (1− (1− PrLslca(q, c2)))
= 0.14 + 0.30 = 0.44 because child c2 is an SLCA node
but not a quasi-SLCA node w.r.t. the given threshold.
So c2’s SLCA probability contributes to its parent
node a4. If the threshold is decreased to 0.30, then
c2 will be taken as a qualified quasi-SLCA result and
will not contribute to a4. In this case, a4 cannot be-
come a quasi-SLCA result because PrGquasi−slca(q, a4)

= PrGslca(q, a4) = 0.14 < 0.30. If the threshold is further
decreased to 0.14, both c2 and a4 are qualified quasi-
SLCA results.

Definition 2: Probabilistic Threshold Keyword
Query: (PrTKQ) Given a keyword query q and a
threshold σ, the results of q over a probabilistic
XML data T is a set R of quasi-SLCA nodes with
their probabilities equal to or larger than σ, i.e.,
PrGquasi−slca(q, v) ≥ σ for ∀v ∈ R.

In this work, we are interested in how to efficiently
compute the quasi-SLCA answer set for a PrTKQ over
a probabilistic XML data.

3 OVERVIEW OF THIS WORK

A naive method to answer a PrTKQ is to enumerate
all possible worlds and apply the query to each
possible world. Then, we can compute the overall
probability of each quasi-SLCA result and return the
results meeting the probability threshold. However,
the naive method is inefficient due to the huge num-
ber of possible worlds over a probabilistic XML data.
Another method is to extend the work in [23] to
compute the probabilities of quasi-SLCA candidates.
Although it is much more efficient than the naive
method, it needs to scan the keyword node lists and
calculate the keyword distributions for all relevant
nodes. Therefore, that motivates our development of
efficient algorithms which not only avoids generating
possible worlds, but also prunes more unqualified
nodes.

To accelerate query evaluation, in this paper we
propose a prune-based probabilistic threshold key-
word query algorithm, which determines the qualified
results and filters the unqualified candidates by using
off-line computed probability information. To do this,
we need to first calculate the probability of each
possible query term within a node, which is stored
as an off-line computed probabilistic index. Within
a node, any two of its contained terms may appear
in the IND or MUX ways. To precisely differentiate
IND and MUX, we utilize different parts to represent
the probabilities of possible query terms appearing
in MUX way, while the terms in each part hold IND

relationships. In other words, the different parts of
terms in a node are mutual-exclusive (MUX), e.g., a1
and a5 in Figure 3 consists of three parts.

Given a keyword query and a threshold value,
we first load the corresponding off-line computed
probabilistic index w.r.t. the keyword query and then
on-the-fly calculate the range of probabilities of a node
being a result of the keyword query using the pre-
computed probabilistic index in a bottom-up strategy.
Here, the range of probabilities can be represented by
two boundary values: lower bound and upper bound.
By comparing the lower/upper bounds of candidates,
the qualified results can be efficiently identified.

The followed two examples briefly demonstrate
how we calculate the lower/upper bounds based on
a given keyword query and the off-line computed
probabilistic index, and how we apply the on-line
computed lower/upper bounds to prune the unqual-
ified candidates and determine the qualified ones.
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Fig. 3. PI index and Lower/Upper Bound for a query
{k1, k2} over the given PrXML

Figure 3 shows the lower/upper bounds of each
node in Figure 1 where the probability of each
individual term is calculated offline while the
lower/upper bounds are computed on-the-fly based
on the given query keywords. Let’s first introduce the
related concepts briefly: the probability of a term in
a node represents the total local probability of the
term appearing in all possible worlds to be generated
for the probabilistic subtree rooted at the node, e.g.,
Pr(k1, a2) = 0.65 and Pr(k2, a2) = 0.916; the lower
bound value represents the minimal total local prob-
ability of the given query keywords appearing in all
the possible worlds w.r.t. the probabilistic subtree, e.g.,
LB(k1k2, a2)=0.65*0.916=0.595; the upper bound value
represents the maximal total local probability of the
given query keywords appearing in all the possible
worlds w.r.t. the probabilistic subtree because the key-
words may be independent or co-occur, e.g., UB(k1k2,
a2) = min{0.65, 0.916} = 0.65 no matter whether they
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are independent. By multiplying the path probability,
the local probability can be transformed into the
global probability. For the nodes containing MUX
semantics, we group the probabilities of its terms
into different parts, any two of which are mutually-
exclusive as shown in a1, a3 and a5 in Figure 3. The
details of computing the lower/upper bounds for the
IND and MUX semantics in the following section.

Example 4: Consider a PrTKQ {k1, k2} with σ=0.40
again. a5, c2 and c7 can be pruned directly without
calculation because their upper bounds are all lower
than 0.40. We need to check the rest nodes a1, a2,
a3 and a4. For a4, after computation, the probabil-
ity of a4 being a quasi-SLCA result is 0.44, which
is larger than the specified threshold value 0.40, so
a4 will be taken as a result. After that, the result
of a4 can be used to update the lower bound and
upper bound of a2, (LB=0.595, UB=0.65) → (LB=0.155,
UB=0.21). As a consequence, a2 should be filtered
due to UB(a2) = 0.21 < σ = 0.40. Similarly, a3
can be computed and selected as a result because its
probability is 0.56. Since a3 and a4 having been the
quasi-SLCA results, the bounds of a1 can be updated
as (LB=0.890, UB=0.950) → (LB=0.136, UB=0.196). As
such, a1 can be pruned because its upper bound is
lower than 0.40. From this example, we can find that
many answers can be pruned or returned without
the need to know their accurate probabilities, and the
effectiveness of pruning would be accelerated greatly
with the increase of users’ search confidence.

As an acute reader, you may find that we have to
compute the probability of a4 being a quasi-SLCA
because it cannot determine whether or not a4 is
a qualified result to be output only based on its
lower/upper bound values. To exactly calculate the
probability of a4 being a quasi-SLCA, we have to
access its child/descendant nodes, e.g., c1, c2, c3, al-
though c2 has been recognized as a pruned node
before we start to process a4. If an internal node
depends on a larger number of pruned nodes, the
effectiveness of pruning will be degraded to some
extent. To fix this challenging problem, we will in-
troduce Probability Density Function PDF that can be
used to approximately compute the probability of a
node, the result of which can be used to update the
lower bound and upper bound of its ancestor nodes
further. The details are provided and discussed with
algorithms later.

4 PROBABILISTIC INVERTED INDEX

In this section, we describe our Probabilistic Inverted
(PI) index structure for efficiently evaluating PrTKQ
queries over probabilistic XML data. In keyword
search on certain XML data, inverted indexes are
popular structures, e.g., [16], [20]. The basic technique
is to maintain a list of lists, where each element in
the outer list corresponds to a domain element (i.e.,

a keyword). Each inner list stores the ids of XML
nodes in which the given keyword occurs, and for
each node, the frequencies or the weight at which the
keyword appears or takes. In this work, we introduce
a probabilistic version of this structure, in which we
store for each keyword a list of node-ids. Along with
each node-id, we store the probability values that the
subtree rooted at the node may contain the given
keyword. The probability values in inner lists can be
used to compute lower bound and upper bound on-
the-fly during PrTKQ evaluation.

Figure 4 shows an example of a probabilistic in-
verted index of the data in Figure 1. At the base of
the structure is a list of keywords storing pointers to
lists, corresponding to each term in the XML data T .
This is an inverted array storing, for each term in T , a
pointer to a list of triple tuples. In the list ki.list corre-
sponding ki ∈ T , the triple (v id, Pr(pathr→v), {p1, ...})

records the node v 1, the conditional probability
from the root to v, and the probability set that may
contain single probability value or multiple probability
value. Single probability value represents that all the
keyword instances in the subtree can be considered
as independent in probability, e.g., the confidence of
a2 containing k1 is {0.65}, while multple probability
value means that the keyword instances belonging to
different sets occur mutually, e.g., the confidence of a3
containing k1 is a set {0.8, 0.86, 0.82}, that represents
the different possibilities of k1 occurring in a3.

4.1 Basic Operations of Building PI Index

To build PI index, we need to traverse the given XML
data tree once in a bottom-up method. During the
data traversal, we will apply the following operations
that may be used solely or in their combinations. The
binary operation X ⊲⊳/ Y promotes the probability
of Y to its parent node X. The binary operation X
⊲⊳sibling Y promotes the probabilities of two sibling
nodes X and Y to their parent node. The n-ary case can
be processed by calling for the corresponding binary
cases one by one.

Assume v1 contains the keywords {k1, k2, ..., ki, ...,
km} and the conditional probability Pr(pathvp−>v1)
is λ1; and v2 contains the keywords {ki, ki+1, ..., kmi}
and the conditional probability Pr(pathvp−>v2) is λ2.

Operator1-v1 ✶
sibling,IND v2: If v1 and v2 are inde-

pendent sibling nodes, we can directly promote their
probabilities to their parent vp, then we have,

Pr(kj , vp) =















λ1 ∗ Pr(kj , v1) j < i;
1− (1− λ1 ∗ Pr(kj , v1))
(1− λ2 ∗ Pr(kj , v2)) i ≤ j ≤ m ≤ mi;
λ2 ∗ Pr(kj , v2) m ≤ j ≤ mi;

(4)

1. The symbol v is used to represent a node’s name or a node’s
id without confusions in the following sections. Here, v is the id of
the node v
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Fig. 4. A probabilistic Inverted Index

Operator2-v1 ✶
/,IND v2: If v2 is an independent

child of v1, we can directly promote the probability
of v2 to v1, then we have,

Pr(kj , v1) =















Pr(kj , v1) j < i;
1− (1− Pr(kj , v1))
(1− λ2 ∗ Pr(kj , v2)) i ≤ j ≤ m ≤ mi;
λ2 ∗ Pr(kj , v2) m ≤ j ≤ mi;

(5)
Example 5: Let’s show the procedure of comput-

ing c1✶
sibling,INDc2✶

sibling,INDc3 in Figure 2 us-
ing Operator1 and Operator2. Firstly, we compute
c1✶

sibling,INDc2 and promote the probability of key-
words to their parent a4 by Operator1, i.e., Pr(k1, a4)
= 1 - (1 - 0.5*1.0)*(1 - 0.3*1.0) = 0.65 and Pr(k2, a4)
= 0.3. And then, we compute a4 ✶

/,IND c3 using
operator2, i.e., Pr(k2, a4) = 1 - (1 - 0.3)*(1 - 0.4) =
0.58 while Pr(k1, a4) do not change because c3 only
contains k2 here. And the conditional probability from
the root to a4 is 1.0. Therefore, k1 → (a4, 1.0, 0.65)
and k2 → (a4, 1.0, 0.58) will be inserted in PI index,
respectively.

Operator3-v1 ✶
sibling,MUX v2: If v1 and v2 are two

mutually-exclusive sibling nodes and vp is their par-
ent, then we generate two parts in vp by vp ✶

/,IND v1
and vp ✶

/,IND v2, respectively.
Operator4-v1 ✶

/,MUX v2: If v2 is a mutually-
exclusive child node of v1, then we can get the ag-
gregated probability by v1 ✶

/,IND v2.
In the above four basic operators, we assume the

terms independently appear in v1 and v2. When the
nodes v1 and v2 contain mutually-exclusive parts, we
need to deal with each part using the four basic
operators.

Given two independent sibling nodes v1 (λ1) and v2
(λ2) where only v2 contains a set of mutually-exclusive
parts {pm1 , pm2 , ...} with conditional probability λmi .
In this case, we can apply the operation v1 ✶

sibling,IND

pmi for each part pmi . The computed results are
maintained in different parts in their parent vp.

Example 6: Consider an independent node c5 and a
node a5 consisting of c6, c7 and c8 in Figure 1. We first
promote c6, c7 and c8 to a5 that consists of three parts:

1 2 3
k2 k1 k2 k1
0.5 0.3 0.3 0.1

, as shown in Figure 3 - a5. Because c5

and a5 are independent sibling nodes, the operation
c5 ✶

sibling,IND a5 can be called to compute the prob-
ability with regards to their parent a3. To do this, we
apply c5 ✶

sibling,IND parti for each parti ∈ a5 using
Operator1. The results are shown in Figure 3 - a3.
After that, we can insert k1 → (a3, 0.8, 0.8, 0.86, 0.82)
and k2 → (a3, 0.8, 0.5, 0.3, 0) into PI index.

If both v1 and v2 contain a set of mutually-exclusive
parts, respectively, then we can do pairwise aggre-
gations across the two sets of parts. Building PI in-
dex needs to scan the given probabilistic XML data
only once. Assume that the probabilistic XML has
been encoded using probabilistic Dewey codes. The
basic idea of building PI index is to progressively
process the document nodes sorted by Dewey codes
in ascending order, i.e., the data can be loaded and
processed in a streaming strategy. When a leaf node
vl is coming, we will compute the probability of
each term in the leaf node vl. After that, the terms
with their probabilities in vl will be written into PI
index. Next, we need promote the terms and their
probabilities of vl to the parent vp of vl based on
the operation types in Section 4.1. After the node
stream is scanned completely, the building algorithm
of PI index will be terminated. We don’t provide the
detailed building algorithm in this paper.

4.2 Pruning Techniques using PI Index
In this subsection, we first show how to prune the
unqualified nodes using the proposed lower/upper
bounds. And then, we explain how to compute
lower/upper bounds, and how to update the up-
per/lower bounds based on intermediate results dur-
ing the query evaluation.

By default, the node lists in PI index are sorted in
the document order. Pr(ki, v) represents the overall
probability of a keyword ki in a node v. It is obvious
that the overall probability of a keyword appearing in
a node is larger than or equal to that of the keyword
appearing in its descendant nodes. And the overall
probability value for each keyword in a node can be
computed and stored in PI index offline.



7

Consider a node v and a PrTKQ q containing a set
of keywords {k1, k2, ..., kt}. If all the terms in v are
independent, then we have,

LB(q, v) =

t
∏

i=1

Pr(ki, v) (6)

UB(q, v) = min{Pr(ki, v)|1 ≤ i ≤ t} (7)

Most of the time, v consists of a set of parts
{vp1, vp2, ..., vpm} that are mutually-exclusive. In this
case, the lower bound of v would be generated from
a part vpj that gives the highest lower bound value
while the upper bound of v would be generated from
another part vpi that gives the highest upper bound
value, in which j may be equal to or not equal to i.

LB(q, v) = max1≤j≤m{
t
∏

i=1

Pr(ki, vpj)} (8)

UB(q, v) = max1≤j≤m{min{Pr(ki, vpj)|1 ≤ i ≤ t}}
(9)

Where vpj must satisfy the criteria: (1) LB(q, v) > 0;
(2) cannot find another part vp′j having
∏t

i=1 Pr(ki, vp
′
j) > 0 and min{Pr(ki, vp

′
j)|1 ≤

i ≤ t} > min{Pr(ki, vpj)|1 ≤ i ≤ t}. Otherwise,
UB(q, v) and LB(q, v) will be set as zero.

Example 7: Let’s consider a3 in Figure 3 as
an example. The first and second parts can
generate lower and upper bounds: Part 1 →
LB({k1, k2},a3)=0.32, UB({k1, k2},a3)=0.4; and Part
2 → LB({k1, k2},a3)=0.206, UB({k1, k2},a3)=0.24. Be-
cause Part 1 can produce a higher upper bound than
Part 2, the lower and upper bounds of a3 will come
from Part 1, which guarantees that a3 can be a quasi-
SLCA candidate with a higher probability. Since Part
3 does not contain full keywords, i.e., missing k2, it
cannot generate lower and upper bounds.

Property 1: [Upper Bound Usage] A node v can
be filtered if the overall probability Pr(ki, v) of any
keyword ki ( ki ∈ v and ki ∈ q) is lower than the
given threshold value σ, i.e., ∃ki, Pr(ki, v) < σ.

Proof: Since PrGquasi−slca(q, v) ≤
min{Pr(ki, v)|ki ∈ q} ≤ Pr(∀ki ∈ q, v), we
have min{Pr(ki, v)|ki ∈ q} as the upper bound
probability of v becoming a qualified quasi-SLCA
node. Therefore, if a node v holds the inequation
Pr(ki, v) < σ, then PrGquasi−slca(q, v) must be lower
than σ. As such, v can be filtered.

Property 2: [Lower Bound Usage] The nodes v can
be returned as required results if we have LB(q, v) ≥
σ and UB(q, vd) < σ where vd is any child or descen-
dant node of v.

Proof: UB(q, vd) < σ means that all the keyword
nodes in the subtree rooted at v will contribute their
probabilities to node v. In other words, no decendant
node of v could be a quasi-SLCA so the lower bound
probability LB(q, v) will not be deducted. Therefore, if

we have for LB(q, v) ≥ σ, then PrGquasi−slca(q, v) ≥ σ.
As such, v can be returned as a quasi-SLCA result.

Example 8: Let’s continue Example 7. a3 can be
directly returned as a qualified answer for the given
threshold σ( = 0.4). This is because c2, c7 and a5
are filtered due to their upper bound less than the
threshold σ( = 0.4).

To update the lower/upper bound values during
query evaluation, one way is to treat the different
types of nodes differently, by which the updated
lower/upper bounds may obtain better precision. But
the disadvantage of this way is to easily affect the
efficiency of bound update. This is because, given a
current node having multiple quasi-SLCA nodes as
its descendant nodes, it is required to know the de-
tailed relationships (IND or MUX) among the multiple
quasi-SLCA nodes. To avoid the disadvantage, we
do not separate the different types of distributional
nodes, under which the multiple quasi-SLCA nodes
appear. In other words, we unify them into a uniform
formula based on the following two properties.

Property 3: No matter node v is an IND or ordinary
or MUX node, we can update their upper bound
values as follows:

UB
′

(q, v) = UB(q, v)− 1+

m
∏

i=1

(1−PrGquasi−slca(q, vci))

(10)
Where PrGquasi−slca(q, vci) ≥ σ should be held.

Proof: According to the definition of upper bound,
UB(q, v) represents the maximal probability of v being
a quasi-SLCA node, which comes from the overall
probability of a specific keyword. Therefore, the prob-
lem of updating upper bound can be alternatively
considered as the percentage of the probability of
the keyword has been used for the v′ descendant
nodes becoming qualified quasi-SLCA nodes. If we
know there are m qualified descendant nodes of v as
returned answers, then we can compute their aggre-
gated probabilities by 1−∏m

i=1(1−PrGquasi−slca(q, vci)).
Therefore, the upper bound can be updated as
UB(q, v)− 1 +

∏m
i=1(1 − PrGquasi−slca(q, vci)).

Does the above update equation hold for MUX
node? To answer this question, we utilize the prop-
erties in [23], from which we can compute the aggre-
gated probability by using

∑m
i=1 PrGquasi−slca(q, vci).

Therefore, we have UB
′

(q, v) = UB(q, v) −
∑m

i=1 PrGquasi−slca(q, vci). The equation can be con-
verted into UB(q, v)−1+[1−∑m

i=1 PrGquasi−slca(q, vci)].
Since

∏m
i=1(1 − PrGquasi−slca(q, vci)) can be ex-

pressed as 1 − ∑m
i=1 PrGquasi−slca(q, vci) + ∆ where

∆ is a positive value, i.e., ≥ 0, we can de-
rive that 1 −

∑m
i=1 PrGquasi−slca(q, vci) ≤

∏m
i=1(1 −

PrGquasi−slca(q, vci)). As a consequence, we can obtain

that UB
′

(q, v) = UB(q, v) − ∑m
i=1 PrGquasi−slca(q, vci)

= UB(q, v) − 1 + [1 − ∑m
i=1 PrGquasi−slca(q, vci)] ≤

UB(q, v)− 1 +
∏m

i=1(1 − PrGquasi−slca(q, vci)).
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Therefore, UB
′

(q, v) = UB(q, v) - 1 +
∏m

i=1(1 -
PrGquasi−slca (q, vci )) holds for IND, ordinary and MUX
nodes.

Property 4: No matter node v is an IND or ordinary
or MUX node, we can update their lower bound
values as follows:

LB
′

(q, v) = LB(q, v)−
m
∑

i=1

PrGquasi−slca(q, vci) (11)

Where PrGquasi−slca(q, vci) ≥ σ should be held.

Proof: For the lower bound update, we
need to deduct the confirmed probability
[1 − ∏m

i=1(1 − PrGquasi−slca(q, vci))] for IND
nodes or

∑m
i=1 PrGquasi−slca(q, vci) for MUX

nodes, from the original lower bound LB(q, v).
According to the procedure of the above
proof, we have

∏m
i=1(1 − PrGquasi−slca(q, vci)) ≥

1 −
∑m

i=1 PrGquasi−slca(q, vci). Consequently, we have
the inequation, 1 − ∏m

i=1(1 − PrGquasi−slca(q, vci))

≤ 1 − (1 − ∑m
i=1 PrGquasi−slca(q, vci)) =

∑m
i=1 PrGquasi−slca(q, vci). Therefore, it is safe to

use the right side to update the lower bound values.

Example 9: Consider a4 that has been computed
and its probability is 0.44. Given threshold σ (=0.4),
a4 is returned as a quasi-SLCA result. Consequently,
we can update the lower/upper bound values of its
ancestor a2, i.e., UB′({k1, k2}, a2) = 0.65 - 1 + (1 - 0.44)
= 0.21 and LB′({k1, k2}, a2) = 0.595 - 0.44 = 0.155.
Since UB′({k1, k2}, a2) < σ, a2 can be filtered out
effectively without computation.

Property 3 is used to filter the unqualified nodes by
reducing the upper bound value while Property 4 is
used to quickly find the qualified required results by
comparing the reduced lower bound value (for the
probability of the remaining quasi-SLCAs) with the
threshold value.

Sometimes, we need to calculate the probability dis-
tributions of keywords in a node if the given thresh-
old σ is in the range (LB(q, v), UB(q, v)]. The basic
computational procedure is similar to the PrStack al-
gorithm in [23]. Different from the PrStack algorithm,
we will introduce probability density function (PDF)
to approximately calculate the probability for a node
if the node depends on a large number of pruned
descendent nodes. To decide when to invoke the PDF
while avoiding the risk of reducing precision signif-
icantly, we would like to select and compute some
descendant nodes that may contribute large proba-
bilities to the node v. For the remaining descendant
nodes, we may choose to invoke the PDF, by which
we can reduce the time cost while still guarantee the
precision to some extent. The detailed procedure will
be introduced in the next section.

5 PRUNE-BASED PROBABILISTIC THRESH-
OLD KEYWORD QUERY ALGORITHM

A key challenge of answering a PrTKQ is to identify
the qualified result candidates and filter the unquali-
fied ones as soon as possible. In this work, we address
this challenge with the help of our proposed proba-
bilistic inverted (PI) index. Two efficient algorithms
are proposed, a comparable Baseline Algorithm and
a PI-based Algorithm.

5.1 Baseline Algorithm

In keyword search on certain XML data, it is popular
to use keyword inverted index retrieving the rele-
vant keyword nodes, by which the keyword search
results are generated based on different algorithms,
e.g., [20], [16], [24], [25]. In probabilistic XML data,
[23] proposed PrStack Algorithm to compute top-k
SLCA nodes. In this section, we propose an effective
Baseline Algorithm that is similar the idea of PrStack
Algorithm. To answer PrTKQ, we need to scan all
the keyword inverted lists once. Firstly, the keyword-
matched nodes will be read one by one based on
their document order. After one node is processed,
we check if its probability can be up to the given
threshold value σ. If it is true, the node can be output
as a quasi-SLCA node and its remaining keyword
distributions (i.e., containing partial query keywords)
can be continuously promoted to its parent node.
Otherwise, we promote its complete keyword distri-
butions (i.e., containing both all keywords or partial
keywords) to its parent node. After that, the node at
the top of the stack will be popped. Similarly, the
above procedures will be repeated until all nodes
are processed. The basic algorithm can be terminated
when all nodes are processed. The detailed procedure
is shown in Algorithm 1.

Because Baseline Algorithm only needs to scan
the keyword node lists once, it is a fast and simple
algorithm. However, its core computation - keyword
distribution computation would consume lots of time,
which motivates us to propose the PI-based Algo-
rithm that can quickly identify the qualified or un-
qualified candidates using offline computed PI index
and only compute keyword distributions for a few
candidates. Here, Baseline Algorithm is taken as a
comparable base to show the pruning performance
of the PI-based Algorithm described below.

5.2 PI-based Algorithm

To efficiently answer PrTKQ, the basic idea of PI-
based Algorithm is to read the nodes from keyword
node lists one by one in a bottom-up strategy. For
each node, we quickly compute its lower bound and
upper bound by accessing PI index, which is far faster
than computing the keyword distributions of the node
directly. After comparing its lower/upper bounds
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Algorithm 1 Baseline Algorithm

input: a query q = {k1, k2, ..., km} with threshold σ, key-
word inverted (KI) index
output: a set R of quasi-SLCA nodes

1: load keyword node lists L = {l1, l2, ..., lm} from KI
index;

2: get the smallest Dewey v from L;
3: initiate a stack S1 using v;
4: while L 6= φ do
5: get the next smallest Dewey v from L;
6: while (S1.top() ≺not v) do
7: x = S1.pop();
8: if x contains full keywords and PrGquasi−slca(x) ≥

σ then
9: output x into R;

10: promote the rest keyword distributions of x to its
parent xp using CombineProb(x, xp);

11: S1.push(v);
12: while S1 6= φ do
13: a new node v ← S1.pop();
14: if v contains full keywords and PrGquasi−slca(v) ≥ σ

then
15: output v into R;
16: promote the rest keyword distributions of v to its

parent vp using CombineProb(v, vp);
17: return R;

with the given threshold value, we can decide if the
node should be output as a qualified answer, skipped
as an unqualified result, or cached as a potential result
candidate. For example, if the current node’s lower
bound is larger than or equal to the threshold value,
then the node can be output directly without further
computation. This is because all its descendants have
been checked according to the bottom-up strategy. If
its upper bound is lower than the threshold value,
then the node can be filtered out. Otherwise, it will
be temporarily cached for further checking. Based on
different cases, different operations would be applied.
Only the nodes identified as potential result candi-
dates need to be computed. Compared with Baseline
Algorithm, PI-based algorithm can be accelerated sig-
nificantly because Baseline Algorithm has to compute
the keyword distributions for all nodes. The detailed
procedure has been shown in Algorithm 2.

5.2.1 Detailed Procedure of PI-based Algorithm

In Algorithm 2, Line 1-Line 4 show that the proce-
dures of initiating PI-based Algorithm. We first load
the keyword node lists L from KI index and probabil-
ity node lists PIL from PI index. And then we take
the smallest node v from L to initiate a stack S1 that
is set using the dewey codes of v. Another stack S2 is
used to maintain the temporary filtered nodes. After
that, the PI-based Algorithm is ready to start.

Next, we need to check each node in L in document
order. Different from Baseline Algorithm, we only
compute the keyword distribution probabilities for a
few nodes that are first identified using the lower
bound and upper bound in PIL. Consider v be the

Algorithm 2 PI-based Algorithm

input: a query q = {k1, k2, ..., km} with threshold σ, key-
word inverted (KI) index, PI index
output: a set R of quasi-SLCA nodes

1: load keyword node lists L = {l1, l2, ..., lm} from KI
index;

2: load probability node lists PIL =
{PIL1, P IL2, ..., P ILm};

3: get the smallest Dewey v from L;
4: initiate a stack S1 using v and an empty stack S2;
5: while L 6= φ do
6: get the next smallest Dewey v from L again;
7: while (S1.top() ≺not v) do
8: x = S1.pop();
9: UB(q,x) and LB(q,x) ← ComputeBound(x,

{PILi(x)});
10: if LB(q,x)≥ σ then
11: output x into R;
12: UpdateBound({va ∈ S1|va ≺ x}, LB(q,x),

UB(q,x));
13: S2.pop(vd ∈ S2|vd ≻ x);
14: else if UB(q,x) ≥ σ > LB(q,x) then
15: Prob(x) ← ComputeProbDist(x, S2);
16: if Prob(x) ≥ σ then
17: output x into R;
18: UpdateBound({va ∈ S1|va ≺ x}, Prob(x));
19: S2.pop(vd ∈ S2|vd ≻ x);
20: else
21: S2.push(x);
22: S1.push(v);
23: while S1 6= φ do
24: a new node v ← S1.pop();
25: UB(q,v) and LB(q,v) ← ComputeBound(v,

{PILi(v)});
26: process the node v using the same codes in Line 10 -

Line 21;
27: return R;

next smallest node to be processed. We compare it
with the node x in stack S1. If v is the descendant
node of x, then v will be pushed into S1 and get the
next smallest node from L. Otherwise, we pop out
x from S1 and check if it is a qualified quasi-SLCA
answer. In Baseline Algorithm, it will compute the
keyword distributions of x and combine its remaining
distributions and the distribution of its parent based
on promotion operations. Different from Baseline Al-
gorithm, PI-based Algorithm will quickly compute
the upper bound UB(q,x) and lower bound LB(q,x)
using PIL, which is used to differentiate the nodes
as qualified nodes - output, unqualified nodes - filter
and uncertain nodes - to be further checked. By doing
this, only a few nodes need to be computed. Since
bound computation is far faster than computation of
keyword distribution, lots of run time cost can be
saved in PI-based Algorithm. Line 10-Line 21 show
the detailed procedures. If the lower bound LB(q,x)
is larger than or equal to the given threshold value
σ, then x can be output as a qualified quasi-SLCA
answer without computation. At this moment, the
lower bound LB(q,x) can be taken as the temporary
probability of x being a quasi-SLCA result because
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the exact probability of x is delayed until we need to
calculate its exact probability value. Subsequently, the
temporary probability value LB(q,x) and the probabil-
ities of x′ descendant quasi-SLCA results can be used
to update the lower/upper bounds of the ancestors of
x in stack S1 based on Equation 11 and Equation 10,
respectively. If the lower bound LB(q,x) is lower than
σ while the upper bound UB(q,x) is larger than or
equal to σ, then we need to compute the keyword
distributions of x using the cached descendant nodes
in S2. Based on the computed probability Prob(x) of
x, it can be decided to be output as a qualified answer
or filtered as an unqualifed candidate. If the upper
bound UB(q,x) is lower than σ, then x will be pushed
into S2 for the possible computation of its ancestors.

There are two main functions in PI-based Algo-
rithm. The first one is ComputeProbDist(v, S2) for
computing the probability of full keyword distribu-
tion of v using the descendant nodes in S2. The
second is UpdateBound({va ≺ v|va ∈ S1}, LB(q,v) or
Prob(q,v)) for updating the bounds of the nodes to be
processed.

5.2.2 Function ComputeProbDist()

The function ComputeProbDist(v, S2) can be imple-
mented in two ways, Exact Computation or Approximate
Computation.

Exact Computation is to actually calculate the prob-
ability of v being a quasi-SLCA node by scanning all
the nodes in the stack S2 that maintains the descen-
dant nodes of v. The processing strategy is similar to
Baseline Algorithm in Section 5.1. In other words, it
needs to visit the nodes in S2 one by one and compute
the local keyword distribution of each node, and then
promotes the intermediate results to its parent. After
all nodes in S2 are processed, the probability of v will
be obtained because it aggregates all the probabilities
from its descendant nodes.

Approximate Computation is to approximately calcu-
late the probability of v being a quasi-SLCA node
based on a partial set of nodes in the stack S2 that
maintains the descendant nodes of v. The approximate
computation can be made according to different dis-
tribution types, e.g., uniform distributions, piecewise
polynomials, poisson distributions, etc. In this work,
we consider normal or Gaussian distributions in more
detail.

As we know Gaussian distribution is considered the
most prominent probability distribution in statistics.
However, the PDF of Gaussian distribution cannot be
applied to PrTKQ over probabilistic XML data directly
due to two main challenges. The first challenge is to
simulate the continuous distributions using discrete
distributions based on the real conditions in order to
reduce the approximate errors as much as possible,
and the second is to embody the multiple keyword
variables in the PDF.

Generally, the probability density function of a
Gaussian distribution N(µ, σ2) of mean µ and vari-
ance σ2 is:

f(x) =
1√
2πσ2

e−(x−µ)2/(2σ2) (12)

Addressing Challenge 1: The density function has
a shape of a bell centered in the mean value µ
with variance σ2. Based on the definition of Gaussian
distribution, the Gaussian distribution is often used
to describe, at least approximately, measurements that
tends to cluster around the mean. Therefore, consider
the mean µ be the partial computed probability value
of v be a quasi-SLCA node, which guarantees the real
probability value will not be significantly different
from the probability base that has already been cal-
culated based on promising descendant nodes. The
value of the variance σ2 can be chosen from the range
[1-#computed descendant nodes/#total descendant
nodes, 1] based on the visited/unvisited descendant
nodes in S2. This is because the more the descen-
dant nodes are actually computed, the higher the
percentage of the values would be drawn within one
standard deviation σ away from the mean. Extremely,
if all descendant nodes are computed actually, 100%
of values can be drawn within one stardard deviation.
Therefore, we select and compute a few descendant
nodes of v from S2, which can contribute relatively
higher probabilities to make v a quasi-SLCA node.
In this work, we use heuristic method to select a
few descendant nodes with the higher probabilities
of single keywords in the descendant nodes of v.
And then, we take the partially computed probability
as the base of the probability density function of a
Gaussian distribution.

Consider v be a node to be evaluated and UB(q,v) 2

be its current upper bound value. We have,

PrG,Gaussian
quasi−slca (q, v) =

∫ UB(q,v)

0

f(x)dx (13)

After substituting Equation 12 into Equation 13, we
get,

PrG,Gaussian
quasi−slca (q, v) =

∫ UB(q,v)

0

1√
2πσ2

e−
(x−µ)2

2σ2 dx

(14)
Where µ is the partially computed probability, σ2 is set
as 1-#computed descendant nodes/#total descendant
nodes.

Addressing Challenge 2: To embody all the
keyword variables in the PDF, we introduce the
joint/conditional Gaussian distribution based on the
work in [26]. Assume a PrTKQ contains two keywords
kx and ky . We have the conditional PDF as follows.

2. Note that UB(q,v) has been updated if v has descendant
nodes that are qualified answers, i.e., it minus the probability
contributions of the qualified answers.
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fY |X(y|x) = 1
√

2π(1− ρ2)σ2
Y

e
−

[(y−µY )−(ρ(
σY
σX

)(x−µX ))]2

2σ2
Y

(15)
Since f(x, y) = fX(x) ∗ fY |X(y|x), after substituting

Equation 12 into Equation 15, we get

f(x, y) =

1

2πσXσY

√
1−ρ2

e
−

(x−µX )2

2σ2
X

−
[(y−µY )−(ρ(

σY
σX

)(x−µX ))]2

2σ2
Y

(16)

If we make an assumption that x and y are inde-
pendent keyword variables i.e., ρ = 0, and assume
µX = µY = µ and σX = σY = σ, then we have

f(x, y) =
1

2πσ2
e−

(x−µ)2+(y−µ)2

2σ2 (17)

Therefore, Equation 17 can be easily extended to
multiple keyword variables that are assumed as inde-
pendent. We can compute the probability of v w.r.t. a
PrTKQ {k1, k2, ..., kt}.

PrG,Gaussian
quasi−slca (q, v) =

∫ UB(q,v)

0
...
∫ UB(q,v)

0
e
−

(x1−µ)2+...+(xt−µ)2

2σ2

(2π)t/2σt dx1...dxt

(18)
Where µ is the partially computed probability, σ2 is set
as 1-#computed descendant nodes/#total descendant
nodes.

In the experiments, we call Matlab from Java to cal-
culate Equation 18. The estimated results are used to
show the comparison between the actual computation
and approximation computation. The results verify
the usability of Gaussian distribution to measure the
probability.

5.2.3 Function UpdateBound()
For each ancestor node va ∈ S1 (va ≺ v), we need
to update the upper bounds and lower bounds using
Function UpdateBound() based on Equation 10 and
Equation 11, respectively. To guarantee the complete-
ness of the answer set, the parameters of the function
may be different based on conditions. For example, if
LB(q,v) is larger than or equal to the threshold value σ
as shown in Algorithm 2: Line 12, then the probability
value LB(q,v) is used to update the upper bounds of v′

ancestors while the probability value UB(q,v) is used
to update the lower bounds of v′ ancestors; if LB(q,v)
is smaller than σ and UB(q,v) is larger than or equal
to σ as shown in Algorithm 2: Line 18, the actual
or approximate probability value Prob(v) computed
by Function ComputeProbDist(v, S2) will be utilized
to update the upper/lower bounds of v′ ancestors
together.

Here, we use two hashmaps to implement Function
UpdateBound(). For a node, one hashmap is used
to cache the dewey of the node as a key, and the

lower/upper bounds as a value where the bounds
are computed based on PI index. Another hashmap
is used to record the probability that the descendants
of the node having been identified as qualified quasi-
SLCA answers. When a node is coming, we can
quickly get the updated lower/upper bounds based
on the two hashmaps.

6 EXPERIMENTAL STUDIES

We conduct extensive experiments to test the perfor-
mance of our algorithms: Baseline Algorithm (BA);
PI-based Exact-computation Algorithm (PIEA) that
implements Function ComputeProbDist() by exactly
computing the probability distributions of the key-
word matched nodes; and PI-based Approximate-
computation Algorithm (PIAA) that makes approx-
imated computation based on the Gaussian distri-
bution of keywords while still exactly computing
the probability distributions of the keyword matched
nodes that have the higher probabilities. All these
algorithms were implemented in Java and run on
a 3.0GHz Intel Pentium 4 machine with 2GB RAM
running Windows 7.

6.1 Dataset and Queries

We use two real datasets, DBLP [27] and Mondial [28],
and a synthetic XML benchmark dataset XMark [29]
for testing the proposed algorithms. For XMark, we
also generate four datasets with different sizes. The
three types of datasets are selected based on their
features. DBLP is a relatively shallow dataset of large
size; Modial is a deep and complex, but small dataset;
XMark is a balanced dataset with varied depth, com-
plex structure and varied size. Therefore, they are
chosen as test datasets.

For each XML dataset used, we generate the cor-
responding probabilistic XML tree, using the same
method as used in [12]. We visit the nodes in the
original XML tree in pre-order way. We first set the
random ratio of IND:MUX:Ordinary as 3:3:4. For each
node v visited, we randomly generate some distribu-
tional nodes with “IND” or “MUX” types as children
of v. Then, for the original children of v, we choose
some of them as the children of the new generated
distributional nodes and assign random probability
distributions to these children with the restriction that
the sum of them for a MUX node is no greater than 1.
The generated datasets are described in Table 1. And
we select terms and construct a set of keyword queries
to be tested for each dataset. Due to the limited space,
we only show six of these queries for each dataset.
For each different sets of queries, the terms in the
first two queries have small size of keyword matched
nodes; the terms of the middle two queries relate to
a medium size of keyword matched nodes; the terms
of the last queries are based on the computation of a
larger number of keyword matched nodes.
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TABLE 1
Properties of PrXML data

ID name size #IND #MUX #Ordinary

Doc1 XMark 10M 26k 26k 145k

Doc2 20M 54k 52k 200k

Doc3 40M 98k 100k 606k

Doc4 80M 329k 368k 1M

Doc5 Modial 1.2M 8k 9k 20k

Doc6 DBLP 136M 759k 589k 3M

Doc7 INEX 5,898M 13M 10M 52M

6.2 Varying Keyword Queries
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Fig. 5. Evaluation of Keyword Queries over
XMark20M, Mondial, DBLP, INEX where σ=0.3

Figure 5 shows the experimental results when we
run the 18 queries over the selected three datasets
where X represents the queries over 20MB XMark
dataset, M represents the queries over Mondial
dataset, D represents the queries over DBLP dataset

and I represents the queries over INEX dataset. And
the required threshold value σ is set as 0.3. From
the results, we can find that compared with the BA
algorithm, most of time the PIEA algorithm can re-
duce the response time by nearly 40% using the prun-
ing techniques based on the updated lower/upper
bounds. The PIAA algorithm can further improve the
time efficiency by about 20% with the assumption
of probability distribution of keywords. For X1, X2
and M1, M2, the response time of BA algorithm is
approaching to the time cost of the other two algo-
rithms. Especially for query X2, PIEA algorithm is
overwhelmed by BA algorithm. This is because both
the number of keyword-matched nodes and the size
of answer sets are smaller than the other queries. From
the four figures on the left side of Figure 5, we find
that the scalability of PIEA and PIAA algorithms is
much better than that of BA algorithm by testing the
queries with different sizes of answer sets.

To measure the precision and recall of PIAA algo-
rithm, we utilize the P&R equations in information
retrieval area as follows.
Precision = |RBA∩RPIAA|

|RPIAA| ; Recall = |RBA∩RPIAA|
|RBA|

Because PIEA algorithm can find the same results
with BA algorithm by exactly computing the required
probability distributions, Figure 5 only demonstrates
the precision and recall of PIAA algorithm for differ-
ent queries over each dataset. From the experimental
results, we find that the precision and recall can
reach up to at least 0.7 for XMark, 0.6 for Mon-
dial, 0.7 for DBLP, and 0.66 for INEX, respectively.
Sometimes, it can be up to 0.9 at most, e.g., X1, X2,
M1, M2, I1, I2, etc. Comparing all the tested queries,
we can get a general conclusion that the precision
and recall will be decreased with the increase of
potential result size. However, from the experiments,
they will not be lower than 0.6 because (1) the re-
sults with higher probabilities are exactly selected
and computed, which does not need to depend on
the Gaussian assumption; (2) the rest minor results
are estimated by using Gaussian assumption over the
keyword distributions that have been excluded by
the results with higher probabilities. In other words,
PIAA strategy can return the percentage (≥0.6) of
significant results, but may underestimate the minor
results.

6.3 Varying Threshold Values

To test the adaptability of the proposed algorithms to
threshold query, we test the changes of response time
and precision&recall with the increase of threshold
value. Figure 6 shows the experimental results when
the threshold value varies from 0.2 to 0.7 for queries
X5, M5, D5 and I5. The left four figures in Figure 6
show that PIEA and PIAA algorithms can overwhelm
BA algorithm greatly with the increase of threshold
value. This is because BA algorithm has to scan and
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Fig. 6. Time, Precision and Recall vs. Varied Threshold

compute all the relevant nodes while PIEA and PIAA
algorithms can skip more nodes when the threshold
value becomes large. However, when the threshold
value is up to 0.5, the change of the time cost will be
smooth because once a quasi-SLCA node is identified,
its ancestor nodes can be skipped definitely, which is
true for the threshold values larger than 0.5. From the
right four figures in Figure 6, we can find that the
precision and recall will be affected by the change of
threshold values. When the threshold value reaches
up to 0.5, the precision and recall can be up to 0.8 at
least. On the contrary, if the threshold value is lower
than 0.2, the precision and recall would be decreased
to 0.5 based on the selected datasets.
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Fig. 7. Response Time and F-Measure for different
datasets

6.4 Varying Probabilistic Document Size

We firstly take XMark dataset as an example to test the
performance of the three algorithms when we increase
the document size. We test all the six queries of XMark
dataset, but in this paper, we only show the results of
the query X3 where the threshold value is specified
as 0.3. From Figure 7(a), we can see that the response
time of all the three algorithms will be increased when
the document size increases from 10MB to 80MB.
However, the increase of PIEA and PIAA algorithms
is much slower. Particularly, PIAA just changes a
bit. The comparison illustrates that PIEA and PIAA
algorithms can obtain much better performance than
BA algorithm. In addition, all algorithms show linear
degradation, i.e., they have the similar scalability.

Secondly, we evaluate the precision and recall of
PIAA algorithm using a variant of F-measure that
aggregates the precision and recall of all queries to-
gether.

F −measure = 2 ∗ P (qi)∗R(qi)

P (qi)+R(qi)

Where P (qi) =
∑6

1(P (qi))/6, and R(qi) =
∑6

1(R(qi))/6.
To evaluate the F-measure of PIAA algorithm, we

test 24 queries with different threshold values: 0.3, 0.5
and 0.7. From the results in Figure 7(b), we can find
that the F-measure can be over 0.75 for all the four
datasets.

7 RELATED WORK

The topic of probabilistic XML has been studied re-
cently. Many models have been proposed, together
with structured query evaluations. Nierman et al. [7]
first introduced a probabilistic XML model, ProTDB,
with the probabilistic types IND - independent and
MUX - mutually-exclusive. Hung et al. [8] modeled
the probabilistic XML as directed acyclic graphs, sup-
porting arbitrary distributions over sets of children.
Keulen et al. [9] used a probabilistic tree approach for
data integration where its probability and possibility
nodes are similar to MUX and IND, respectively.
Cohen et al. [30] incorporated a set of constraints to
express more complex dependencies among the prob-
abilistic data. They also proposed efficient algorithms
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to solve the constraint-satisfaction, query evaluation,
and sampling problem under a set of constraints. In
[12], Kimelfeld et al. summarized and extended the
probabilistic XML models previously proposed, the
expressiveness and tractability of queries on different
models are discussed with the consideration of IND
and MUX. [11] studied the problem of evaluating
twig queries over probabilistic XML that may re-
turn incomplete or partial answers with respect to
a probability threshold to users. [13] proposed and
addressed the problem of ranking top-k probabilities
of answers of a twig query. All the above work
focused on the discussions of probabilistic XML data
model and/or structured XML query, e.g., twig query.
The most closely related work is [23] that proposed
two algorithms to answer top-k keyword queries over
probabilistic XML data. However, compared with [23],
in this work we propose a probabilistic inverted in-
dex that can be used to efficiently answer threshold
keyword queries by reducing the computational cost
of unqualified nodes. In addition, we also take into
account the relaxation (i.e., quasi-SLCA) of results for
keyword search w.r.t. a threshold value while [23]
focused on the strict SLCA semantics of results.

There are some other work to discuss probabilistic
index for query evaluation and/or data management.
Although [31] discussed probabilistic inverted index
as ours, its data model is relational in which each
tuple is associated with a probability value and all tu-
ples are assumed independent. In our work, we built
the probabilistic inverted index based on probabilistic
XML data model with IND and MUX semantics.
Another difference is that we answer keyword query
while [31] processes equality query. Another work dis-
cussing probabilistic index is [32] that first generates
possible worlds and then cluster them based on prob-
ability values with a limited distance. The problem
is that generating all possible worlds is very time-
consuming in XML data. In our work, we avoided
the generation of possible worlds.

8 CONCLUSIONS

In this work, we first proposed and investigated
the problem of finding quasi-SLCA for PrTKQs over
probabilistic XML data. And then we designed a PI
index and analyzed the pruning features of PI index.
Based on the lower and upper bounds computed
from PI index, the proposed PI-based algorithm can
quickly identify the qualified results and filter the
unqualified ones. Our experimental results demon-
strated the comparison of Baseline algorithm, PI-
based Exact-computation Algorithm (PIEA) and PI-
based Approximate-computation Algorithm (PIAA),
which verified our motivation and approaches.
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