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Abstract—We present an improved statistical model for an-
alyzing Poisson processes, with applications to photon-limited
imaging. We build on previous work, adopting a multiscale
representation of the Poisson process in which the ratios of the
underlying Poisson intensities (rates) in adjacent scales are mod-
eled as mixtures of conjugate parametric distributions. Our main
contributions include: 1) a rigorous and robust regularized ex-
pectation-maximization (EM) algorithm for maximum-likelihood
estimation of the rate-ratio density parameters directly from the
noisy observed Poisson data (counts); 2) extension of the method
to work under a multiscale hidden Markov tree model (HMT)
which couples the mixture label assignments in consecutive scales,
thus modeling interscale coefficient dependencies in the vicinity
of image edges; 3) exploration of a 2-D recursive quad-tree image
representation, involving Dirichlet-mixture rate-ratio densities,
instead of the conventional separable binary-tree image represen-
tation involving beta-mixture rate-ratio densities; and 4) a novel
multiscale image representation, which we term Poisson-Haar
decomposition, that better models the image edge structure,
thus yielding improved performance. Experimental results on
standard images with artificially simulated Poisson noise and on
real photon-limited images demonstrate the effectiveness of the
proposed techniques.

Index Terms—Bayesian inference, expectation-maximization
(EM) algorithm, hidden Markov tree (HMT), photon-limited
imaging, Poisson-Haar decomposition, Poisson processes.

I. INTRODUCTION

P HOTON detection is the basis of image formation for a
great number of imaging systems used in a variety of ap-

plications, including medical [1] and astronomical imaging [2].
In such systems, image acquisition is accomplished by counting
photon detections at different spatial locations of a sensor, over a
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specified observation period. For low intensity levels, one of the
dominant noise sources responsible for the degradation of the
quality of the captured images is the so-called quantum or shot
noise. Quantum noise [3] is due to fluctuations on the number
of detected photons, an inherent limitation of the discrete nature
of the detection process, and degrades such images both qualita-
tively and quantitatively. The resulting degradation can prove to
be a major obstacle preventing image analysis and information
extraction. Thus, the development of methods and techniques to
alleviate the arising difficulties is of fundamental importance.

The basic photon-imaging model assumes that the number of
detected photons at each pixel location is Poisson distributed.
More specifically, under this model the captured image is con-
sidered as a realization of an inhomogeneous Poisson process.
This Poisson process is characterized by a 2-D spatially varying
rate function which equals the process mean and corresponds
to the noise-free intensity image we want to recover. The vari-
ability of the counts about the mean can be interpreted as noise.
Since the Poisson process variance equals the rate function/
noise-free image, the noise appearing in the acquired image is
spatially varying and signal-dependent. This restrains us from
using a variety of well-studied methods and tools that have been
developed for coping with additive homogeneous noise. From a
statistical viewpoint, denoising the captured image corresponds
to estimating the discretized underlying intensity from a single
realization of the Poisson process. For a 2-D Poisson process the
discretized intensity image can be represented as a 2-D array ,
while the observed noisy image as a 2-D array . Then at each
location the observed counts can be considered as
a realization of the random variable1 which follows a
Poisson distribution with intensity .

A host of techniques have been proposed in the literature
to account for the Poisson intensity estimation problem. A
classical approach followed by many researchers includes pre-
processing of the count data by a variance stabilizing transform
(VST) such as the Anscombe [4] and the Fisz [5] transforms,
applied either in the spatial [6] or in the wavelet domain [7]. The
transformation reforms the data so that the noise approximately
becomes Gaussian with a constant variance. Standard tech-
niques for independent identically distributed (i.i.d.) Gaussian
noise are then used for denoising. A recent method of this
family is proposed in [8], where the authors first apply a new
multiscale VST transform followed by conventional denoising

1In this paper, we denote random variables with upper case letters and their
realizations with lower case letters.
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based on the curvelet [9] and ridgelet [10] transformations.
An alternative approach includes wavelet-domain methods
modified to account for the Poisson image statistics, thus
avoiding the preprocessing of the count data. Kolaczyk in [11]
has developed a shrinkage method for the Haar wavelet trans-
form with “corrected” thresholds accounting for the specific
characteristics of the Poisson noise, while Nowak and Baraniuk
[12] proposed a wavelet-domain filtering approach based on a
cross-validation estimator.

Another major category includes methods adopting a mul-
tiscale Bayesian framework specifically tailored for Poisson
data, independently initiated by Timmerman and Nowak [13]
and Kolaczyk [14]. One of the key advantages of Bayesian
methods is that they allow incorporation of prior knowledge
into the estimation procedure. In addition, Bayesian methods
combined with multiscale analysis are becoming increasingly
popular since they can significantly simplify the estimation
problem. In particular, the framework of [13] and [14] involves
a decomposition of the Poisson process likelihood function
across scales, allowing computationally efficient intensity esti-
mation by means of a scale-recursive scheme. Additionally, this
multiscale likelihood decomposition is naturally accompanied
by a factorized prior model for the image intensity, in which
the ratios of the underlying Poisson intensities (rates) at adja-
cent scales are modeled as mixtures of conjugate parametric
distributions. This prior model has been proven quite effective
in image modeling.

Despite the strong potential of the multiscale Bayesian frame-
work for analyzing Poisson processes, previous work in this area
[13]–[16] has certain shortcomings which hinder its wider ap-
plicability. In this paper, we deal with the following problems
in the aforementioned framework.

1) Image representation: Multiscale decomposition strategies
for handling intrinsically 2-D image data.

2) Parameter estimation: Estimation of the prior model pa-
rameters directly from the observed Poisson noisy data to
accurately match the statistics of the source image.

3) Interscale dependencies: Modeling interscale dependen-
cies among intensity/rate ratios arising in natural images.

Our main contributions are: (1) Regarding the problem of
image representation, besides the conventional separable bi-
nary-tree image representation involving beta-mixture rate-ratio
densities, we explore a recursive quad-tree image representa-
tion, explicitly tailored to 2-D data, involving Dirichlet-mixture
rate-ratio densities; a similar single-component Dirichlet
quad-tree image representation was first studied by [17] in
the context of image deconvolution. Further, we propose a
novel directional multiscale image representation, termed
Poisson-Haar decomposition due to its close relation with the
2-D Haar wavelet transform, which better captures the edge
detail structure of images, thus providing improved results in
image modeling and consequently in the intensity estimation
problem. (2) Regarding the problem of parameter estimation,
we propose an Expectation-Maximization (EM) technique
for maximum-likelihood estimation of the prior distribution
parameters directly from the observed Poisson data, so that the
model accurately matches the statistics of the source image.
The robustness of the technique is enhanced by incorporating

an appropriate regularization term. This term is interpretable
as specifying a conjugate prior for the density parameters to
be estimated and leads to a maximum a posteriori (MAP)
instead of the standard maximum likelihood (ML) estimation.
The proposed EM-based method can be equally well applied
to either the conventional separable model, the nonseparable
quad-tree, or the proposed Poisson-Haar decomposition. A
preliminary version of this method was first presented in [18].
(3) The statistical framework which treats each scale of analysis
as independent can be unrealistic for many real-world applica-
tions. Hidden Markov tree (HMT) structures as those proposed
in [19]–[22] can efficiently model interscale dependencies
between rate-ratio density mixture assignments and, thus,
are more appropriate. The parameter estimation issue is even
more pronounced in this case due to the extra HMT-specific
parameters that need to be fitted. This problem is addressed by
extending our EM parameter estimation method to also cover
the HMT case; this leads to further benefits in the intensity es-
timation problem. We experimentally validate the effectiveness
of all proposed contributions by comparing our results with
those of previous techniques on photon-limited versions of
standard test images. We also apply the proposed methods on
denoising photon-limited biomedical and astronomical images.

The paper is organized as follows. In Section II we discuss
the multiscale Bayesian framework for Poisson intensity esti-
mation. In this context we briefly review the image partitioning
scheme of [13], [14], we explore the nonseparable quad-tree
image partitioning and introduce the novel Poisson-Haar mul-
tiscale image representation. In Section III we derive Bayesian
estimators for the discussed models, while in Sections IV and V
we describe our EM-based parameter estimation techniques for
the independent and HMT models, respectively. Experimental
results and comparisons on photon-limited imaging applications
are presented in Section VI.

II. MULTISCALE MODELING OF POISSON PROCESSES

A. Problem Formulation

To simplify the analysis we initially assume that the
image of interest is a 1-D signal of length ,

, where ,
refers to each individual pixel. Estimation of the intensity
image is based on the corresponding observed noisy photon
counts . Under the basic
photon-imaging model, the vector consists of the observation
samples of random variables which are conditionally
independent upon , and each one follows a Poisson distribution
with rate parameter , denoted by .
See Table I for definitions of the Poisson and other probability
distributions used in this paper. In the Bayesian framework,

is not considered any more as deterministic but instead is
treated as a vector containing the samples of a random sequence

, whose particular realization we must estimate. To obtain
a Bayesian estimator for this problem we first have to choose
an appropriate prior probability model, , for the random
sequence. After specifying the model, we can devise strategies
to find a statistically optimal estimator. If we select the mean
squared error (MSE) as the criterion to minimize, then we
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TABLE I
PROBABILITY DISTRIBUTIONS USED IN THE PAPER. THE GAMMA FUNCTION IS

DEFINED BY ���� � � � ��, � IS THE DIMENSION OF

THE RANDOM VECTORS, AND � � �

arrive at the minimum mean squared error (MMSE) estimator
also termed posterior mean estimator [23] and is given by

(1)

which can be written, by applying Bayes’ rule, as2

(2)

The marginal distribution of the noisy image appearing in
the denominator of (2) belongs to the mixed Poisson distribution
family [24]; parameter estimation for an interesting subclass of
this family is discussed in [25]. The Bayesian framework is at-
tractive for our problem, but poses two challenges: One is the
specification of an appropriate multivariate prior distribution for
the intensity image, the other is the solution of the estimation
problem in a multidimensional space which can be a formidable
task.

A multiscale analysis of Poisson processes has been recently
proposed independently in [13] and [14] which yields a tractable
solution for Bayesian estimation. In the rest of this section we
briefly review the multiscale framework suited for 1-D signals
and its separable extension for the 2-D case, first proposed in
[13]. Then we explore a multiscale quad-tree analysis explicitly
designed for 2-D data and finally we propose our novel Poisson-
Haar scheme which features extra benefits with respect to the
other 2-D decomposition models.

B. Recursive Dyadic Partitioning

By denoting with and the finest scale rep-
resentations of and , respectively, a multiscale analysis is
obtained through recursions resembling those that yield the un-
normalized Haar scaling coefficients [13]

(3)

2For notational simplicity, we indicate the probability law associated either
with a continuous or a discrete random variable � as ����, to be interpreted as
either probability density or mass function depending on the case.

Fig. 1. Binary data tree obtained by a multiscale (fine-to-coarse) analysis of ���
over three scales. Knowing the values of the splitting factors 	 �
� and the total
intensity of the image, � ���, we can fully recover our initial representation of
���.

(4)

for , , and ,
as illustrated in Fig. 1. In the above equations denotes the
scale of analysis ( is the coarsest scale) and the position in
the corresponding vector . For simplicity we assume that the
length of the signal is a power of two; otherwise the anal-
ysis still holds by zero-padding the signal to make its length a
power of two. This decomposition is motivated by two funda-
mental properties of Poisson processes [26]: (1) the counts over
nonoverlapping intervals are independent, given the underlying
intensities, and (2) the sum of independent Poisson random vari-
ables remains Poisson. Thus, the random variable , ob-
tained as the sum of the Poisson random variables
and , will remain Poisson distributed with inten-
sity . Moreover, it holds that for two independent Poisson
random variables, and , the
conditional distribution of X given is binomial, namely

[27]. This sta-
tistical relation over adjacent scales permits the following fac-
torization of the Poisson process likelihood function [14]:

(5)

where is the total count of the observed image ,
is the total intensity sum of the clean image , and the rate-
ratio parameter (success rate of the
binomial distribution) can be interpreted as a splitting factor [20]
that governs the multiscale refinement of the intensity .

To proceed within the multiscale Bayesian framework
we also have to express the prior distribution in
a factorized form. With reference to Fig. 1, the inten-
sity vector can be equivalently re-parameterized as

. This
re-parametrization is closely related to the 1-D Haar wavelet
transform, with corresponding to wavelet scaling coefficients
and to wavelet detail coefficients [13]. More specifically,

is a re-scaled version of the Haar scaling coefficient
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, , while is a divisibly nor-
malized version of the Haar wavelet detail coefficient ,
also shifted by 0.5, . We show
in Section II-D that in the 2-D case an analogous link exists
between our proposed Poisson-Haar image decomposition and
the 2-D Haar wavelet transform. At first sight the expression
for in the 1-D case bears some resemblance to the Haar-Fisz
transform [7], where the Haar wavelet coefficients of the noisy
data are scaled by the square root of their corresponding scaling
coefficient. However, in the Haar-Fisz case the normalization
is applied to the wavelet coefficients of the noisy data to make
them approximately Gaussian, while in this case the relation
refers to the original intensities transformation. If we consider

and as observation samples of the random vari-
ables and , respectively, and assume statistical
independence among these variables, then the prior distribution
for can be expressed in the factorized form

(6)

Since the beta distribution is conjugate to the binomial [28],
it is convenient to complement the binomial terms in the likeli-
hood function (5) with a beta-mixture prior

(7)

where is the mixture weight for the th mixture compo-
nent in th scale of analysis, and are the parameters
of this beta mixture component and is the total number of
mixtures utilized at each scale. By using in (7) a mixture of beta
densities instead of a single component, we can more accurately
fit the image statistics. The increased accuracy of this approach
is illustrated in Fig. 2, where the intensity rate-ratio histogram
of a clean image is fitted by a single- versus a three-component
distribution. Another way to justify modeling the random
variables with beta mixture densities is to assume that,
at every scale of analysis, each random variable obeys
a gamma distribution where the choice of gamma is due to
its conjugacy with the Poisson distribution [26]. Specifically,
if and , then
the random variable will be
distributed as [27]. Beyond the computational
tractability arguments, the adoption of such a multiscale
image prior induces an image intensity correlation structure
corresponding to stochastic processes with -like spectral
behavior [13]. These processes correspond to fractal-based
image descriptions and capture certain key properties of natural
images, such as long-range intensity dependencies. In Fig. 3,
we illustrate an example image sampled from this class of prior
models.

The described statistical framework involving the multiscale
factorization of the likelihood function and the prior density is
appropriate for 1-D signals. For the case of our interest, and
will be 2-D images comprising the discrete observation samples
and true values of the intensity function, respectively. One way

Fig. 2. Fitting the clean Lena image histogram of the intensity ratios � ���,
see (8), by either a single (dotted line) or a three (solid line) component sym-
metric �� � � � beta-mixture distribution. The model parameters are
fitted by maximum likelihood, using EM in the multiple mixture case.

Fig. 3. Example image sampled from the proposed Poisson-Haar multiscale
image prior model of Section II-D, in which dependencies across scales are
captured by the HMT model of Section V.

to extend the multiscale analysis for 2-D images is to apply the
1-D model separably as proposed in [13]; each decomposition
level will consist of one decimation step across the horizontal
(or vertical) direction and then one decimation step across the
vertical (resp. horizontal) direction, as illustrated in Fig. 4. Here-
after, we will refer to this 2-D multiscale framework as the sep-
arable model. Note that the separable model for a 2 2 neigh-
borhood at a scale , produces the following three rate-ratio
subbands

(8)

which, in contrast to the 1-D case, do not correspond one-to-one
to the three subbands of the 2-D Haar wavelet transform.

C. Recursive Quad-Tree Partitioning

Besides the separable image model, we study a nonseparable
2-D quad-tree multiscale decomposition for the observation and
intensity images and of size . Denoting for each
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Fig. 4. Multiscale 2-D image analysis using the separable decomposition
scheme of [13] and [20].

Fig. 5. Multiscale 2-D image analysis using the quad decomposition scheme.
Each data node � ��� �� or � ��� �� at a coarser scale, is the sum of the corre-
sponding data nodes in the 2 � 2 neighborhood � at the next finer scale.

th-scale pixel location the 2 2 set of children pixel
locations at the next finer scale as

the decomposition formulas similar to (3) and (4) will be

(9)

(10)

for , ,
and . From this multiscale anal-
ysis we obtain the quad-tree decomposition of the observation
and intensity images and , as illustrated in Fig. 5. Simi-
larly to the separable decomposition, since the random variables

, with , are assumed conditionally in-
dependent, the random variable will remain Poisson
distributed with intensity . Moreover it will similarly
hold that, given , the joint conditional distribution of
the four children’s random vector

is multinomial [26]

(11)

with

(12)

The likelihood function can then be factorized as (see Ap-
pendix A for the derivation)

(13)

Similarly to the separable model, we also use a factorized
multiscale prior on the re-parameterized intensity

(14)

Once more, since the Dirichlet distribution is conjugate to the
multinomial [28], we adopt mixture of Dirichlet prior factors

(15)

where is the parameter vector of the th mixture com-
ponent in the th scale of analysis. An alternative justification
is provided by noting that the Dirichlet like the beta distribu-
tion admits a representation in terms of gamma variables. We
will refer hereafter to this decomposition as the quad model. A
similar decomposition scheme was first mentioned but not fur-
ther pursued in [20]. Later, it was studied in [17] in the con-
text of image deblurring; however, the authors in [17] only con-
sidered the simpler case of a single-component Dirichlet prior
distribution.

D. Multiscale Poisson-Haar Image Partitioning

As we have already seen, the separable and quad models can
provide convenient multiscale representations for images de-
graded by Poisson noise. The re-parameterization of the inten-
sity image into which comprises a single point , en-
compassing the total intensity of the image, and the rate-ratio
array has enabled us to choose effective image priors. The
array elements of are defined in both cases as ratios of inten-
sities at adjacent scales; see (8) for the separable and (12) for
the quad model. These rate-ratios can be interpreted as intensity
splitting factors and correspond to the percentage of the parent
intensity at a coarse scale node which is distributed to each child
at the next finer scale and, as we have discussed in Section II-B,
they are closely related to wavelet detail coefficients.

This suggests interpreting the variables as repre-
senting the edge detail structure of the image at scale . For
the separable model of Fig. 4, with rate-ratio variables defined
in (8), the value of the variable and the value of the

variables characterizes the image edge
content in the horizontal and vertical orientations, respectively,
for that particular scale and position. In particular, existence of
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Fig. 6. Poisson-Haar image multiscale decomposition. All three trees result in the same parent value � ��� �� at scale � . The difference among them lies in the
formation of the intermediate scale, designed so that the 3 splitting factors � � � � � of (16) are sensitive to image edges at different orientations (horizontal,
vertical, or diagonal).

a step edge in each direction is indicated by significant depar-
ture from 0.5 of the corresponding rate-ratio coefficient. Under
this view, a shortcoming of the separable 2-D model is that
it presents poor orientation selectivity in capturing diagonal
image edges. Unfortunately, the quad model also performs
poorly in this task. More specifically, if all the quad intensity
ratios defined in (12) are equal to 0.25, then the image
is smooth in this region, since the parent splits its intensity
equally to all children at the finer scale. Otherwise, it is not
trivial to succinctly characterize the existence and orientation
of image edges.

To achieve improved orientation selectivity in comparison to
the previous two approaches, we propose a novel multiscale de-
composition for 2-D Poisson processes designed to also explic-
itly model diagonal image edges, which we term Poisson-Haar
decomposition due to its close link to the 2-D Haar wavelet
transform. In the proposed decomposition, similarly to the sep-
arable scheme, we assume that among two scales, and ,
there is an intermediate level. The parent observation
is then considered as the result of two consecutive steps. First,
from the four children of scale two intermediate terms
are produced, which in the second step are summed to give the
parent observation, as shown in Fig. 6. This approach resembles
the way the separable model decomposes the image; however,
there is a critical difference: While in the separable scheme a
single pair of intermediate terms is considered, see Fig. 4, in the
proposed scheme we examine all three possible pair combina-
tions at scale to form the intermediate terms. Each combi-
nation corresponds to a different image decomposition tree and
can capture image edges at different orientations (horizontal,
vertical, or diagonal). The advantage of our scheme is that it
symmetrically considers all 3 orientations, while the separable
scheme can only account for horizontal or vertical orientations.

More specifically, the proposed multiscale scheme is de-
fined recursively as follows. Assume that we observe the
counts . Then the parent observation can
be equally obtained as the sum of any one of the three dis-
tinct pairs of intermediate terms, ,
and , as illustrated in Fig. 6. The three pairs of
terms are produced by convolving with the kernel

pairs , and

, respectively, and then decimating the

result by 2 in each direction. Since every intermediate term is
derived as the sum of independent Poisson random variables,
it will remain Poisson distributed. Thus, the conditional distri-
butions given the parent value , where
is one of and denotes the orientation of each sum in
Fig. 6, will be binomial with corresponding intensity-ratios

(16)

Comparing these rate-ratios to the ones of the 2-D separable
model of (8), we notice that our Poisson-Haar scheme explic-
itly represents not only vertical and horizontal, but also diag-
onal edges. Moreover in this case, as opposed to the separable
and quad schemes there is a direct relation between the rate-
ratios with the 2-D Haar wavelet detail coefficient in the
corresponding subband, similarly to the 1-D case discussed in
Section II-B

In addition, is a re-scaled version of the 2-D Haar
scaling coefficient . Equation (16) implies
that we can employ an equivalent vector representation for the
intensity image , as follows:

(17)

where the vectors are of the form:
. Then each element of

will be considered as an independent realization of
one of the random variables , and .
These variables will be modeled as beta-mixture distributions
(7) following the same reasoning as for the separable scheme.
The image prior distribution, similarly to the quad model,
admits the multiscale factorization of (14), with

(18)
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The choice of an independent prior , across different orien-
tations can be considered as analogous to the independent treat-
ment of the wavelet detail subbands, which is a usual assump-
tion in the wavelets literature.

The reconstruction of from (17) is one-to-one and can
be achieved through a coarse-to-fine scale-recursive procedure,
for ,

(19)

with .

III. BAYESIAN INTENSITY ESTIMATION

In this section we derive an optimal Bayes estimator for the
re-parameterized intensity vector . This estimator minimizes
the Bayesian MSE criterion [23] in the transformed intensity do-
main. Having estimated , it is then straightforward to recover
the intensity image of interest by a scale-recursion, as is (19)
for the proposed Poisson-Haar decomposition scheme (analo-
gous recursions hold for the separable and quad schemes). Note
that other estimators could also be derived under the presented
framework by adopting alternative optimality criteria, e.g., the
MAP criterion.

A. Multiscale Posterior Factorization

Having factorized the prior distributions (6), (14), (18)
and likelihood functions (5), (13) over multiple scales, it
is straightforward to show that the posterior distribution

also admits a multiscale
factorization. The factorization of the posterior implies that
the intensity estimation problem can be solved individually
at each scale and position, instead of requiring a complicated
high dimensional solution. At this point we are going to exploit
the conjugacy between the likelihood function and the prior
distribution to derive the posterior distribution.

By combining the likelihoods (5), (13) and the priors (6), (14),
we obtain the posteriors for the binary and the quad tree decom-
position models in the following forms:

(20)

(21)

Using the identity (can be easily verified by direct substitution)

(22)

where the Polya distribution [29] (also called Dirichlet-multi-
nomial) is defined in Table I, we can write the posterior factors
as mixtures of Dirichlet densities

(23)

Here indicates which mixture component is responsible
for generating the observation and the corresponding
posterior mixture assignment weights equal

(24)
Note that the expressions (23) and (24) also cover the separable
model, in which case the Dirichlet reduces to beta distribution.

In all considered multiscale models, the posterior distribution
of the total intensity could be modeled as gamma dis-
tribution, ,
whose mean is . This result
is obtained by placing a gamma prior on the total intensity, i.e.,

, due to the conjugacy of the Poisson with
the gamma distribution. Such an approach is followed by the
authors in [15]. However, this modeling is not crucial for the
efficiency of the final estimator. The local SNR of the image,
defined as the ratio of the mean pixel value to the standard de-
viation of the pixel value, will equal to
for a 2-D Poisson process at the th scale. As we are reaching
the coarsest scales of analysis, the intensity increases
and so does the SNR. Thus, since the number of counts at the
coarsest scales is large in practice, we have chosen to use the
observed total intensity as a good and reliable estimation of the
underlying total intensity , that is .

B. Posterior Mean Estimation

Having at hand the posterior distribution, we can readily ob-
tain the posterior mean estimator of the re-parameterized inten-
sity . First, we will derive the posterior mean estimator for
the quad model and then we will present the corresponding es-
timates for the separable and the Poisson-Haar multiscale par-
titioning schemes, as they are found to be special cases of the
former. Due to the factorization of the posterior distribution (21)
and the independence assumption of the rate-ratio coefficients

in the prior model of (14), we can find the optimal estimator
for each element of separately as

(25)
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where is the th element of the vector and
.

For the 1-D decomposition the MMSE estimator will be a
special case of (25). The separable estimator for the 2-D image
case is of the same form with the 1-D case and can be ob-
tained by successively processing the rows and the columns of
the image. For more details see [13]. Finally, the optimal esti-
mates for the variables arising in
the proposed Poisson-Haar multiscale model will equal to

(26)
with

(27)
where denotes the first term of each pair of interme-
diate terms discussed in Section II-D and denotes the selected
orientation.

C. Recursive-Estimation and Cycle Spinning

Choosing any one of the three partitioning schemes, allows
us to end up with an optimal estimation for the vector .
Since is a transformation of the intensity image , we obtain
our final estimate for the image of interest, by employing a
scale-recursive algorithm to recover the original image intensity
parameterization. Note that even though the applied transform
is nonlinear, the resulting estimator is still optimal, in the
MMSE sense, and in the image domain (see Appendix B for
the proof). The algorithm starts at the coarser scale of analysis
where and are used to obtain the intensity es-
timators for the next finer scale. For the proposed Poisson-Haar
decomposition scheme the equations which lead us to the next
scale are those in (19) but in place of the ground-truth we
use their estimates. Analogous equations hold for the other two
schemes. This procedure is repeated until we reach the finest
scale of analysis, , where the image of interest lies.

A shortcoming of all discussed tree partitioning schemes is
that the resulting tree structure induces nonstationarity in space.
This is due to the fact that neighboring image pixels might only
share ancestors at very coarse scales of the tree [13], [21], [22].
The induced nonstationarity typically results in block artifacts
in the final estimates. Such effects are also frequently met in
the critically sampled wavelet transform. To alleviate these arti-
facts a commonly used technique is cycle spinning [30], which
can yield significant improvements in the quality of the inten-
sity estimates. This technique entails circularly shifting the ob-
served data, estimating the underlying intensity as described,
and shifting back to the original position. This is repeated for
all possible shifts. The final estimate is produced by averaging
the results over all shifts.

IV. EM-BASED MODEL PARAMETER ESTIMATION

The posterior mean estimates obtained in Section III-B re-
quire knowledge of the model parameters , i.e., the

mixture weights and the beta/Dirichlet mixture parameters gov-
erning the splitting factors . One could consider these
parameters random, assign a hyper-prior on them, and pro-
ceed with the resulting hierarchical Bayesian model [31]. How-
ever, such an approach can be computationally very challenging.
Herein we opt for an empirical Bayes treatment of the problem,
amounting to estimating the parameters for each noisy image
and considering them fixed during the estimation task.

Previous works following the empirical Bayes treatment of
the problem have not addressed satisfactorily the parameter es-
timation problem. The authors in [13] model the random vari-
ables with mixtures of 3 symmetric betas where the
beta parameters are heuristically set for every scale of analysis.
They also assume that one of the mixture weights is known and
they estimate the remaining two by utilizing the method of mo-
ments. Actually, since is assumed to be known and is
constrained to be , only needs to be es-
timated. This method is quite restrictive, being appropriate only
for a setup with at most three mixture components. It also has the
drawback that it often produces inconsistent results, since one of
the mixture weights may take a negative value as has also been
noticed in [16]. A different approach was followed in [16] where
the authors utilize an auxiliary wavelet thresholding denoising
method to obtain an estimate of the splitting factors, on which

is finally fitted with EM. A drawback of this approach is that
since it relies on a denoising method, which does not take into
consideration the Poisson statistics of the image, it is prone to
a potential failure of the auxiliary method. In addition, the per-
formance of the estimation task using the parameters obtained
by this approach is limited, since the resulting estimates of the
splitting factors, by the auxiliary method, differ from the best
possible ones.

To account for these limitations, we pursue an ML estimator
to infer model parameters directly from the observed Poisson
data. Since the multiscale approach allows handling each scale
independently, we drop index for clarity. Also, instead of

, we use the index to denote position, assuming that
we have raster-scanned the observed image at each scale into
a vector of length . The key idea is to integrate-out the
unobserved splitting factors and, thus, relate the model
parameters directly to the observations . Using the identity
(22), this integration can be computed in closed form, yielding
the factorized likelihood function

(28)

where are the Poisson counts of ’s children. For the sep-
arable and the proposed multiscale Poisson-Haar image parti-
tioning, and are the binomial and mix-
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ture of beta distributions with , while for the
quad model they are the multinomial and Dirichlet mixture dis-
tributions, respectively.

The ML parameters maximize the log-likelihood
. Optimizing directly is hard, due to the mul-

tiple mixture components. We, thus, invoke the EM algorithm
[28] and work with the complete log-likelihood. According to
the EM algorithm, a latent M-dimensional binary random vari-
able is assigned to each observation sample . In any in-
stance of only a particular element can equal one, while
all the others must be zero. The element is equal to one
only if the th mixture component of the Polya distribution is
responsible for generating the observations , given the parent
observation . With we denote the set of the discrete mix-
ture component assignments for all the observation samples, i.e.,

. The marginal distribution over each is spec-
ified in terms of the mixture weights, such that

. Based on this notion is considered as the incomplete
log-likelihood and as the complete one.
Now if we suppose that, apart from the observation samples, we
are also given the values of the corresponding latent variables in

, we can express the complete log-likelihood in the form

(29)

This form is much easier to work with since the logarithm does
not act any more on the sums of the mixture components but
directly on the Polya distribution. However, the problem now
is that the true values for the latent variables are unknown. For
this reason, instead of considering the complete log-likelihood,
we compute its expected value under the posterior distribution
of the latent variables. This computation takes place in the ex-
pectation step (E-step) of the algorithm, where the conditional
expectation of the complete likelihood, given the observed data
and the current estimates of the unknown parameters, is of the
form

(30)

where is defined as in (24) and (27)
according to the selected partitioning scheme. Note that the ex-
pected value of the complete log-likelihood (30) consists of two
separate terms. Thus, to estimate the updated model parameters

we can maximize the first term with
respect to , and the second with respect to . This is the maxi-
mization step of the algorithm (M-step). Maximizing (30) with

respect to , under the constraint , yields the up-
dated mixture weights

(31)

In order to obtain the updated parameters we first have
to compute the partial derivative of the log-likelihood (30) with
respect to

(32)

where is the digamma function [32] defined as
and the superscript , with

for the quad model and for the other two partitioning
models, denotes the th element of the corresponding vector.
The updated parameters can be found by setting (32) equal to
zero and solving for . Unfortunately this equation is non-
linear so we cannot obtain a closed form solution for the pa-
rameters. Further, the Polya distribution does not belong to the
exponential family of distributions; thus, it does not have suf-
ficient statistics [33]. Therefore, in order to find a solution we
have to resort to an iterative method. At this point, note that a
similar equation to (32) also arises in other research areas such
as text and language modeling [34], [35] and DNA sequence
modeling [36]. In these cases the authors in order to find a solu-
tion either employ a gradient descent method or the fixed-point
iteration method proposed in [37].

For finding the root of (32) we propose a novel technique
which employs the Newton-Raphson method [38]. A problem
that conventional techniques encounter is that for images with
flat cartoon-like content, the histogram of splitting factors is
strongly peaked (at 0.25 for the quad model and 0.5 for the sep-
arable and our Poisson-Haar partitioning scheme), resulting in
very large parameters. The ML criterion then can lead to
over-fitting, with the largest of the parameters unboundedly
increasing at every EM iteration (the corresponding beta mix-
ture is increasingly peaked at 0.5). Numerically finding the very
large root of the log-likelihood derivative (32) also becomes un-
stable and time consuming. To address this issue we have added
a regularization term in (30), where is
a small positive constant. With this approach, even for large
values of , we succeed in finding a root in the regularized
version of (32) and consequently a maximum for the penalized
version of (30). Furthermore, for small and medium values of

, the root of the regularized version of (32) would only neg-
ligibly differ from the original one, as illustrated in Fig. 7. This
regularization term can also be interpreted as specifying a con-
jugate prior for and leads to a MAP instead of the standard
ML estimation in the M-step of the algorithm [28] (for details
see Appendix C). The resulting penalized EM algorithm is ex-
tremely robust in practice.
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Fig. 7. Log-likelihood partial derivative with respect to the symmetric beta parameter� and its regularized version. The three plots correspond to the components
with small (left), medium (center), and large (right)� parameters. Regularization effectively bounds the root of the largest parameter component, while essentially
leaving the other two roots intact.

The EM algorithm needs to be properly initialized. To render
our parameter estimation algorithm fully automatic, we have de-
veloped a bootstrapping technique. Specifically, we start with a
single-component density whose parameters are fitted by ML.
Then the number of mixtures is incremented up to the desired
number. This is achieved by repeatedly splitting the mixture
with the largest total assignment weight .
Each split yields two mixture components whose initial param-
eters are perturbed versions of their generating component. In
case that reasonable initial parameters from training on similar
images are available, one can use them instead as initial condi-
tion to accelerate training.

V. MODELING INTERSCALE DEPENDENCIES WITH HIDDEN

MARKOV TREES

In Section II we modeled the splitting factors, , as inde-
pendent mixtures of beta/Dirichlet random variables across
scales, yielding the factorized prior in the form of (6),
(14), and (18). Often this independence assumption across
scales may be too simplistic, limiting the performance of the
models adopting it. To address this issue, we can integrate into
the multiscale Poisson decomposition framework the HMT
model, first introduced in the context of signal denoising in
[19], which better models interscale dependencies between
mixture assignments and can, thus, provide additional benefits
in the intensity estimation process. Adopting the HMT allows
us to capture the intrinsic hierarchical structure of the data and
at the same time exploit efficient scale-recursive tree-structured
algorithms. While using the HMT model in conjunction with
photon-limited imaging has been previously suggested by
[20], its wider adoption in this context has been hindered so
far by lack of a satisfactory solution to the model parameter
estimation problem. We address this shortcoming by extending
our EM-based technique of Section IV to the HMT case.

The HMT model is similar to the hidden Markov model
(HMM) which is widely adopted in speech analysis [39]. The
HMT models the interscale dependencies between the splitting
factors indirectly, by imposing a Markov tree dependence
structure between the mixture assignments represented by the
discrete latent variables , defined in Section IV. More specif-
ically, let be the vector of HMT parameters
corresponding to prior root node state probabilities, interscale
state transition probabilities, and parameters for each mixture,
respectively. Also let index the nodes of the quad-tree,

where is the root node, is the last node of the
finest scale, is ’s parent and is the
vector of ’s children. The adopted model satisfies the key
conditional independence property that is independent of

given . It is also assumed that given the latent
variables all the observation samples are mutually independent.
Based on these assumptions the a priori probability of the
hidden state path can be expressed as

(33)

while the conditional likelihood as

(34)

where ,
and denotes the level of the tree for the corre-

sponding node. Equation (34) relates the model parameters di-
rectly to the noisy observations in vector resulting in a Polya-
mixture distribution, exactly as in Section IV.

Having at hand the expressions for the prior probability of the
latent variables and the conditional probabilities of the observa-
tion samples given the latent variables, we can find an expres-
sion for the complete log-likelihood useful for EM-based
training

(35)

As we can observe the complete log-likelihood is in a separable
form with respect to the model parameters; thus, we can find
each parameter by simply maximizing the corresponding term.
However, as in the previous section, we do not know the values
of the latent variables. Once again the standard approach is to
maximize the expected value of with respect to the pos-
terior distribution of the latent variables. So in the E-step we use
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Fig. 8. Set of test images used for numerical comparisons among algorithms. The images are, from left to right, Lena, Barbara, Boat, Fingerprint, and Cameraman.

the current estimate of the model parameters to find the pos-
terior distribution and use this value to compute the expectation
of the complete data likelihood, as a function of the parameters

. The conditional expectation of the complete log-likelihood
estimated in the E-step, will be of the form

(36)

Note that in the HMT case observations from all scales are
processed as a whole, in contrary to the independent case
where only the observations from a single scale are consid-
ered each time. Utilizing the upward-downward algorithm
[19] we can efficiently compute the conditional probability

which is also required in the poste-
rior mean estimates of (25) and (26), as well as the joint state
probability .
Then in the M-step new estimates for the parameters of the
model are obtained. Treating and is done as in [19], while
maximizing (36) with respect to is done exactly as in
the independent case we discussed in Section IV. Regularizing
the solution is similarly important to achieve robustness.

At this point we note that in the case of our novel multiscale
Poisson-Haar image partitioning presented in Section II-D,
we employ three independent HMTs to model the interscale
dependencies of horizontal, vertical and diagonal rate-ratio co-
efficients. Specifically, each HMT is responsible for modeling
the dependencies of one of the , and variables across
the scales. In addition, the children vector appearing in the
Polya distribution will consist of the terms from the interme-
diate scales, i.e., with denoting a particular
orientation and taking one of the values . These terms
are obtained as discussed in Section II-D and their sum results
in the parent observation sample . Analogously, for the
separable scheme we employ two HMTs, one modeling the
interscale dependencies of the variables in the horizontal
orientation and one for modeling the interscale dependencies
of the variables in the vertical orientation. Finally,
for the quad scheme we use only one HMT which models the
dependencies of the random vector . Employing independent
HMTs as done for the first two schemes is also common in

the 2-D wavelet transform case where an HMT is used for the
wavelet coefficients at each subband orientation [40].

VI. EXPERIMENTS AND APPLICATIONS

In order to validate the effectiveness of our proposed intensity
estimation methods, we provide experimental comparisons with
other competing image denoising methods. The methods under
comparison belong to two different classes. In Section VI-A
we compare denoising methods which are designed explicitly
for dealing with Poisson data, as it also holds for our proposed
schemes, while in Section VI-B we provide comparisons with
methods which initially preprocess the Poisson data by variance
stabilizing transforms (VST) in order to transform the noise sta-
tistics, and then apply denoising methods designed for handling
homogeneous Gaussian additive noise.

All the comparisons have been performed on a set of five
8-bit gray scale standard test images, shown in Fig. 8. Their
size is 512 512, apart from the ‘Cameraman’ image whose
size is 256 256 pixels. The performance of the algorithms
under comparison was examined at seven different intensity
levels, corresponding to varying SNR values of Poisson noise.
Specifically each image was scaled to have a maximum inten-
sity of (1, 2, 3, 4, 5, 10, 20). Then the realizations of photon
counts were simulated by using a Poisson random number
generator. Since Poisson noise is signal dependent with local

, the noise level increases as the intensity
of the image decreases. The mean intensity for each selected
maximum intensity, for all test images, varies in the range
of (0.47–0.56, 0.94–1.11, 1.40–1.67, 1.88–2.22, 2.35–2.78,
4.70–5.55, 9.40–11.10), respectively, covering a wide range of
noisy conditions.

A. Comparisons With Bayesian Methods Specifically Tailored
for Poisson Data

In this section we compare the performance of the proposed
intensity estimation algorithms with the Poisson denoising
methods of Timmerman and Nowak (TN) [13] and of Lu,
Kim and Anderson (LKA) [16]. Both methods adopt a mul-
tiscale Bayesian framework for photon-limited imaging (see
Section II-B), differing in the parameter estimation method as
described in Section IV.

All reported experiments were obtained following a mul-
tiscale analysis until reaching a 16 16 pixel image at the
coarsest scale and refer to the shift-invariant versions of the re-
spective methods. These shift-invariant versions were obtained
by averaging 16 in the case of the 256 256 Cameraman
image and 32 for all other 512 512 images out of all possible
circularly shifted image estimates, except for the LKA method,
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TABLE II
PHOTON-LIMITED INTENSITY ESTIMATION USING 3-MIXTURE DISTRIBUTIONS. THE METHODS UNDER COMPARISON ARE THE TN [13] AND

LKA [16] METHODS AND ALL THE VARIANTS OF OUR PROPOSED METHODS. THE RESULTS ARE PRESENTED IN TERMS OF

PSNR (dB) FOR VARIOUS PEAK INTENSITIES CORRESPONDING TO DIFFERENT POISSON NOISE LEVELS

where we used 64 circular shifts exactly as described in [16].
From our experience, using more shifts results to negligible im-
provements compared to the extra computational time needed.
Further, since the method in [13] can only handle parameter
estimation of at most three symmetric-mixture components,
we also use in the following experiments three component
symmetric mixture densities for direct comparisons among the
models. However, our methods can equally well be applied to
estimate more flexible nonsymmetric densities and an arbitrary
number of mixture components, only limited by computational
cost considerations and the amount of training data.

The quality of the resulting images from all methods is in
terms of Peak Signal to Noise Ratio (PSNR) measured in dB
and defined as where by “peak” we
denote the maximum intensity of the original clean image and
MSE is the mean squared error between the restored image
and the original one. In Table II the results for all test images,
noisy conditions and all considered methods are presented.
The PSNR is estimated using 10 independent trials in each
case, in order for the performance comparisons to be less
biased. As we can clearly see from the results, using the model
parameters obtained fully automatically by our EM methods

(with bootstrapping) with the proposed algorithms consis-
tently yields quantitatively better results than the considered
competing techniques. Specifically, our independent mixture
models Sep-IND (separable), Quad-IND (quad), and PH-IND
(Poisson-Haar), give on average for each image and all noisy
conditions roughly 0.5–1 dB improvement over the best results
of TN [13] and LKA [16]. Modeling scale dependencies with
our Sep-HMT, Quad-HMT, and PH-HMT HMT-based models
gives a further 0.5 dB improvement. Regarding the comparison
between our corresponding separable, quad, and Poisson-Haar
variants, in the case where we infer the parameters at each
scale independently, the quad and Poisson-Haar model perform
about the same and slightly better than the separable one.
However, when we examine the corresponding HMT-models,
the PH-HMT, is superior giving an average improvement of ap-
proximately 0.25 dB over the other HMT variants. The efficacy
of our methods relative to the alternative techniques can be
visually appreciated from the representative Cameraman and
Boat denoising examples shown in Figs. 9 and 10. In the first
figure, we present the denoised Cameraman images produced
by the competing methods TN and LKA and our Quad-HMT
variant while in the second one we present the TN, LKA, and
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Fig. 9. Results on Cameraman image with peak intensity 20 and simulated
Poisson noise. The mean number of counts per pixel in the noisy image is 9.4.
Close-up of (a) Noisy image ����� � ���	
�, (b) our Quad-HMT result
����� � 	��	��, (c) TN result [13] ����� � 	
����, (d) LKA result [16]
����� � 	
����.

our PH-HMT results for the Boat image. From these figures,
we can clearly see that the proposed methods remove the noise
in a more efficient manner and at the same time minimize
blurring artifacts relative to the other methods. In addition,
from Fig. 10, we can also verify the ability of the proposed
Poisson-Haar model to better retain the edge structure of the
image, due to its improved orientation selectivity. Concerning
the number of used mixture-components, repeating the same
experiments (results not fully reported here) using a single mix-
ture component results in a degradation of the performance of
about 1.5–2 dB, while using two mixtures presents a reduction
of just 0.15–0.2 dB relative to the three mixture case. Further,
using four mixtures only slightly increases performance.

Regarding the computational cost, we have measured for the
Cameraman image at peak intensity 20 the run time for all tested
methods. The fastest is the TN method with 8 s, while LKA
needs about 60 s. Concerning the proposed methods the com-
putational time for fully automatic training using unoptimized
MATLAB code is 58 s and 45 s for the Quad-IND and Quad-
HMT, respectively, 89 s and 80 s for the Sep-IND and Sep-HMT
and 115 s and 92 s for the PH-IND and PH-HMT. We note that
for the HMT variants no bootstrapping is used, instead the es-
timated parameters of the corresponding independent models
serve as initial EM parameters. A significant speed-up for just
a small performance loss can be achieved using two mixtures.
Computational cost can be also reduced by setting directly ini-
tial EM parameters, based on previous knowledge from training
on similar images.

Fig. 10. Results on Boat image with peak intensity 10 and simulated Poisson
noise. The mean number of counts per pixel in the noisy image is 5. Close-up of
(a) Noisy image ����� � �	�

�, (b) our PH-HMT result ����� � 	�����,
(c) TN result [13] ����� � 	
�	��, (d) LKA result [16] ����� � 	
����.

B. Comparisons With VST-Based Methods

In this section we provide comparative results of our best-per-
forming method, Poisson-Haar HMT model, with VST methods
employing current state of the art denoising algorithms. Fol-
lowing the VST approach, we first stabilize the noisy data, ,
with the Anscombe transform [4] and obtain the approximately
Gaussian data, . The stabilized image is
denoised with a method designed for handling Gaussian data,
and then we obtain the final image estimate through the inverse
Anscombe transform, . Note that the mis-
match between the inverse Anscombe transform and the alge-
braic inversion formula , compensates
for the bias in the mean introduced by the forward transform
[4]. As Gaussian denoising techniques within the VST frame-
work we employ two alternative state-of-the-art denoising al-
gorithms. The first is the Bayes least squares Gaussian scale
mixture (BLS-GSM) method [41] which is a parametric tech-
nique and the second is the block-matching and 3D filtering
(BM3D) algorithm [42], belonging to the class of recent non-
local, nonparametric techniques. We additionally provide com-
parisons of our Poisson-Haar HMT method with the multiscale
VST method of [8]. As before, all results have been obtained
using 10 independent trials.

From the results presented in Table III, we note that our
method in the low-level counts case (low SNR) almost always
performs better than BLS-GSM and BM3D. This is expected
since the Anscombe VST Gaussian noise approximation is
quite poor in the low SNR regime. For the case of mid-level
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TABLE III
DENOISING PERFORMANCE COMPARISON OF OUR PH-HMT METHOD WITH TWO VST-BASED METHODS WHICH USE THE BLS-GSM [41] AND

BM3D [42] TECHNIQUES AS GAUSSIAN DENOISING SUB-ROUTINES. THE RESULTS ARE PRESENTED IN TERMS OF PSNR (dB) FOR

VARIOUS PEAK INTENSITIES CORRESPONDING TO DIFFERENT POISSON NOISE LEVELS

counts for nontexture images, our method is still comparable
providing similar results or even better than BLS-GSM. A
difference of performance appears for the last two images,
Barbara and Fingerprint, and can be attributed to the rich tex-
ture information of their content which our algorithm does not
fully exploit; on the other hand, nonlocal denoising algorithms
such as the BM3D are particularly effective in making good
use of periodic patterns dominating texture images. Finally,
at higher intensity levels (high SNR) the stabilizing transform
leads to data that more closely follow Gaussian statistics, and,
thus, BLS-GSM and BM3D perform better than the proposed
technique.

Beyond the PSNR comparison, in order to give a sense of the
typical qualitative behavior of the proposed method relative to
the two VST-based techniques, we present in Fig. 11 compara-
tive denoising results on the Lena image degraded by simulated
Poisson noise with peak intensity 5, focusing on the person’s
face. One can see in this example that, despite the fact that our
proposed method gives a lower PSNR score, it introduces fewer
visual artifacts than the other two techniques. This property of
our method is important in applications like astronomical and
medical imaging where it is crucial that the denoising process is
as faithful as possible to the visual content of the original image.

Regarding the computational cost of the VST-based tech-
niques using either the BM3D or BLS-GSM methods as
Gaussian denoising sub-routines, we have measured as in Sec-
tion VI-A the execution time for the Cameraman image at peak

intensity 20. The fastest execution was achieved by BM3D, 3s
with optimized MATLAB/MEX code, while the run time for
BLS-GSM was 18s.

Finally, we also provide comparisons of our PH-HMT
method with the best of the MS-VST results on four different
images reported in [8]. Since software implementing their
technique is not yet available, we have applied our method at
only the intensity level reported for each figure in [8]. More-
over, to allow direct comparisons, we use the same normalized
mean integrated square error (NMISE) as quality metric,

, where is the esti-
mated intensity. In the results shown in Table IV, our PH-HMT
method performed better than MS-VST in 3 out of the 4 images,
indicating that it is competitive with state-of-the-art VST-based
methods.

C. Application to Astronomical and Medical Imaging

Our interest in intensity estimation of inhomogeneous
Poisson processes is motivated by the problem of photon-lim-
ited imaging. Data acquired in low light conditions are com-
monly met in astronomical and medical imaging. These images
often suffer from quantum or shot noise due to the variability
of the detected photon counts during the image acquisition. In
such cases the detected counts can be well modeled as arising
from a temporally homogeneous and spatially inhomogeneous
Poisson process. In this section, in order to assess the potential
of our proposed methods in real-world applications, we are

Authorized licensed use limited to: National Technical University of Athens. Downloaded on July 12, 2009 at 14:34 from IEEE Xplore.  Restrictions apply.



1738 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 18, NO. 8, AUGUST 2009

Fig. 11. Results on Lena image with peak intensity 5 and simulated Poisson
noise. The mean number of counts per pixel in the noisy image is 2.5. Close-up
of (a) Noisy image ����� � ����	, (b) our PH-HMT result ����� �

����	, (c) BM3D result [42] ����� � 

��
	, (d) BLS-GSM result [41]
����� � 

��
	. Note that, despite the fact that the proposed method gives a
lower PSNR score, it introduces fewer visual artifacts that the two VST-based
techniques.

presenting intensity estimation results from photon-limited
astronomical and nuclear medical images. For each image we
illustrate the indicative estimate obtained by only one of our
proposed methods even though all of them produce comparable
results.

In Fig. 12, the raw data counts along with the image es-
timates for two nuclear medicine images obtained from [43],
are presented. Fig. 12(a) depicts the raw counts of an abdomen
image while 12(b) presents the image estimate derived by ap-
plying our Quad-HMT model. The mean number of counts in
the raw image is 3.5. This implies that the degradation of the
image is significant, a fact that can be also verified visually.
Fig. 12(c) shows the raw data counts from a chest image. In
this case the mean number of counts is 5.4. Fig. 12(d) depicts
the intensity image estimate obtained by applying the proposed
PH-HMT model. From the presented figures we see that the pro-
posed models succeed in improving the quality of the degraded
images and at the same time preserve the image structures. In
Fig. 13, two astronomical images with low level counts obtained
from [44], are presented with their corresponding intensity esti-
mates. Fig. 13(a) and (b) shows the photon limited version and
the image estimate by the Sep-HMT model of the Messier 100
spiral galaxy, also known as NGC 4321. In Figs. 13(c) and (d),
the photon limited version of the galaxy M51A along with the
image estimate by the PH-HMT model is depicted. In both cases
we can conclude that our models perform satisfactorily and con-
siderably improve the visual quality of the original raw ones
without affecting important structural details.

Fig. 12. Nuclear medicine image estimation. (a) Abdomen raw data counts,
(b) image intensity estimation by the proposed Quad-HMT model, (c) chest raw
data counts, (d) image intensity estimation by the proposed PH-HMT model.

TABLE IV
DENOISING PERFORMANCE IN TERMS OF NMISE (SMALLER VALUE INDICATES

BETTER PERFORMANCE) ON FIGS. 3 (SPOTS), 4 (GALAXY), 6 (BARBARA), AND

7 (CELLS) FROM [8]. WE COMPARE OUR PH-HMT RESULT WITH

THE BEST OF THE MS-VST RESULTS REPORTED IN [8]

VII. DISCUSSION AND CONCLUSIONS

In this paper we have presented an improved statistical model
for intensity estimation of Poisson processes, with applications
to photon-limited imaging. We have built on previous work,
adopting a multiscale representation of the Poisson process
which significantly simplifies the intensity estimation problem.
Extending this framework, we have provided an efficient and
robust algorithm to infer the necessary model parameters
directly from the observed noisy data. These parameters are
crucial for the efficacy of the model as we demonstrated ex-
perimentally. We have further proposed a novel multiscale
representation which better models the image edge structure at
different orientations, thus yielding further improvements. We
also considered refined versions of these multiscale schemes
that take into account dependencies across scales, instead of
considering each scale of analysis as independent to the others.
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Fig. 13. Astronomical image estimation. (a) Photon limited image of Messier
100 spiral galaxy, (b) image intensity estimation by the proposed Sep-HMT
model, (c) photon limited image of M51A galaxy, (d) image intensity estima-
tion by the proposed PH-HMT model.

We extended our parameter estimation methods to also work
with this HMT case.

The performance and practical relevance of the proposed
inference methods and the Poisson-Haar multiscale represen-
tation scheme has been illustrated through comparisons with
state-of-the art methods, where our proposed techniques have
shown to produce competitive results, especially in the case
of low level counts. Finally, we have applied our proposed
methods to photon limited imaging problems and in particular
to astronomical and nuclear medical imaging. The results we
have obtained are quite satisfactory. In our future work we
intend to investigate whether the discussed models and methods
can be applicable to related problems such as image feature
detection and segmentation under low light conditions.

APPENDIX A
DERIVATION OF POISSON LIKELIHOOD FACTORIZATION

ON THE QUAD-TREE

Let us assume that the image at the finer scale of anal-
ysis is raster-scanned into a vector of size , that is

.
Since all the random variables are assumed condition-
ally independent, the likelihood function can be written
as

(37)

In addition, since at every scale of analysis the produced obser-
vations correspond to the observation samples of condi-
tionally independent Poisson random variables , it will
also hold that

(38)

which results in

(39)

The Poisson likelihood, with the help of (38) and (39) can be
re-written as

(40)

Following the same procedure iteratively on the second product
term of the right hand-side, we finally obtain

(41)

with

����
���� �������� ��� ������� ��� � �������

���� �������� ��� ������� ����

We have, thus, proved the factorization of the likelihood over
multiple scales.

APPENDIX B
EQUIVALENCE OF MMSE ESTIMATION IN THE IMAGE AND

THE TRANSFORMATION DOMAIN

In this section we prove the equivalence between the MMSE
estimation in the image and the transformation domain. The
proof concerns the 1-D estimator, but extends analogously to
the 2-D estimator.

Let us indicate by the one-to-one map-
ping of the N-sized intensity vector in the image domain with
the re-parameterized vector in the transfor-
mation domain, where ,

, and equals to either or
with being the ancestor of the pixel in scale . Based on
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this notation and the factorization property of the posterior dis-
tribution in (20) we can express the posterior estimator
for each component of , as

(42)

We have, thus, proved the equivalence on the MMSE estima-
tion for a specific element of , in the image and the trans-
formation domain. This implies the general equivalence

.

APPENDIX C
PENALIZED EM ESTIMATION

In this section we assume that the splitting factors obey a
Dirichlet-mixture distribution, which also covers the beta distri-
bution as a special case.

The Dirichlet distribution belongs to the exponential family
and, thus, can be written in the standard form [26]

(43)

with

where

...

and

...

Since for any member of the exponential family there exists a
conjugate prior that can be written in the form

(44)

a suitable conjugate prior distribution for the parameters of
the Dirichlet is

(45)

Adding the resulting log-prior term to the com-
plete log-likelihood (29) yields the MAP (penalized ML) in-
stead of the standard ML solution [28]. This amounts to adding
to the right hand side of (30) the penalty

(46)

By selecting and , we obtain the simplified reg-
ularization term which provides us with a
robust solution in the optimization problem at the M-step of the
EM algorithm.
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