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Abstract—Face presentation attack detection (PAD) is essential
to secure face recognition systems primarily from high-fidelity
mask attacks. Most existing 3D mask PAD benchmarks suffer
from several drawbacks: 1) a limited number of mask identi-
ties, types of sensors, and a total number of videos; 2) low-
fidelity quality of facial masks. Basic deep models and remote
photoplethysmography (rPPG) methods achieved acceptable per-
formance on these benchmarks but still far from the needs of
practical scenarios. To bridge the gap to real-world applications,
we introduce a large-scale High-Fidelity Mask dataset, namely
HiFiMask. Specifically, a total amount of 54,600 videos are
recorded from 75 subjects with 225 realistic masks by 7 new
kinds of sensors. Along with the dataset, we propose a novel
Contrastive Context-aware Learning (CCL) framework. CCL is
a new training methodology for supervised PAD tasks, which is
able to learn by leveraging rich contexts accurately (e.g., subjects,
mask material and lighting) among pairs of live faces and
high-fidelity mask attacks. Extensive experimental evaluations on
HiFiMask and three additional 3D mask datasets demonstrate
the effectiveness of our method. The codes and dataset will be
released soon.

Index Terms—Face anti-spoofing, High-Fidelity Mask, Con-
trastive Context-Aware Learning.

I. INTRODUCTION

ACE presentation attack detection (PAD) aims to secure
a face recognition system from malicious presentation
attacks (PAs), such as print attacks [1], video replay at-
tacks [2], and 3D Mask attacks [3]. In recent years, face
PAD approaches [4]-[10] for 2D attacks have made great
progress, benefiting from the release of several large-scale,
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Fig. 1. Performance of ResNet50 [24] and GrPPG [25] on
3DMAD [14], MARsV2 [26] and our proposed HiFiMask datasets.
Despite satisfying mask PAD performance on 3DMAD [14] and
MARsV2 [26], these methods fail to achieve convincing results on
HiFiMask.

multi-modal and high-quality benchmark datasets [4], [11]-
[13]. However, with the maturity of 3D printing technology,
face mask has become a new type of PA to threaten face
recognition systems’ security. Compared with traditional 2D
PAs, face masks are more realistic in terms of color, texture,
and geometry structure, making it easy to fool a face PAD
system designed based on coarse texture and facial depth
information [4]. Fortunately, some works have been devoted
to 3D mask attacks, including design of datasets [14]-[18] and
algorithms [19]-[23].

In terms of the composition of 3D mask datasets, several
drawbacks limit the generalization ability of data-driven al-
gorithms. From existing 3D mask datasets shown in Tab. I,
one can see some of these drawbacks: (1) Bias of identity.
The number of mask subjects is less than the number of
real face subjects. Even for some public datasets as [17],
[20], [28], [29], the mask and live subjects correspond to
completely different identities, which may produce the model
to mistake identity as a discriminative PAD-related feature; (2)
Limited number of subjects and low skin tone variability.
Most datasets contain less than 50 subjects, with low or
unspecified skin tone variability; (3) Limited diversity of
mask materials. Most datasets [14], [22], [26]-[30] provide
less than 3 mask materials, which makes it difficult to cover the
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TABLE I
COMPARISON OF THE PUBLIC 3D FACE ANTI-SPOOFING DATASETS. ‘Y’, ‘W’, AND ‘B’ ARE SHORTHAND FOR YELLOW, WHITE, AND BLACK,
RESPECTIVELY. ‘SUB.’, ‘MASK ID.” AND ‘LIGHT. COND.” DENOTE ‘LIVE SUBJECTS’, ‘MASK IDENTITY NUMBERS’ AND ‘LIGHTING CONDITION’,
RESPECTIVELY. NUMBER WITH ‘*’ DENOTES THIS NUMBER IS STATISTICALLY INFERRED AND THERE MAY BE INACCURACIES.

. . . . #Videos
Dataset, Year Skin tone #Sub. #Mask Id. Material Scenes Light. Cond. Devices (#Live/#Fake)
3DMAD, [14] W/B 17 17 Paper, hard resin Controlled Adjustment Kinect 255(170/85)
3DFS-DB, [27] Y 26 26 Plastic Office Adjustment Kinect, Carmine 1.09 520(260/260)
Silicone, Plastic Disguise L
BRSU, [20] Y/W/B 137 6 Resin, Latex Counterfeiting Adjustment. SWIR, Color 141(0/141)
| . Room light, Low light Logitech C920, EOS M3,
MARsV2, [26] | Y 12 12 ThatsMy Face Office Bright light, Warm light | Nexus 5, iPhone 6 (150(?550 "
Side light, Up side light Samsung S7, Sony Tablet S
SMAD, [28] Online Online Silicone varying lighting Varying cam. 130(65/65)
. Visible 1350
MLFP, [29] W/B 10 7 Latex, Paper Indoor, Outdoor Daylight Near infrared, Thermal (150/1200)
. .. . Xenics Gobi, thermal cam.
ERPA, [30] W/B 5 6 Resin, Silicone Indoor Room light Intel Realsense SR300 86
Plastic Office light Intel RealSense SR 300 1679
*
WMCA, [17] YIW/B 72 7 Silicone, Paper Indoor LED lamps, day-light Seek Thermal, Compact PRO. (347/1332)
Normal light, Back light .
511;&2/21;5[[}21{2}]: Y 48 48 Plaster Indoor, Outdoor Front light, Side light /Skfrglseljnﬂuawel (1218582/8 64)
’ Sunlight, Shadow e
—— . White, Green NormalLight, DimLight iPhonel1, iPhoneX

zgﬁi\,’)[“;':)z] Y/W/B 75 75 gl‘::‘[;‘;‘“l:::m Tricolor, Sunshine | BrightLight, BackLight | MII0, P40, $20 (5143’660500 140,950)

o T Shadow, Motion SideLight, TopLight Vivo, HIIM ’ ’

attack masks that attackers may use; (4) Few scene settings.
Most datasets [14], [26], [27], [30] only consider single
deployment scenarios, without covering complex real-world
scenarios; (5) Controlled lighting environment. Lighting
changes pose a great challenge to the stability of rPPG-based
PAD methods [25]. However, all existing mask datasets avoid
this by setting the lighting to a fixed value, i.e., daylight,
office light; (6) Obsolete acquisition devices. Many datasets
use outdated acquisition devices regarding the resolution and
imaging quality. To alleviate previous issues, we introduce
a large-scale 3D High-Fidelity Mask dataset for face PAD,
namely HiFiMask. As shown in Tab. I, HiFiMask provides 25
subjects with yellow, white, and black skin tones to facilitate
fair artificial intelligence (AI) and alleviate skin-caused biases
(a total of 75 subjects). Each subject provides 3 kinds of high-
fidelity masks with different materials (i.e., plaster, resin, and
transparent). Thus, a total of 225 masks are collected. In terms
of recording scenarios, we consider 6 scenes, including indoor
and outdoor environments with extra 6 directional and periodic
lighting. As for the sensors for video recording, 7 mainstream
imaging devices are used. In total, we collected 54, 600 videos,
of which the live and mask videos are 13,650 and 40, 950,
respectively.

For 3D face PAD approaches, both appearance-based [17],
[22], [31], [32] and remote photoplethysmography (rPPG)-
based [21], [33], [34] methods have been developed. As
illustrated in Fig. 1, although both appearance-based method
ResNet50 [24] and rPPG-based method GrPPG [25] perform
well on 3DMAD [14] and HKBU-MARs V2 (briefly named
MARsV2) [26] datasets, these methods fail to achieve high
performance on the proposed HiFiMask dataset. On the one
hand, the high-fidelity appearance of 3D masks makes it harder
to be distinguished from the bonafide. On the other hand,
temporal light interference leads to pseudo ‘liveness’ cues
for even 3D masks, which might confuse the rPPG-based
attack detector. To tackle the challenges about high-fidelity
appearance and temporal light interference, we propose a novel
Contrastive Context-aware Learning framework, namely CCL,

which learns discriminability by comparing image pairs with
diverse contexts. Various kinds of image pairs are organized
according to the context attribute types, which provide rich and
meaningful contextual cues for representation learning. For
instance, constructing face pairs from the same identify with
both bonafide (i.e., skin material) and mask presentation (i.e.,
resin material) could benefit the fine-grained material features
learning. Due to the significant appearance variations between
some ‘hard’ positive pairs, the proposed CCL framework’s
convergence might sometimes be unstable. To alleviate the in-
fluence of such ‘outlier’ pairs and accelerate convergence, the
Context Guided Dropout module, namely CGD, is proposed
for robust contrastive learning via adaptively discarding parts
of unnecessary embedding features. Our main contributions
are summarized as follows:

o A large-scale 3D high-fidelity mask face PAD dataset
named HiFiMask is released. Compared with public 3D
mask datasets, HiFiMask has several advantages, such
as realistic masks and amount of data in the term of
identities, sensors and videos. Specifically, It consists of
54,600 videos, 75 subjects with 3 kinds of high-fidelity
masks, which is larger at least 16 times than the existing
datasets in terms of data amount.

e We propose a novel Contrastive Context-aware Learning
(CCL) framework to efficiently leverage rich and fine-
grained context between live and mask faces for discrim-
inative feature representation.

o Extensive experiments conducted on the HiFiMask and
three other public 3D mask datasets demonstrate the
challenges of HiFiMask and the effectiveness of the
proposed method.

II. RELATED WORK
A. 3D Mask Datasets

Recently, several 3D mask face PAD datasets have been
released. As listed in Tab. I, 3DMAD [14] is the first publicly
available 3D mask dataset, which consists of 255 videos from
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17 subjects, and the masks are made of paper and hard resin.
Subsequent datasets 3DFS-DB [27], HKBU-MARs V2 [26],
and BRSU Skin/Face/Spoof (briefly named BRSU) [20] im-
prove previous drawbacks in terms of acquisition devices,
mask types, and lighting environment. The recent CASIA-
SURF 3DMask (briefly named 3DMask) [22] has a large num-
ber of videos under various lighting conditions using various
recording sensors. Still, it has a limited number of subjects
and mask types. Besides common RGB modality, several
multi-modal mask datasets such as MLFP [29], ERPA [30],
and WMCA [17] extend the study from visible light to
near-infrared and thermal spectrums. Overall, there are three
main limitations of existing 3D mask datasets: 1) a limited
number of samples, resulting in potential overfitting; 2) lack
of clear attribute information (e.g., skin tone and lighting) for
evaluating the impact of external factors; and 3) the masks are
not realistic enough in terms of color texture and structure, and
they are recorded under stable lighting conditions.

B. Face PAD Approaches based on 3D Mask Datasets

Compared with 2D presentation attacks, 3D mask attacks
are more realistic to live faces in terms of depth shape
and color texture. On the temporal side, several rPPG-based
methods [21], [25], [34], [35] are proposed according to the
evidence that periodic rPPG pulse cues could be recovered
from the live faces but noisy for the mask attacks. Li et al. [25]
was the first to leverage the facial rPPG signals’ frequency
statistics for mask attacks detection. Liu et al. [21], [34],
[35] combined both local rPPG signals and global background
noises to learn consistent rPPG features for mask PAD.

As for metric learning-based PAD approaches, contrastive
loss [36] and triplet loss [37], [38] are utilized to widen the
distance between the live faces and PAs. Recently, contrastive
learning [39]-[42] achieved outstanding performance in self-
supervised generic object classification. In [43], supervised
contrastive learning is proposed for boosting performance
upon using basic cross-entropy loss. Despite with similar
design philosophy, the proposed CCL is different from [43]
in both data pair generation and dropout regularization steps.

The approaches as mentioned above might be unreliable
under the following situations: 1) high-fidelity mask attack
with realistic appearance; 2) dynamic light flashing to disturb
rPPG recovery; 3) metric learning-based constraints obtain
unsatisfactory performance in PAD tasks; and 4) existing self-
supervised or supervised contrastive learning approaches are
not suitable for fine-grained binary classification task like
3D mask PAD. To tackle these issues, we propose a con-
trastive context-aware learning framework to explicitly mine
the discriminative features among bonafide/mask appearance
and complex scenarios.

III. HIFIMASK DATASET

Given the shortcomings of the current mask datasets, we
carefully designed and collected a HiFiMask dataset, which
provides 5 main advantages over previous existing datasets.
Advantage 1: To the best of our knowledge, HiFiMask
is currently the largest 3D face mask PAD dataset, which
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Fig. 2. Samples from the HiFiMask dataset. The first row shows 6 kinds of
imaging sensors. The second row shows 6 kinds of appendages, among which
E, H, S, W, G, and B are the abbreviations of Empty, Hat, Sunglasses, Wig,
Glasses, and messy Background, respectively. The third row shows 6 kinds
of illuminations, and the fourth row represents 6 deployment scenarios.

contains 54,600 videos captured from 75 subjects of three
skin tones, including 25 subjects in yellow, white, and black,
respectively. Advantage 2: HiFiMask provides 3 high-fidelity
masks with the same identity, which are made of transparent,
plaster, and resin materials, respectively. As shown in Fig. 2,
our realistic masks are visually difficult to be distinguished
from live faces. Advantage 3: We consider 6 complex scenes,
i.e., White Light, Green Light, Periodic Three-color Light,
Outdoor Sunshine, Outdoor Shadow, and Motion Blur for
video recording. Among them, there is periodic lighting within
[0.7, 4]Hz for the first three scenarios to mimic the human
heartbeat pulse, thus might interfere with the rPPG-based mask
detection technology [25]. Please see Sec. V-A for corre-
sponding rPPG analysis. Advantage 4: We repeatedly shoot
6 videos under different lighting directions (i.e., NormalLight,
DimLight, BrightLight, BackLight, SideLight, and TopLight)
for each scene to explore the impact of directional lighting.
Advantage 5: 7 mainstream imaging devices (i.e., iPhonell,
iPhoneX, MI10, P40, S20, Vivo, and HJIM) are utilized for
video recording to ensure high resolution and imaging quality.

A. Acquisition Details of HiFiMask

Here we review the HiFiMask acquisition details in terms
of equipment preparation, collection rules, and data pre-
processing.

Equipment Preparation. In order to avoid identity infor-
mation to interfere with the algorithm design, the plaster,
transparent and resin masks are customized for real people.
We use pulse oximeter CMS60C to record real-time Blood
Volume Pulse (BVP) signals and instantaneous heart rate data
from live videos. For scenes of White light, Green light,
Periodic Three-color light (Red, Green, Blue and their various
combinations), we use a colorful lighting to set the periodic
frequency of illumination changes which is consistent with the
rang of human heart rate. The change frequency is randomly
set between [0.7,4]Hz and recorded for future research. At the
same time, we use an additional light source to supplement the
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light from 6 directions (NormalLight, DimLight, BrightLight,
BackLight, SideLight, and TopLight). The light intensity is
randomly set between 400-1600 lux.

Collection Rules. To improve the video quality, we pay
attention to the following steps during the acquisition process:
1) All masks are worn on the face of a real person and
uniformly dressed to avoid the algorithm looking for clues
outside the head area; 2) Collectors were asked to sit in front of
the acquisition system and look towards the sensors with small
head movements; 3) During data collection stage, a pedestrian
was arranged to walk around in the background to interfere
with the algorithm to compensate the reflected light clues from
the background [21]; 4) All live faces or masks were randomly
equipped with decorations, such as sunglasses, wigs, ordinary
glasses, hats of different colors, to simulate users in a real
environment.

Data Pre-processing. In order to save storage space, we re-
move irrelevant background areas from original videos, such as
the part below the neck. As shown in Appendix, the reserved
face area is obtained through the following steps. For each
video, we first use DIib [44] to detect the face in each frame
and save its coordinates. Then find the largest box from all the
frames of in videos to crop the face area. After face detection,
we sample 10 frames at equal intervals from each video.
Finally, we name the folder of this video according with the
following rule: Skin_Subject_Type_Scene_Light_Sensor.
Note that for the rPPG baseline [25], we use the first 10-second
frames of each video for rPPG signal recovery without frame
downsampling.

To expose the realness of masks in our proposed HiFiMask
dataset, we calculate the similarity between a real face and
its corresponding mask within three popular mask datasets.
As shown in Fig. 3, the similarity calculation is conducted
by FaceX-Zoo [45] and InsightFace [46]. By sampling some
typical examples, we find that the similarity in HiFiMask is
notably higher than in MARsV2 [26] and 3DMask [22].

In Appendix, we show some samples of one subject with
yellow skin tone. Six modules with different background
lighting colors represent 6 kinds of scenes including white,
green, three-color, sunshine, shadow and motion. The top of
each module is the sample label or mask type, and the bottom
is the scene type. Each row in one module corresponds to 7
types of imaging sensors (one frame is randomly selected for
each video), and each column shows 6 kinds of lights.

B. Evaluation Protocol and Statistics

We define three protocols on HiFiMask for evaluation: Pro-
tocol 1-‘seen’, Protocol 2-‘unseen’ and Protocol 3-‘openset’.
The information used in the corresponding protocol is de-
scribed in Tab. II.

Protocol 1-‘seen’. Protocol 1 is designed to evaluate algo-
rithms’ performance when the mask types have been ‘seen’
in training and development sets. In this protocol, all skin
tones, mask types, scenes, lightings, and imaging devices are
presented in the training, development, and testing subsets, as
shown in the second and third columns of Protocol 1 in Tab. II.
Protocol 2-‘unseen’. Protocol 2 evaluates the generaliza-
tion performance of the algorithms for ‘unseen’ mask types.

0.5907

....... >

0.4353

Fig. 3. The similarity of real faces and masks from different datasets. (a),
images from our HiFiMask. (b), images from MARsV2. (c), images from
3DMask. Results of FaceX-Zoo is marked in blue color and InsightFace in
green. Best viewed in color

TABLE II
STATISTICS OF EACH PROTOCOL IN HIFIMASK. PLEASE NOTE THAT
PROTOCOLS 1, 2 AND 3 IN THE FOURTH COLUMN INDICATE
TRANSPARENT, PLASTER AND RESIN MASK, RESPECTIVELY.

[ Pro. | Subset [ subject [ Masks | #live [ # mask [ #all |

Train 45 1&2&3 8,108 24,406 32,514

1 Dev 6 1&2&3 1,084 3,263 4,347
Test 24 1&2&3 | 4,335 13,027 17,362

Train 45 2&3 8,108 16,315 24,423

2.1 Dev 6 2&3 1,084 2,180 3,264
Test 24 1 4,335 4,326 8,601

Train 45 1&3 8,108 16,264 24,372

2.2 Dev 6 1&3 1,084 2,174 3,258
Test 24 2 4,335 4,350 8,685

Train 45 1&2 8,108 16,233 24,341

2.3 Dev 6 1&2 1,084 2,172 3,256
Test 24 3 4,335 4,351 8,686

Train 45 1&3 1,610 2,105 3,715

3 Dev 6 1&3 210 320 536
Test 24 1&2&3 | 4,335 13,027 17,362

Specifically, we further define three leave-one-type-out testing
subprotocols based on Protocol 1 to evaluate the algorithm’s
generalization performance for transparent, plaster, and resin
mask, respectively. For each protocol that is shown in the
fourth columns of Protocol 2 in Tab. II, we train a model
with 2 types of masks and test on the left 1 mask. Note that
the ‘unseen’ protocol is more challenging as the testing set’s
mask type is unseen in the training and development sets.

Protocol 3-‘openset’. Protocol 3 evaluates both discrimina-
tion and generalization ability of the algorithm under the open
set scenarios. In other words, the training and developing sets
contain only parts of common mask types and scenarios while
there are more general mask types and scenarios on testing set.
As shown in Tab. II, based on Protocol 1, we define training
and development sets with parts of representative samples
while full testing set is used. Thus, the distribution of testing
set is more complicated than the training and development
sets in terms of mask types, scenes, lighting, and imaging
devices. Different from Protocol 2 with only ‘unseen’ mask
types, Protocol 3 considers both ‘seen’ and ‘unseen’ domains
as well as mask types, which is more general and valuable for
real-world deployment.
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IV. METHODOLOGY

In this section we introduce the Contrastive Context-Aware
Learning (CCL) framework for 3D high-fidelity mask PAD.
CCL train models by contrastive learning meanwhile in a
supervised learning manner. As illustrated in Fig. 4, CCL
contains a data pair generation module to generate input data
by leveraging rich contextual cues, a well-designed contrastive
learning architecture for face PAD tasks, and the Context
Guided Dropout (CGD) module accelerates the network con-
vergence during the early training stages. The complete train-
ing procedure of CCL is described in Alg. 1.

A. Data Pair Generation

To effectively leverage rich contextual cues (e.g., skin,
subject, type, scene, light, sensor, and inter-frame information)
in HiFiMask datasets, we organize the data into pairs and
freeze some of the contexts to mine the discrimination of other
contexts, e.g., we select a live face and a resin mask face
from the same subject. Then the contrast is the discrepancy
between the material of the live skin and resin. We split the
live and mask faces into fine-grained patterns to generate a
variety of meaningful contextual pairs. As shown in Tab. IV,
we generate contextual pairs in the following way: 1) in
Pattern. 1, we sample two frames from one single video as
one kind of positive context pair; 2) in Pattern. 5, we sample
one fine-grained mask category and the living category with
the same subject as one negative context pair; 3) the positive
and negative context pairs, including but not limited to the
above combinations, are generated as the training set. The
diagrammatic sketch of which contexts are compared in each
pattern can be found in the left part of Fig. 4. The ablation of
the pattern generation is studied in Sec. V-A.

B. Network Architecture

Recently, self-supervised contrastive learning, such as Sim-
CLR [40], BYOL [41], and SimSiam [42], achieved outstand-
ing performance in downstream prediction tasks. The purpose
of these algorithms is to learn effective visual representations
in advance. Therefore, taking the FAS task as a downstream
task for the first time, we consider building the approach on a
self-supervised contrastive learning framework, which aims to
learn useful visual representations in advance. Inspired by the
architectures in self-supervised learning [40]-[42], we extend
the self-supervised batch contrastive approach to the fully-
supervised setting, allowing us to effectively leverage label
information, and propose the CCL framework, consisting of
an online network and a target network for pairwise contrastive
information propagation. At the same time, an extra classifier
is used for explicit supervision. As shown in Fig. 4, well-
organized contextual image pairs are utilized as the inputs of
the CCL. The inputs are sent to the online and target networks.
The online network is composed of three modules: an encoder
network f(with a backbone network and a fully connected
layer), a projector g and a predictor h (with the same multi-
layer perceptron structure). Similarly, the target network has
an encoder f’ and a projector g’ with different weights from

the online network. As shown in Eq. 1, the weights of the
target network 6’ perceive an exponential moving-average [39]
of the online parameters . We perform the moving-average
after each step by target decay rate 7 in Eq. 2,

0« 70" + (1 —1)0, 1))
721 — (1 — Tpase) - (cos(ms/S +1)/2. )

The exponential parameter 7,45 is set to 0.996, s is the current
training step, and S is the maximum number of training steps.
In addition, a classifier head [ is added after the encoder f
in order to perform supervised learning. During the inference
stage, only the encoder f and classifier [ are applied to perform
the discrimination of mask samples.

In fact, the classifier can be trained jointly with the encoder
and projector networks, and achieve roughly the same results
without requiring two-stage training [42]. Therefore, the CCL
proposed by us is a supervised extension of the self-supervised
contrastive learning. At the same time, the effective visual
representation pre-learning and the downstream FAS task are
completed in one stage.

C. Context Guided Dropout

In classical self-supervised contrastive learning frame-
works [40]-[42], the input images x; and =5 are augmented
from a source image . As a result, the similarity loss between
x1 and 9 would decrease to a relatively low level smoothly. In
contrast, our proposed CCL constructs the positive contextual
pairs from separate source images, which suffer from high
dissimilarity, leading to unstable convergence. Moreover, the
contextual features (e.g., scenes) might not always be relevant
to the live/spoof cues, leading to a large similarity loss.

Inspired by the dropout operator [47], [48] to randomly
discard parts of neurons during training, we propose Context
Guided Dropout (CGD), which adaptively discards parts of
the ‘outlier’ embedding features according to their similarities.
For instance, given the embeddings from positive pairs, we
assume that the abnormal differences between them belong
to the context information. Therefore, we could automatically
drop out the abnormal embeddings with huge dissimilarities
after ranking their locations. For a positive n-dimensional
embedding pair z; and py, we first calculate the difference
vector §; via

21 2 D2 2
6,: _
SR ™ R

Afterward, we sort §; by descending sequence and record the
index of the largest p, - n values. Here py is the proportion of
embedding feature channels to be discarded. And we execute
this procedure in a mini-batch to determine the discarding
position. Besides, the discarded embedding is scaled by a
factor of 1/(1 — pg), which is similar to the inversed dropout
method. To make CGD more adaptive, we apply a cosine
decay factor to py during training as follows

Da
)) ! II‘chr<q/2 (4)

Pat S (1+ cos(2m
where g, is the current epoch and g is the training epochs
to be set. 1. € {0,1} is an indicator function which returns

3)

qcur
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Fig. 4. The CCL framework. The left part (yellow) denotes our data pair generation manner. Each pair of images is processed by central framework twice,
consisting of an online network (f, g, h), a target network without gradient backward (f’, ¢g’) and a classifier header (I). The right part (blue) denotes the

CGD module, the positive embeddings are pulled closer by CGD.

Algorithm 1 Training CCL

Require: image set X, label set Y

1: initialize encoder f, projector g, predictor h by 6

2: initialize encoder f’, projector g’ by 6" (6’ = 0)

3: while not end of training do

4:  sample image pairs (z1,x2) C X2, corresponding y1, Yo

5:  compute online branch and classification result on x; by
6: z1 =hogo f(z1), c1 =1lo f(z1)
7.
8

compute target branch on z2 by
: o p2=gof(22)

9: do CGD procedure on z1, p2 by

10: 21 + feap(z1), p2 < feap(p2)

11:  do stop gradient on p»

12:  compute Lcis, Lcons Ltotal bY Eq. 5, 6,7
13:  compute gradient A# and update 6 by

14: A0 = backward(Liotar)

15: 0 < 0 — learning_rate - A

16:  update 0’ by Eq. 1, update pq by Eq. 4
17: until converged
notation: g o f(x) represents the composite function of g and f

1 if condition c is true. We also visualize the training logs in
Sec. V-A. It can be seen that assembling CGD accelerates the
network convergence during the early training stages, making
the whole CCL training more stable.

D. Overall Loss

As CCL supervises face PAD models with live/mask binary
ground truth, it is straightforward to calculate classification
loss L.;s using Binary Cross Entropy (BCE) function fpcg,
which is described in Eq. 5. We also adopt the Eq. 6 for
contrastive loss L., calculation. To be specific, the CGD
regularization fogp is firstly applied to the embedding 21,
p2, and then Eq. 7 is applied to calculate the cosine similarity
between normalized z; and ps.

Las = feee(c,y1), )
Leon = fo(fecap(z1), feap(p2)), (6)
fo(z1,p2) = (2- Ly g, — 1) < z1,p2>+1. (7)

The overall loss L., can be calculated by the weighted
summation of L ;s and Leon, i.e., Liotai = Leis + Aeon - Leons
where A.,, denotes a trade-off hyper-parameter. An ablation
about A, is conducted in Sec. V-A.

V. EXPERIMENTS

In this section, we conduct a series of experiments on the
HiFiMask and other widely used face PAD datasets.
Datasets & Protocols. Four datasets are used in our
experiments: WMCA [17], CASIA-SURF 3DMask (briefly
named 3DMask) [22], HKBU-MARsV2 (briefly named
MARsV?2) [26], and the proposed HiFiMask. We perform Intra
Testing on HiFiMask and WMCA datasets with the ‘seen’ and
‘unseen’ protocols, and study Cross Testing performance on
3DMask and MARsV?2 datasets when training on HiFiMask.
Performance Metrics. In HiFiMask and WMCA datasets,
Attack Presentation Classification Error Rate (APCER),
Bonafide Presentation Classification Error Rate (BPCER), and
ACER [49] are used for performance evaluation. The ACER
on the testing set is determined by the Equal Error Rate (EER)
and BPCER=1% thresholds on development sets for HiFiMask
and WMCA, respectively. In the Cross Testing experiments
on 3DMask and MARsV2 datasets, Half Total Error Rate
(HTER) [50] and Area Under Curve (AUC) are adopted as
evaluation metrics.

Architecture. We use a universal network ResNet50 [24],
Aux.(Depth) [4], CDCN [51] and ViT [52] with varying di-
mension of the last layer as backbones, and report their results
as baselines. The last full connected(FC) layer in encoder f
and f’ is set from 2048 dimensions to 128 dimensions for
ResNet50 backbone. As in SimCLR [40], a projector g and
g’ is introduced behind encoder. The projector consists of
a hidden FC with 512 dimension output followed by batch
normalization [53] and ReLU layers. The last layer in projector
is FC only with output dimension 128. After the projector,
predictor A has the same architecture as projector.

Optimization. Unless specified, we adopt SGD with weight
decay 0.0001 and momentum 0.9 for the model training. The
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TABLE III
THE ABLATION RESULTS ON THE PROTOCOL 1 OF HIFIMASK.

Method APCER(%) | BPCER(%) | ACER(%)
ResNet50 [24] 3.7 5.7 4.7
ResNet50 w/ Contrastive Loss [36] 3.2 4.2 3.7
ResNet50 w/ Triplet Loss [37] 3.5 4.9 4.2
ResNet50 w/ SimSiam [42] 2.4 5.7 4.0
ResNet50 w/ BYOL [41] 1.7 4.0 29
ResNet50 w/ SC [43] 32 32 32
CCL w/o CGD 1.9 33 2.6
CCL w/ dropout 2.5 35 3.0
CCL w/ reverse CGD 22 35 2.8
CCL w/ BOBE CGD 2.0 34 2.7
CCL 1.8 3.0 24

total batch size is 256 on eight 2080Ti GPUs. The learning
rate starts with 0.01, and decays by v = 0.2 once the number
of epoch reaches one of the milestones. Models are trained for
30 epochs with milestones in 15, 21, 26. For ViT backbone,
we used setting from paper, adopting AdamW as optimization
and learning rate of 0.0001.

A. Ablation Study

Here we conduct ablation experiments to verify the contri-

butions of each module of the proposed CCL on Protocol 1
of the HiFiMask dataset.
Effect of Architectures. As shown in Tab. III, we select
ResNet50 [24] as baseline and equip it with five different
contrastive-based learning strategies for comparison, such as
Contrastive Loss [36], Triplet Contrastive Loss [37], Sim-
Siam [42], BYOL [41] and supervised contrastive learning
method SupCon [43] (SC for abbreviation). The results show
that contrastive-based learning is more suitable for mining
the discrepancy between live face and mask material than the
vanilla ResNet50, with the ACER improvement from 4.7% to
2.9%.

In terms of self-supervised contrastive learning approaches,
SimSiam and BYOL achieve 4.0% and 2.9% ACER on Proto-
col 1 of HiFiMask, respectively. It is clear that BYOL outper-
forms SimSiam by a large margin, indicating the importance
of moving-average when updating network parameters. Based
on the moving-average mechanism, CCL further decreases the
ACER by 0.5% compared with BYOL. This is because CCL
is able to efficiently exploit the elaborated contextual pairs for
fine-grained feature representation while BYOL only considers
the simple augmented views. In Tab. III, we also compare CCL
with the recent supervised contrastive learning method SC.
The CCL achieves better performance (reducing 0.8% ACER)
than SC, which indicates the advances of our context-aware
pair generation and CGD strategies for 3D mask PAD task.

In summary, the proposed CCL extends the self-supervised
contrastive approach to the supervised setting and pulls to-
gether the clusters of points that belong to the same class while
simultaneously pushes apart clusters of samples from different
classes in the embedding space. It allows us to effectively
leverage label information to mine the differences between
face skin and different kinds of mask materials.

Effect of Data Pair Generation. An effective Data Pair
Generation can accelerate the model convergence and guide

TABLE IV
ABLATION STUDY OF COMBINING DIFFERENT IMAGE PAIRS.
Pat.  Subject Type Scene Light Sensor Frame Pair ACER(%)

1 v v pos 39

2 v v v pos 32

3 ' v v ' pos 3.0

4 v v v v v pos&neg 29

5 v v v v v v pos&neg 24
TABLE V

PATTERNS TO ORGANIZE IMAGE PAIRS BY ADJUSTING ATTRIBUTES.

Pat. | Subject | Type | Scene | Light | Sensor | Frame | Pair | ACER(%)
1 v pos 3.6
2 v v pos 39
3 v v pos 4.0
4 v v pos 32
5 v v neg 437
6 v v pos 39
1-6 v v v v v v pos&neg 2.4

the network to mine liveness-related features. As shown in
Tab. IV,we performed such ablation experiments by combining
different kinds of image pairs. After adding Sensor, Light,
Scene, Type and Subject image pairs sequentially, our training
set becomes larger with an increasing numbers of contrastive
categories. As a result, the ACER is decreased from 3.9%
to 2.4%, which shows a significant effect of the proposed
contrastive patterns in our experiment. One can observe that
the data pair generated under different patterns has varied
performances.

Effect of Data Organization. As illustrated in Tab. V, we
take context such as identity, mask, lighting, imaging sensor,
and frame information into consideration to generate data pairs
with 6 different patterns. We practice these six patterns to
perform experiments on protocol 1 of HiFiMask, respectively.
When only negative pairs are used, it is obtained an ACER
of 43.7%. The main reason is that no positive samples are
available in the training set makes the model convergence
difficult. The mixed-use of multiple positive and negative pairs
can optimize the performance of the model.

Effect of CGD. The proposed CGD module can accelerate
the model convergence in the early stage of training and
alleviate the interference of useless information to the model.
As shown in Tab. III, if the CGD is removed, the performance
of three indicators decreases, with an APCER, BPCER and
ACER increasing from 1.8%, 3.0%, and 2.4% to 1.9%, 3.3%,
and 2.6%, respectively.

In the proposed CGD, we aim to manually discard the most
dissimilar neurons in the embedding by finding their location
for a positive embedding pair. In order to verify the effective-
ness of removing embedding points, we introduce two variants
for comparison: ‘reverse’ CGD and ‘BOBE’(Break Out Both
Ends) CGD. The first one removes the embedding points in the
opposite way to the CGD. The second one removes the most
similar and the least similar embedding points at the same
time. Their performance is decreased, as expected, to 2.8%
and 2.7% for ACER. Compared with random dropout, our
CGD discards the abnormal neurons in the embeddings more
pertinently, such as the huge dissimilarities caused by different
source images in the positive sample pairs. The experimental
results verify the correctness of our CGD design concept.
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Fig. 5. The contrastive loss during training stage. (Red line: CCL with CGD;
Blue line: CCL without CGD.) Best viewed in color.
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Fig. 6. Ablation studies on CCL(a) and CGD(b) on the Protocol 1 of
HiFiMask.

For example, by comparing ‘CCL w/ dropout’ and ‘CCL’ in
Tab. III, our CGD has a performance gain of 0.6% on ACER.
To study the impact of the Context Guided Dropout (CGD)
during the training stage, we also draw the loss curve shown
in Fig. 5. Intuitively, It can be seen that the red line (with
CGD) drops faster than the blue line (without CGD) in the
early training stage, which proves that CGD accelerates the
network convergence during the early training stages making
the whole CCL training more stable.

Effect of Parameter )\.,, and p;. Derived from the popular
dropout operator, we can foresee that the effect of CGD would
be affected by the probability of randomly abandoning neurons
during training time. Also, factor A.,, in Sec. 4.4 controls the
relative importance of the CCL loss L.,,, and BCE loss L in
overall 1oss L;,4;. Therefore, different \.,,, will affect the per-
formance gains. In order to eliminate the stochastic behavior
of the algorithms and randomness of the experiments, obtain
the best values of py and A.,,, we repeated the experiment
three times for each systematic change, taking the mean value
of the corresponding ACER as the result. As shown in Fig. 6
(b), when the probability py increases from 0 to 25%, the
performance increases from 2.78 to 2.66 for ACER. However,
as the py continues to increase, some functional neurons are
lost, leading to performance degradation. Similarly, see from
the Fig. 6 (a), when the proportion of L., is 0.7, the model
reaches the optimal performance in Protocol 1 of HiFiMask,
that is, the ACER reaches the minimum value of 2.50%. Based
on the above experiments, we fixed the probability pg at 15%
and A.,, at 0.7 in subsequent experiments.

Effect of rPPG Signal Recovery with Periodic Lights.
Here we show a simple example to illustrate the challenges on
the proposed HiFiMask about the rPPG recovery. We follow

the approach GrPPG [25] to firstly track the facial region
of interests (ROI), and then the intensity values within the
ROI from each color channel are averaged to form the rPPG
signals. As illustrated in the top right sub-figure of Fig. 7(a),
the rPPG signals extracted from mask attack without periodic
light are quite noisy, indicating the weak heartbeat-derived
liveness clues. In contrast, it can be seen from Fig. 7(b) that,
under the scenario with periodic light within [0.7,4]Hz, the
recovered rPPG signals are with rich periodicity. We can also
see from the bottom right sub-figures of Fig. 7(a)(b) that the
power spectral density (PSD) distributions of the extracted
rPPG signals are clear to show periodicity/liveness evidences.
Thus, it would mislead the rPPG-based attack detector for
incorrect decision, i.e., treating the mask face with periodic
light as a live face. Besides qualitative analysis, we also
conduct two experiments on the Protocol 1 using the subsets
w/o and w/ period lights, respectively. As for the former
case, GrPPG [25] can achieve 19.6% EER. However, when
extracting rPPG features under the challenging illumination
variation, the performance (49.1% EER) drops sharply.

In the HiFiMask dataset, as the temporal light conditions
are diverse for both the bonafides and 3D mask attacks, it
is not easily to use current tPPG approaches for robust PAD.
Moreover, the dynamic background with pedestrian movement
makes it more challenging for global noises compensation
used in recent rPPG methods [21], [34]. As there are finger-
contacted BVP signals as well as instantaneous heart rate val-
ues as groundtruth for the bonafides, in the future one possible
direction is to design a robust rPPG extractor and liveness
detector even under complex temporal light interference.

B. Intra Testing.

Intra Testing on HiFiMask. As shown in Tab. VII, without
using the proposed CCL, the ViT with pre-trained achieves the
lowest ACER (i.e., Protocol 1: 3.4%, Protocol 2: 11.4%) when
compared with ResNet50 and CDCN. We integrated the three
backbones into CCL framework, and the performances are
improved consistently. Specifically, the ACERs of ResNet50,
Aux.(Depth), CDCN are decreased from 4.7%, 3.4%, 3.6%
to 2.4%, 2.6%, 3.1% on Protocol 1, and from 18.5%, 11.4%,
14.7% to 16.7%, 10.7%, 12.7% on Protocol 2, respectively.

In protocol 2, ACER of ResNet50, Aux.(Depth) and CDCN
on Protocol 2_1 are 34.0%, 24.1% and 30.9%, respectively.
The reason lies in the appearance of transparent mask varies
from the plaster and resin masks (see Fig. 2). Notably, our
method still steadily reduce the ACER of the three benchmarks
(32.5%, 22.6% and 26.6%, respectively).

The ACER of ResNet50 on Protocol 3 is 20.9%, higher
than 18.5% on Protocol 2, meaning Protocol 3 is more
challenging to face PAD. The reason may be that the larger
‘openset’ between training and testing sets demands for a
higher representation and generalization capabilities algorithm.
In this case, the proposed CCL still obtains better performance,
with a decrease of 2.3%, 2.4% and 2.4%, respectively. When
training on ViT with/without CCL, we used pre-trained model
from ImageNet.

The results from Tab. VII show that the proposed CCL
provides good generalization with different backbones. One
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TABLE VI

COMPARISON OF THE RESULTS OF PROTOCOLS ‘SEEN’ AND ‘UNSEEN’ ON WMCA. THE VALUES ACER(%) REPORTED ON TESTING SETS ARE
OBTAINED WITH THRESHOLDS COMPUTED FOR BPCER=1% ON DEVELOPMENT SETS. ‘RGB-D’ DENOTES USING BOTH RGB AND DEPTH INPUTS.
METHODS WITH ‘*’ DENOTE USING PRE-TRAINED MODEL.

. Unseen

Modality Method Seen Flexiblemask | Replay | Fakehead | Prints | Glasses | Papermask | Rigidmask Mean+£Std
MC-PixBiS 1.8 49.7 3.7 0.7 0.1 16.0 0.2 3.4 10.5£16.7

RGB-D | MCCNN-OCCL-GMM 33 22.8 31.4 1.9 30.0 50.0 4.8 18.3 22.774+15.3
MC-ResNetDLAS 42 333 38.5 49.6 3.80 41.0 47.0 20.6 33.4+£14.9

ResNet50 40.93 14.48 15.69 38.00 32.71 27.33 20.14 30.22 25.51+8.95

ResNet50 w/ CCL 30.69 4.76 15.37 24.67 19.03 16.80 9.51 17.62 15.39+6.51
Aux.(Depth) 42.67 13.23 12.52 47.33 32.18 23.69 13.92 40.43 26.19+14.13
RGB Aux.(Depth) w/ CCL 30.62 7.41 12.76 40.00 16.11 10.17 11.67 27.32 17.92£11.66
CDCN 38.41 12.10 8.69 42.67 30.07 11.67 11.87 30.38 21.06+13.17

CDCN w/ CCL 27.14 7.18 11.79 21.82 20.53 35.13 18.91 15.10 18.64+8.91

ViT* 26.62 24.61 24.43 6.44 10.74 50.00 1.16 8.15 17.93£16.71
ViT* w/ CCL 24.33 19.09 30.70 6.00 9.96 45.50 1.16 4.07 16.64+£16.29
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Fig. 7. Visualization of video samples and their extracted rPPG signal and
power spectral density (PSD). In both cases, i.e., without (a) and with (b)
external periodic light, the top right sub-figures illustrate the rPPG signal in
time domain while the bottom right ones show their PSD in frequency domain.
It can be seen from (b) that with period light, mask attacks could also contain
pseudo ‘live’ pulse clues. Best viewed in color.

could thus expect that considering newly emergent networks
within the CCL framework could potentially improve current
performance.

Intra Testing on WMCA. The experimental results of
protocols ‘seen’ and ‘unseen’ on WMCA [17] are shown
in Tab. VI. The results in the third column show that
all four widely used face PAD backbones (i.e., ResNet50,
Aux.(Depth), CDCN, and ViT) assembled with CCL can
achieve significantly lower ACER values (with a decrease
of 10.24%, 12.05%, 11.27%, and 2.29% respectively). This

THE RESULTS OF INTRA TESTING ON THE HIFIMASK. METHODS WITH “*’

DENOTE USING PRE-TRAINED MODEL.

Prot. Method APCER(%) | BPCER(%) | ACER(%)
ResNet50 37 57 47
Aux.(Depth) 4.9 1.8 34
CDCN 33 3.9 36
1 ViT* 24 15 1.9
ResNet50 w/ CCL 1.8 3.0 24
Aux.(Depth) w/ CCL 2.1 3.1 26
CDCN w/ CCL 3.0 33 3.1
ViT# w/ CCL 1.0 1.9 14
ResNet50 224E153 | 14.6L67 | I85E11.0
Aux.(Depth) 11.149.4 112498 | 11.249.0
) CDCN 12.6£7.3 | 168+15.6 | 1474114
ViT* 1224103 | 1294112 | 12.5£10.7
ResNet50 w/ CCL 1674112 | 16.7£124 | 167112
Aux.(Depth) w/ CCL | 10.7+7.5 107494 | 10.7+£8.4
CDCN w/ CCL 1334106 | 122492 | 127498
ViT w/ CCL 1444136 | 103+7.8 | 1244107
ResNet50 135 283 20.9
Aux.(Depth) 9.6 16.2 12.9
3 CDCN 20.8 12.5 16.7
ViT* 6.4 25 45
ResNet50 w/ CCL 13.8 234 18.6
Aux.(Depth) w/ CCL 8.2 12.7 10.5
CDCN w/ CCL 15.4 13.2 14.3
ViT# w/ CCL 4.6 2.5 3.5

indicates that the proposed CCL effectively leverages the
context cues (e.g., rich attack types) to learn more discrim-
inative features. In terms of the ‘unseen’ protocol, we follow
the same setting as [17]. We can draw similar conclusions
that the proposed CCL benefits the unseen attacks for all
four backbones. To be specific, compared with the vanilla
ResNet50, Aux.(Depth), CDCN, and ViT, the counterparts
with CCL can reduce the values of ACER to 15.39%, 17.92%,
18.64%, and 16.64%, respectively. It is worth noting that the
performance of ‘ViT’ and ‘ViT w/ CCL’ against ‘Replay’
and ‘Glasses’ are poor. We analyze that Transformer identifies
sample from the dependency between face tokens. These two
kinds of spoofing clues only appear in some patch tokens, and
the relationship with other tokens is difficult to model.

C. Cross Testing

Cross Testing of datasets. As shown in Tab. VIII, we
first train a model on 3DMask dataset and directly test on
MARsV?2 dataset, and repeat the procedure by exchanging the
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TABLE VIII
CROSS-TESTING RESULTS ON DIFFERENT DATASETS. METHODS WITH “*’
DENOTE USING PRE-TRAINED MODEL.

3DMask to MARsV2 MARsV2 to 3DMask

Method HTER(%)] | AUC(%)T | HTER(%)] | AUC(%)t
ResNet50 37.96 67.05 43.69 59.03
CDCN 45.20 56.13 32.56 73.60
Aux.(Depth) 44.24 57.05 43.19 60.08
ViT* 34.83 59.86 50.00 44.39
ResNet50 w/ CCL 41.49 61.22 40.32 64.52
CDCN w/ CCL 42.45 56.26 38.20 66.84
Aux.(Depth) w/ CCL 43.01 57.66 36.27 67.32
ViT* w/ CCL 27.12 74.03 39.42 61.75
Method HiFiMask to MARsV2 HiFiMask to 3DMask

HTER(%)] | AUC(%)T | HTER(%)] | AUC(%)T
ResNet50 20.61 86.87 30.35 76.36
CDCN 16.56 90.81 17.28 89.94
Aux.(Depth) 9.31 96.31 16.11 91.32
ViT* 9.82 96.72 17.14 90.74
ResNet50 w/ CCL 14.04 90.66 2543 81.99
CDCN w/ CCL 15.66 92.25 13.97 93.26
Aux.(Depth) w/ CCL 6.98 98.42 16.33 90.67
ViT* w/ CCL 5.72 98.69 16.12 92.03

two datasets. Then, we train a model on proposed HiFiMask
dataset and test on MARsV2 and 3DMask respectively.

Comparing the results in Tab. VIII, while the training set
is our proposed HiFiMask, the HTER values are relatively
lower and the AUC values higher. For example, HTER values
are 20.61%, 16.56%, 9.31% and 9.82% when training with
HiFiMask and testing with MARsV2 on four architectures
above. These values increase to 37.96%, 45.20%, 44.24% and
34.83% if the training set is set to 3DMask. What’s more, there
is a significant drop of AUC values from 86.87%, 90.81%,
96.31% and 96.72% to 67.05%, 56.13%, 57.05% and 59.86%.
This phenomenon can be observed as well if testing set is
3DMask dataset. From this, we can conclude that our proposed
HiFiMask is a well-distributed mask dataset, which has a better
generalization than MARsV2 and 3DMask.

To further evaluate the generalization of CCL, we report the
results of each backbone equipped with our CCL framework.
As shown in Tab. VIII, compared with bare backbones, the
proposed CCL obtains better performance in most configura-
tions. Such as ViT with CCL achieves the best performance
under “HiFiMask to MARsV?2” and CDCN with CCL achieves
the best performance under “HiFiMask to 3DMask”.

In Tab. VIII, one can observe that CCL failed to further im-
prove the performance of ResNet50 in “3DMask to MARsV2”,
CDCN in “MARsV2 to 3DMask” and Aux.(Depth) in “HiFi-
Mask to 3DMask”. The main reason might be that MARsV?2
and 3DMask has only a limited attack types, which inhibits
the advantage of our Data Pair Generation strategy to generate
abundant context information.

D. Analysis and Visualization

In this section, we further visually analyze the CCL’s ability
to distinguish different material features. As shown in Fig. §,
we compare the features learned by ResNet50 and CCL on
HiFiMask (Protocol 1). Compared with ResNet50, the pro-
posed CCL can well distinguish real faces from mask samples.
In addition, we visualize the regression results (heatmaps)
by Aux.(Depth) and Aux.(Depth) with CCL in Fig. 9. We

Fig. 8. Feature distribution comparison on Protocol 1 of HiFiMask using t-
SNE [54]: (a) ResNet50, (b) the proposed CCL. The points with different
colors denote features from different classes (red: real faces; blue: mask
samples). Best viewed in color.

Fig. 9. Visualization of several samples in HiFiMask. The maps are performed
from Aux.(Depth) in the second row and Aux. w/ CCL in the third row (Red
color: the higher the better for live samples; Blue color: the higher the better
for mask samples.). Best viewed in color.

can see that Aux.(Depth) fails to distinguish the complex
mask samples in the last two columns while the proposed
Aux.(Depth) with CCL provides more correct predictions. It
demonstrates the better discriminative representation capacity
of the proposed CCL.

VI. CONCLUSION

In this paper, we released a large-scale HiFiMask dataset
with three challenging protocols. We hope it will push cutting-
edge research in 3D Mask face PAD. Besides, we proposed a
novel CCL framework to learn discriminability by leveraging
rich contexts among pairs of live faces and mask attacks.
Finally we conducted a comprehensive set of experiments on
both HiFiMask and other three 3D mask datasets, verifying
the significance of the proposed dataset and method.
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