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Abstract—China is the largest coal consumer in the world. The
massive exploitation and utilization of coal resources has resulted
in serious problems of heavy metal pollution and environmental
contamination, such as soil degradation, water pollution, crop
damage, and even threatening human lives. Therefore, monitor-
ing soil heavy metal pollution quickly and in real time is an
urgent task at present. This research not only formulated a new
preprocessing method enlightened by few-shot learning for soil
hyperspectral data, but also combined it with other soil-related
auxiliary information to extract effective information from the
soil hyperspectrum, at the end of which different regression
methods were adopted to predict soil heavy metal contamination.
This test used 168 actual soil samples from the Eastern Junggar
coalfield in Xinjiang for verification. Since copper in the soil is
a trace element and the corresponding spectral characteristics
are affected by other impurities, improper use of hyperspectral
preprocessing methods may introduce interference information
or may delete useful information, which makes the model effect
unsatisfied. To effectively address the above problems, the prepro-
cessing method of this experiment combined the second-order dif-
ferential derivation, data enhancement method together with the
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addition of auxiliary information to allow more effective features
to be entered into the model. Next, the Attentive Interpretable
Tabular Learning (TabNet) model was improved in three different
ways using the original TabNet model and three improved TabNet
models to create regression models. One of the improved TabNet
models had the best effect, with a list of the top 30 features
according to the degree of importance. Meanwhile, the regression
prediction of Cu content using four different convolutional neural
networks (CNN) revealed that the model with the residual block
was the strongest and slightly outperformed the improved TabNet
model, but lacked interpretation of the input data. Besides, this
experiment also employed different pre-processing methods for
regression prediction on various models, and found that the
traditional pre-processing methods performed best in traditional
regression models (e.g., PLSR) and underperformed in deep
learning models. The selected optimal model was compared with
partial least square regression (PLSR), and convolutional neural
network (CNN) models. The results indicated that both the
improved TabNet model and improved CNN model had better
performance using the new preprocessing approach proposed
in this paper, with improved TabNet yielding a coefficient of
determination (R2), root mean square error (RMSE) and ratio
of performance to interquartile range (RPIQ) of 0.94, 1.341 and
4.474, respectively. The improved CNN model had a coefficient
of determination of 0.942, a root mean square error of 1.324 and
an interquartile range of 4.531 in the test dataset.

Index Terms—Soil hyperspectrum, Soil Cu, Soil heavy metal
pollution, Soil auxiliary information, Optimal band combination
algorithm, Data enhancement (DA), Few-shot learning, partial
least square regression (PLSR), improved convolutional neu-
ral network (CNN), improved Attentive Interpretable Tabular
Learning (TabNet).

I. INTRODUCTION

AS an important part of the terrestrial ecosystem, soil
is an irreplaceable environmental factor for human and

animal habitation, as well as a basic guarantee for food safety
and human health, and plays an important role in protecting
the environment and maintaining ecological balance. With the
development of industrial and agricultural production and the
urbanization of rural areas, the amount of contaminated soil
continues to expand [1]. The large-scale development and uti-
lization of coal resources have made pollution an increasingly
serious problem, leading to ecological damage, environmental
contamination and other consequences, which in turn affect
social and economic development [2], [3]. Therefore, rapid
and accurate detection of the copper (Cu) concentration in
coal mine areas is of great significance for preventing and
ameliorating Cu pollution.
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The traditional method of determining heavy metal sub-
stances is to collect soil samples in the field and bring
them back to the laboratory for chemical testing and anal-
ysis, thereby being time-consuming and laborious. With the
widespread application of hyperspectral remote sensing in
vegetation research, precision agriculture, geological surveys,
and military investigations, an increasing number of soil
researchers use visible light and near-infrared spectroscopy to
determine the heavy metal concentration in soil [4]. However,
Cu exists in the soil as a trace element, its reaction in the soil
spectrum is relatively weak, and other types of substances,
including organic manner, moisture, clay, and iron oxide, in
the soil are relatively abundant and thus have an impact on
the Cu concentration [5]. The reflectivity in the soil spectrum
produces interference, which affects accurate prediction of
the Cu concentration. To solve the above problems, Hong-
Yan et al. [6] used a method based on first-order reciprocal
and baseline correction preprocessing methods to extract the
relevant information for Cu analysis. The study found that
different preprocessing methods have an effect on Cu determi-
nation. Prediction of the elemental concentration has varying
degrees of influence. Pevious research undertook differential
processing of hyperspectral data to reduce the interference
of other substances on heavy metal concentration estimation.
When measuring the concentration of six heavy metals, Song
et al. [7] used three methods, namely, multiplicative scatter
correction, unit vector normalization, and the first derivative,
to preprocess the soil hyperspectral data before data modeling
so that there is more important information in the hyperspectral
data, which is convenient for subsequent analysis and detection
with the model. Wu et al. [5] explored the relationship between
soil hyperspectral data and soil heavy metal concentration. In
the preprocessing stage, to reduce the interference of noise, the
spectral data were derived using the first and second deriva-
tives, and Savitzky-Golay smoothing was used. In addition,
past studies have found that the concentration of other sub-
stances in the soil has a significant impact on the relationship
between the concentration of heavy metal elements and the soil
spectrum [8]. For example, the Cu concentration is related to
zinc (Zn), chromium (Cr), arsenic (As), and soil organic matter
(SOM). Due to the strong adsorption of organic matter and
clay minerals, the heavy metal Ni can be retained in the soil.
Sun et al. [9] added the spectral bands related to organic matter
and clay minerals as auxiliary information to predict the Ni
concentration. To further study whether auxiliary information
in soil can help detect the concentration of heavy metals,
Hong et al. [10] studied the relationship between the Cr
concentration and auxiliary information such as soil organic
matter, Fe concentration, pH and the soil spectrum. The study
showed that the combination of soil spectral characteristics and
auxiliary information was the best way to accurately predict
the heavy metal Cr concentration, in contrast to using either
of these two broad categories of features individually. Due to
the large number of hyperspectral bands, the number of calcu-
lations increases during preprocessing, and the effect of model
evaluation is not ideal. To reduce the amount of calculation and
extract more effective hyperspectral features, previous research
adopted spectral feature reduction technology, among which

principle component analysis (PCA) technology and two-band
spectral indices are a common method. Yongsheng Hong [10]
used the PCA method to extract concise and useful information
from the soil spectrum and the optimal band combination
algorithm to select the optimal band combination to predict
the Cd concentration, and the experimental results show that
the optimal band combination algorithm is better than the PCA
algorithm.

However, there is often only a small amount of spectral
data regarding measured soil, and the traditional regression
model used no longer satisfies the precise detection of heavy
metal concentration [11], [12]. Besides in the field of soil
science, the problem with having just a small number of
measured samples can also be found in the field of image
[13] and natural language processing [14]. Wang et al. [15]
summarized three types of improvement strategies for few-shot
learning (FSL), namely, data expansion, model improvement
and algorithm improvement. In the image field, many scholars
have proposed flipping [16], translation [17], rotation [18]
and other strategies to expand data and achieve better results.
Spectral information can be regarded as a one-dimensional
image signal. Bjerrum et al. expanded spectral data by adding
random variations to the offset, multiplication, and slope [19],
and repeated the operation nine times. Both the expanded
data and the original data together form the training set, in
which the expanded data are used to increase the number and
diversity of training samples to make the model more robust.
Of all the experiments mentioned in this paper, extended mul-
tiplicative scatter correction (EMSC) and data augmentation
represent the optimal combination of preprocessing and can be
used in conjunction with the CNN model to achieve optimal
outcomes. In particular, data augmentation seeks to simulate
the various types of noise information in the spectrum and,
as compared to models that do not utilize expanded data,
it can assist convolutional neural networks to concentrate on
invariant features, while EMSC allows for an overall baseline
correction of the data. To enhance the performance of deep
learning models in the field of speech recognition and to
prevent the augmentation of data with limited diversity, Wang
et al. [20] proposed a generative model which is called a voice
conversion technique employing WaveNet (VC-WaveNet) to
synthesize speech with diverse pitch patterns to augment
data, and demonstrated that the VC-WaveNet technique is an
effective data augmentation technique for automatic speech
recognition. To surmount the constraints of the small sample
size, Wu et al. [21] proposed a new generative adversarial
network to generate synthetic Raman spectroscopy data, which
was shown to contribute to the accuracy of skin cancer tissue
classification, a finding that also demonstrated the reliability of
synthetic Raman spectroscopy data. Haut et al. [22] presented
that random obscuration in different rectangular spatial regions
of hyperspectral images allows the number of samples to
increase, which in turn adds to the complexity of the data,
and that this effective data augmentation (DA) technique can
effectively mitigate the occurrence of overfitting issues, which
can result in insufficient generalization and loss of accuracy.
The experimental findings from the DA methodology on both
hyperspectral datasets indicate that it contributes to better
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classification accuracy. However, there is no research on the
spectral number expansion method to predict the concentra-
tion of heavy metals in soil. The heavy metal concentra-
tion estimated by using soil hyperspectral information and
traditional regression models is not well studied to organic
matter and other nontrace element substances. Whilst models
which are less complicated are more general and easier to
interpret by researchers, such as PLSR, a significant amount
of expertise, time, and experience is required to examine soil
hyperspectral data when employing PLSR to predict heavy
metal concentration, with the accuracy of the conclusions
obtained being somewhat less than the application level. As
such, enhancing accuracy by increasing the complexity of the
model for predicting heavy metal concentrations could also be
an effective breakthrough.

In the field of spectroscopy, deep learning has also been
studied more widely. Among them, Zhang et al. [23] predicted
corn protein content, tablet active ingredient content, and soil
organic carbon content by using an end-to-end deep learning
approach, and found that it outperformed the convolutional
neural network and three traditional regression methods. More-
over, a deep learning approach combining stacked autoen-
coders (SAE) and fully connected neural networks (FNN) [24]
has been proposed, which has been experimentally demon-
strated to be effective in detecting soluble solids concentrations
and hardness in the Vis/NIR hyperspectral images of Korla
bergamot pear. Furthermore, the research [25] found that
hyperspectral image models combined with deep learning-
based stacked autoencoders and least squares support vector
machines provided the best performance in predicting the total
volatile basic nitrogen (TVB-N) concentration of Pacific white
shrimp. Liu et al. [26] proposed a deep convolutional neural
network for Raman spectra classification that not only offers
robust performance, but also eliminates preprocessing steps
such as baseline correction or PCA. In the previous research
on the prediction of the heavy metal concentration from soil
hyperspectral, Pyo et al. [27] performed PCA operations on
98 visible and near-infrared spectroscopy soil samples which
resulted in the 1652 bands used being compressed to 68
components. Eventually, the visual and near-infrared spec-
troscopy was analyzed and processed separately by employing
CNN models with convolutional autoencoders, artificial neural
network (ANN), and random forest regression (RFR) models.
The experiment revealed that CNN models with convolutional
autoencoders yielded the highest As, Cu, and lead (Pb) es-
timates. But the research has a high content and lacks an
explanation of the usability of the features. Nevertheless, the
low concentration of heavy metals in soil for the our current
research increases the difficulty of the present experiment. In
order to predict the concentration of compound heavy metals
from lettuce leaves, Zhou et al. [28] presented the use of
wavelet transform (WT) and stack convolution autoencoder
(SCAE) to extract features of compound heavy metals, and
ultimately achieved the best prediction outcome with support
vector machine regression models. Additionally, some scholars
have used data from other mediums in conjunction with deep
learning to estimate heavy metal concentration instead of
using empirical soil hyperspectral data. Jiang et al. [29] has

used 9 urban multi-source data, which were cost-effective and
easily available, as features for input and used an appropriate
deep learning algorithm (which is called GRU) to construct
predictive models. The model can accurately predict the four
heavy metal concentrations of Cu, Zn, Ni, and Cr and is better
than the ANN model. Apart from this, a total of two studies
exist that use deep learning techniques and soil spectroscopy
to predict the concentration of other substances. Qiao et
al. [30] employed a technique called SVD concatenation to
learn features and combined it with the CNN model (which
is called SVD-CNN) to predict the soil organic matters on
both FT-NIR and LUCAS 2009 datasets. Ultimately, SVD-
CNN was identified as having the highest evaluation and
generalization capability. Related studies have also used deep
convolutional neural network (DCNN) models to analyze and
predict information from soil spectral repositories and have
made accurate predictions for most soil properties and outper-
formed both single-task shallow convolutional neural networks
and traditional machine learning methods, demonstrating the
potential of modeling with soil spectral data for deep learning
[31]. Yet, no proposal has been made to process empirical
soil hyperspectral data with data augmentation techniques in
few-shot learning and to predict the concentration of heavy
metals in soil by applying deep learning models. After the
collection and processing of the data used to predict the
soil hyperspectral, the spectral data can be stored using CSV
tables. Recently, TabNet [32], a deep learning model for
tabular data, is proposed, which can discriminate and invert
classification and regression tasks. The model proves to have
good effects and explanatory properties in many tabular data
through experiments.

In this paper, we use the knowledge related to few-shot
learning to enhance the soil hyperspectral data, and later
modeling with deep learning models, has achieved excellent
outcomes. Firstly, to obtain more information from a relatively
small number of soil hyperspectral samples, and to tackle the
issue that deep learning models are data-driven models, this
research introduces a few-shot learning approach that enables
deep learning to obtain the Cu concentration in soil from a
smaller number of soil hyperspectral samples in a generalized
manner. This is accomplished by expanding the hyperspectral
data with a priori knowledge, and processing both the ex-
panded data and the original data with second-order derivative
for application adding auxiliary information to deep learning
models. Next, the TabNet and CNN models, which have shown
good performance in handling tabular data, have been used
for regression analysis of spectral data to predict the Cu
concentration, and by modifying the TabNet and CNN models
respectively, the regression models have shown outstanding
performance and surpassed the traditional regression models of
PLSR. In addition to this, the experiment also lists, illustrates,
and analyses the top 30 features chosen by the top-performing
TabNet model, effectively revealing the influence of other
substances in the soil on the Cu concentration. Last but not
least, as far as we know, the present research combines few-
shot learning and deep learning for the first time to perform
regression analysis on in-situ measured soil hyperspectral data
and obtains accurate prediction outcomes. Such an approach
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enables the prediction of soil heavy metal concentration to be
generalized even when the area is large but the empirical soil
hyperspectral data is small, which provides a new concept and
methodology for the prediction of heavy metal concentration
from soil hyperspectral data and may facilitate its practical
application at an early date.

II. MATERIALS AND METHODS

A. Study Area and Sampling Sites

The Eastern Junggar coalfield is located at the north foot
of Tianshan Mountain, southeast of the Junggar Basin, within
the territory of three counties (Jimsar, Qitai and Muyu) in
eastern Changji Prefecture, covering an area of approximately
11,213 km2 [33]. This region is located in the hinterland of
Eurasia, which has an extremely arid and continental climate.
Winter is long and cold, and summer is short and hot. The
annual average temperature is 7 ◦C, and the annual average
precipitation is 183.5 nm. The difference between spring and
autumn is not obvious. The soil types in Zhundong coal
mining area mainly consist of saline soil, eolian sandy soil,
gray-brown desert soil, gypsum brown desert soil, and desert
alkali soil [33]. In this study the soil samples taken from
the same soil type called gray-brown desert soil which was
located around the coal mining region. The plant composition
is simple and monotonous, mainly xerophytic and super-
xerophytic shrubs, semi-trees and herbs, including Tamarix,
Haloxylon ammodendron, Pilosa and other plants.

Depending on the topographic feature of the study area,
as centered of coal mining region and chemical plant, con-
sidering the direction of pollutant emission from industrial
areas (mainly northwest wind in this region), therefore, soil
samples were collected from field by using systematic random
sampling method. A total of 168 soil samples were systematic
randomly collected from June to July 2013, and a 5-point
mixed sampling method (0-20 cm deep) was adopted for each
soil sample. Due to the characteristics of the Eastern Junggar
open-pit coal mine, a handheld GPS device was used to locate
the soil sample points, as shown in Fig. 1. The collected soil
was packaged in a plastic bag, brought back to the laboratory,
dried, ground, and passed through a 0.2 mm aperture sieve.
Part of the processed soil samples was collected for soil
hyperspectral data, and the other part was entrusted to the
Physical and Chemical Testing Center of Xinjiang University
for determination by potassium dichromate-volumetric dilution
calorimetry [34].

B. Laboratory Spectral Measurements and Preprocessing

The soil spectrum was measured by an ASD Field Spec3
portable spectroradiometer (Analytical Spectral Devices, Inc.,
USA), and its spectral range was 350-2500 nm. The spectrum
measurement was collected in a dark room to avoid the
influence of external light. The light source employed was a
halogen lamp with a power of 50 W, which was used for the
reflection spectrum of the sample. The vertical angle was 25◦,
0.5 meters away from the sample. The field of view of the
spectrometer probe was 25◦, perpendicular to the soil sample,
and 15 cm away from the sample. A spectralon white panel

Fig. 1. Study areas and location of sampling points.

was applied as the standard reference for diffuse reflection, and
it needed to be calibrated at the same time as the measurement.
Each sample was measured 10 times. If there was an abnormal
spectrum, it was eliminated, and the arithmetic average of the
10 measurements was taken as the spectral reflectance of the
sample.

To reduce random noise, the data at both ends of the
spectrum (350-399 and 2401-2500 nm) were removed. A
Savitzky-Golay filter was employed to smooth the 401-2400
nm spectral curve [35]. Origin 8.0 software was used for
spectral smoothing and noise removal processing. To eliminate
or weaken the background noise, enhance the target spectral
information, and improve the signal-to-noise ratio, the second-
order reciprocal [36] was applied to preprocess the spectral
data. Finally, the spectrum was resampled with a resampling
interval of 10 nm. In this preprocessing task, we used a
personal computer with a 2.8 GHz Intel Core i7-4900 MQ,
32 GB RAM, and a Windows 10 operating system. Compared
to that of traditional methods, our preprocessing time was less
than 20 minutes, which saves time.

C. FOD

Fractional order differentiation can provide an extension of
the order of integer order differentiation to arbitrary orders
[37]. Currently, the three main forms that are commonly used
are Riemann-Liouville, Grünwald-Letnikov and Caputo [38].
Of these, the Grünwald-Letnikov expression is defined as:

dαf(x) = lim
h→0

1

hα

t−a
h∑

m=0

(−1)m
Γ(α+ 1)

m!Γ(α−m+ 1)
f(x−mh)

(1)
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In which α is an arbitrary order, h is the step size, while t and
a are the maximum and minimum limits of the differentiation,
respectively.

Given the resampling interval of 1 nm for the spectrometer
used in the research, with h = 1, it is possible to derive the
difference expression for the fractional order differentiation of
the unary function f(x) as:

dαf(x)

dxα
≈f(x) + (−α)f(x− 1) +

(−α)(−α+ 1)

2
f(x− 2)

+ · · ·+ Γ(−α+ 1)

n!Γ(−α+ n+ 1)
f(x− n)

(2)

D. Data Enhancement

Deep learning is a data-driven method using multilayer
neural networks to learn different levels of detailed features,
which is more conducive to the improvement of regression
model performance. In the existing spectroscopy research, due
to the small number of datasets, the spectroscopy expands
through stochastic feature mapping [39], cross domain feature
adaptation [40], Generative Adversarial Network (GAN) [41],
etc. to make the model robust and adaptable. Compared with
two-dimensional data, such as images, the spectrum can be
regarded as one-dimensional data. Esben et al. [19] uses offset,
slope, and multiplication spectral data expansion methods
to expand the tablet spectral data, and combined with deep
convolutional neural networks, it has a strong regression effect.
In the experiments mentioned above, multiplication was done
1±0.10 times, but the tablet dataset from near infrared (NIR)
spectra was used to measure drug content, and the spectral
response was related to drug content. For this experiment, on
the other hand, the soil hyperspectral response is related to
the Cu concentration, which is why the choice of expanded
parameters and the above experiments should be considered
separately in conjunction with specialized domain knowledge.
As the present experiment uses second-order differential to
preprocess hyperspectral data, it is effective and reasonable
to combine the enhancement process with the preprocessing
method in consideration. In previous spectral preprocessing
studies, the fractional-order differential preprocessing method
has been used to extract more subtle features with positive
outcomes. For the parameters chosen in the present research,
the disturbed spectral values range as far as possible be-
tween the spectra processed by second-order differential and
2.2 order differential, and between the spectra processed by
second-order differential and 1.8 order differential, so as to
make the disturbance more reasonable and effective. Following
the second-order differential and 1.8 order differential for all
bands, the absolute value of the difference for each band lies
mostly in the range of 0-0.001 multiplied by the band after the
second-order differential, while following the same operation
for all bands after the second-order differential and 2.2 order
differential, the absolute value lies mostly in the range of 0-
0.001 multiplied by the band after second-order differential
(Fig. 2). Hence, this research chose to randomly multiply by
0.999 -1.001 for all the soil spectrum datasets.

Fig. 2. Distribution of target wavelengths based on the absolute value of
the difference in the range of 0-0.001 multiplied by the band after second-
order differential (400-2400 nm). The color blue represents the corresponding
selected wavelength. (a) the absolute value of the difference between the
spectra processed by second-order differential and 2.2 order differentialbthe
absolute value of the difference between the spectra processed by second-
order differential and 1.8 order differential.

There are many advantages of using data enhancement as
the preprocessing method. Firstly, it is a type of few-shot
learning, many expansion methods are already available in
other spectral domains, while there is no relevant expansion
method for predicting heavy metal concentration from soil
hyperspectral measurements, and it has much potential to
be combined with more expert knowledge to generate more
effective expansion methods. Secondly, the expanded data
can effectively alleviate the underfitting issue caused by the
insufficient sample size of the deep learning dataset, enabling
the deep learning to perform more effectively. Moreover,
by performing operations on a larger range of data enables
the model to concentrate on statistically significant factors,
which can reduce potential bias. Ultimately, the combination
of deep learning data augmentation and expanded data from
soil hyperspectral heavy metal knowledge eliminates the need
for extensive manpower and resources to collect and analyse
massive datasets, which reduces expenses and provides cost
savings.

E. Spectral Feature Reduction

In recent years, the dual-band spectral index method has
been repeatedly employed to explore the relationship between
soil heavy metals and wavebands. In this experiment, two dual-
band spectral indices were tested for correlation with soil Cu
concentration, and calculated using excel sheet software for
any two wavelengths (Si, Sj) within 400-2400 nm. For either
of these two spectral indices, the combination of wavelengths
with the greatest correlation to Cu concentration was selected
using the R software [42]. Normalized difference index (NDI),
ratio index (RI) are defined by:

NDI(Si, Sj) = (Si − Sj)/(Si + Sj) (3)

RI (Si, Sj) = Si/Sj (4)

where Si and Sj represent the spectral values, and i and j
stand for any band from 400 nm to 2400 nm.
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PCA is an effective technique to reduce the dimensionality
of the data. Through the orthogonal process, hyperspectral data
can be transformed into uncorrelated principal components
(PCs), which can be linearly combined to represent the original
spectral data [43]. Typically, a combination of some well-
ranked PCs together can represent most of the raw spectral
information. In this study, the number of PCs were based
on the explained amount of total spectral variance (>95%)
of the total spectral dataset. We used the PCA method in
our experiments on both the raw hyperspectral data and the
expanded hyperspectral data, all of which were processed by
second-order differentiation.

F. Predictive Mechanism Exploration

Many existing studies have shown that other substances in
the soil can affect the response of the spectral curve and thus
have an impact on the predicted heavy metal concentration in
the soil [44]. Given the complex composition of soil and the
different concentrations of substances in different regions, the
bands and intensity of the influence of these substances on
the hyperspectral data vary, thereby affecting the experimental
results using spectroscopy to detect soil heavy metal levels
to varying degrees. For example, Somsubhra used VisNIR
DRS to quickly predict the total arsenic concentration in five
different solid arsenic items. After predicting the hyperspectral
spectrum and experimenting with the PLSR model, a good
result was finally obtained. Through qualitative spectral anal-
ysis and PLSR coefficients, the predicted As concentration
was shown to have a high correlation with soil organic matter,
clay minerals, Fe and Al oxide [45]. Khosravi et al. [46] used
hyperspectral data in the 350-2500 nm range for preprocessing
using Savitzky-Golay (SG) smoothing, first derivative (FD),
and second derivative (SD) approaches and then used partial
least square regression (PLSR) and extreme learning machine
(ELM) to predict the heavy metal concentrations of Pb and Zn
in the soil. Among the algorithms, FD-ELM had the highest
prediction accuracy. This result shows that the adsorption of
heavy metals by active iron oxides and clay in the soil is an
important mechanism for predicting Pb and Zn levels without
spectral characteristics. Therefore, this experiment uses Cu and
SOM, As, Cr, Pb, and Zn to perform correlation analysis, and
it is found that the wavelengths related to the hyperspectral
data of the Eastern Junggar coalfield have an analyzable
distribution. When selecting training data, auxiliary substances
such as SOM, As, Cr, Pb, and Zn can be added so that these
substances can be used to replace spectral features when the
spectral response is weak.

III. CORRECTION STRATEGY

A. PLSR

Partial least square regression analysis is an effective multi-
ple regression modeling method that has been widely used to
establish spectral quantitative models [47]. If the independent
variables have serious multiple correlations, the use of step-
wise regression to select variables increases the interpretable
error of the model. To solve the interference of multiple
correlations of variables on regression modeling, Wood, Abano

and others proposed a partial least square regression analysis
method, which dealt with a small number of samples, serious
multiple correlations between variables, and a large number
of explanatory variables. This method has unique advantages,
and it can realize regression modeling, data structure simplifi-
cation and correlation analysis between two sets of variables.
Regarding the hyperspectral determination of heavy metals,
the spectral absorption characteristics of heavy metals in soil
and the influence of certain soil components can be used to
predict the concentration of heavy metals in the soil using
reflectance spectra. Due to the high correlation between the
multiple hyperspectral bands, the partial least square method
can solve the above problems to a large extent, and the partial
least square regression analysis method is widely used in
prediction of the soil heavy metal concentration.

B. CNN

A convolutional neural network [48] is a kind of feed-
forward neural network with a convolutional layer and deep
network structure, and it is one of the representative algorithms
of deep learning. In the convolutional neural network, the
convolutional layer and the pool sampling layer of the hidden
layer are the core modules to realize the feature extraction
function of the convolutional neural network. The network
model uses the gradient descent method to minimize the loss
function to reversely adjust the weight parameters in the net-
work layer by layer and improves the accuracy of the network
through iterative training. Convolutional neural networks not
only have a high-quality performance in two-dimensional data
but also demonstrate a strong performance in one-dimensional
data. For one-dimensional hyperspectral data, each convolution
filter in the convolutional layer convolves the input spectral
information, and the convolution result constitutes a feature
map of the input spectral signal. Different convolution kernels
extract different levels of features of the spectral signal and
uses these features to improve the final prediction accuracy.
Each convolution filter shares the same parameters, including
the same weight matrix and bias terms. The benefit of sharing
weights is that the location of local features does not need to
be considered when extracting features from high-dimensional
spectral signals, and weight sharing provides an effective way
to greatly reduce the number of convolutional neural network
model parameters to be learned. To enhance the model’s ability
to fit nonlinear measured data, a convolutional neural network
is added to the relu’ layer. The ReLU layer generates the
output of some neurons 0, making the neural network sparse
and reducing the interdependence between parameters, thereby
decreasing the occurrence of overfitting. The fully connected
layer is also often used in convolutional neural networks. The
fully connected layer uses all of the local features to improve
the models learnability.

C. TabNet

The TabNet model [32] is a high-accuracy and interpretable
deep learning model specially designed for tabular data. Not
only does it use an end-to-end model to reduce data processing
time, but it also uses sequential attention to select features,
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so that the reasons for feature selection at each step can be
understood, enabling the model to be better interpretable. The
feature selection in the model is performed using the attentive
transformer layer, which gives the Mask matrix of the current
step based on the results of the previous step and attempts to
ensure that the Mask matrix is as sparse and non-repetitive
as possible. Because the mask vector of the sample can be
different, TabNet can let different samples choose various
features. The feature transformer layer realizes the calculation
and processing of the features selected in the current step. The
decision tree structure is a combination of the size relationship
of a single feature, which is the decision manifold. TabNet
performs feature calculation through a more complex feature
transformer layer and is more efficient than decision trees in
feature combination.

TabNet enables the use of a tree-like function to obtain a
specific value to measure the importance of a feature. TabNet
is based on a tree-like function that determines the proportion
of each feature through the composition factor Mask. To
begin with, TabNet constructs a sequential multi-step structure,
where at each step of the decision tree, the most salient
features from each decision step are chosen for downstream
tasks by using a sequential attention mechanism, making it
interpretable and enabling better learning. In addition, TabNet
employs a single deep learning framework for end-to-end
learning. Secondly, TabNet outperforms, or is on par with,
other tabular learning methodologies. It has two types of
interpretability, a local interpretative, which demonstrates the
importance of each input feature and how they are combined,
and a global interpretative, which quantifies the contribution
of each input feature in the output.

In this case, the same dimensional features f ∈ RB∗D are
used to each decision step, feature selection is achieved by
means of the attentive transformer. The learnable mask M [i] ∈
RB∗D, which is used as a soft selection of salient features from
ith step, where B is the batch size and D is the dimensional
features. With sparse selection of most salient features, the
ability to learn irrelevant features at each decision step would
not be wasted. The mask adopts the form of product, that is,
M [i] ∗ f , based on the feature information processed in the
previous step a[i− 1], and uses the attentive transformer back
to the mask as follows:

M [i] = sparsemax (P [i− 1] · hi(a[i− 1])) (5)

Of which,
D∑
j=1

M [i]b,j = 1 (6)

where hi is a trainable function, as in the part of the attentive
transformer above, including a fully-connected (FC) layer,
followed by batch normalization (BN). P [i] refers to the prior
scale of the above graph. This indicates how many features
have been used previously.

P [i] =

i∏
j=1

(γ −M [j]) (7)

where the γ in the above equation serves as a relaxation
parameter. A feature is used in only one decision step when

Fig. 3. After formally denoting the desired underlying mapping as H(x), we
let the stacked nonlinear layers fit another mapping of F (x) := H(x) − x.
The original mapping is recast into F (x) + x.

γ = 1; it can be used in multiple decision steps when γ
increases.

The mask of each step represents a local interpretation,
while the converged mask represents a global interpretation,
where the contribution of each input to the output can be
obtained by aggregating feature importance mask of all steps:

Magg−b,j =

Nsteps∑
i=1

ηb[i]Mb,j [i]/

D∑
j=1

Nsteps∑
i=1

ηb[i]Mb,j [i] (8)

where ηb[i] denotes the aggregate decision contribution at ith

decision step for the bth sample.

D. Residual Learning

As the network deepens, a drop in the accuracy of the
training set occurs and is not caused by overfitting. Therefore,
the author proposes a brand-new network for this problem,
called a deep residual network [49] to allow the network to
deepen as much as possible. The residual block is an essential
part of the deep residual learning framework. The structure
of the residual block is shown in Fig. 3. It does a reference
(x) for the input of each layer and learns to form a residual
function instead of learning some functions without reference
(x). This residual function is easier to optimize and can greatly
deepen the number of network layers.

E. Prediction Accuracy

In the process of training set verification and test set
verification, this experiment uses commonly used indicators,
namely, the coefficient of determination (R2), root mean
square error (RMSE) and performance ratio interquartile range
(RPIQ), to evaluate the performance of the model [50]. In
the RPIQ evaluation [51], 2.20 ≤ RPIQ < 2.70 indicates
that the model performance is very poor, 2.70 ≤ RPIQ <
3.37 indicates that the model performance is average and can
provide reasonable estimation results, 3.37 ≤ RPIQ < 4.05
indicates that the model has good performance, and RPIQ ≥
4.05 shows that the model performance is considered excellent.
In most cases, good models are considered to have relatively
large R2 and RPIQ values and relatively low RMSE values.
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TABLE I
STATISTICAL DESCRIPTIONS OF SOIL CU AND OTHER SOIL PROPERTIESE

Attributes Sample sets N Min mg kg−1 Max mg kg−1 Mean mg kg−1 Median mg kg−1 Standard
deviation

CV
Background

value

Cu

Entire 168 0.0110 0.0460 0.0192 0.0185 0.0055 0.2866 26.7
Training 1340 0.0120 0.0460 0.0190 0.0181 0.0050 0.2659 26.7

Validation 170 0.0110 0.0320 0.0202 0.0223 0.0067 0.3313 26.7
Test 17 0.0080 0.0340 0.0199 0.0193 0.0075 0.3800 26.7

SOM Entire 168 0.2634 95.9048 6.3468 2.9289 10.1851 1.6047 None

As Entire 168 1.5427 80.4553 37.9147 37.3292 6.8191 0.1798 11.2

Cr Entire 168 0.0140 0.1100 0.0536 0.0540 0.0183 0.3423 49.3

Pb Entire 168 0.0040 0.0470 0.0214 0.0210 0.0076 0.3544 19.4

Zn Entire 168 0.0168 0.1090 0.0476 0.0476 0.0144 0.3038 68.8

Fig. 4. (a) Original spectral reflectance of soil samples with four different Cu contamination levels and (b) continuum removal (CR) spectra of of soil samples
with four different Cu contamination levels.

IV. RESULTS

A. Descriptive Statistics for Cd and Other Soil Properties

The statistical data set for the entire Cu concentration is
shown in Table I, the minimum value is 0.0110, the maximum
value is 0.0460, the mean value is 0.0192, and the coefficient
of variation (CV) is 28.66%. According to the pollution level
in the China Soil Environmental Quality Control Standard
[10], only 39 of the 168 samples had Cu pollution problems,
and 129 samples were not contaminated, with a pollution rate
of 23.21%.

The SOM, As, Cr, Pb and Zn values ranged from 0.2634
to 95.9048, 1.5427 to 80.4553, 0.0140 to 0.1100, 0.0040 to
0.0470, 0.0168 to 0.1090, respectively (Table I). According
to the results reported by Wilding [51], datasets with CV >
35%, 15% < CV < 35% and CV < 15% were considered
to have high, moderate and low variability, respectively. The
CV values of As, Cr and Zn belonged to moderate variation,
while the CV value of SOM and Pb were high.

B. Soil Spectral Analysis

Fig. 4 shows that the spectral reflectance curves of soil
samples with different Cu concentrations in the study area are
roughly the same, and the spectral reflectance of soil samples

and their copper concentration are no longer simply linearly
correlated. The reflectance rises rapidly in the visible light
range and tends to increase slowly in the near-infrared band.
The spectrum curve has 3 more obvious moisture absorption
peaks near 1413 nm, 1922 nm, and 2200 nm caused by water
molecules and -OH groups. The iron oxides absorbance highly
relative to the reflectance in infrared-near infrared band [52],
therefore, it would be main influencing factor of causing the
reflectance differences in 800-1000 nm. SOM is the most
important adsorbent for metals; thus, it was considered to be
important factor to determining the species and bioavailability
soil heavy metals [53], [54]. Therefore, SOM would be another
main influencing factor of causing the reflectance differences
in 800-1000 nm. Most of the Cu concentration soil spectra
in the range of 401 nm to 2400 nm overlap, and most of the
spectra have the same trend, making it difficult to distinguish.
Therefore, the spectra are pre-processed using second-order
differentiation, and deep learning is applied to synthesize
features at each granularity to make the optimal prediction.

C. Correlations Between Cd and Optimal Spectral Indices

The current experiment achieved optimal outcomes with
a modified TabNet model. Moreover, the experiment also
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Fig. 5. Correlations (r) between soil Cu and ratio index (RI).

discovered several bands that can have a significant impact
on the prediction of Cu concentration and revealed the top
30 bands used in the model. Of these, the bands associated
with organic matter are the most numerous, containing a total
of 12 bands. Among these, bands primarily correlated with
organic C-H are 1761 nm [55], 2380 nm [56], 1829 nm [57],
2320 nm [58], 2327 nm [55], 2321 nm [58], and 2365 nm
[58]. The two bands of 1947 nm [56], and 2036 nm [58], [59]
are more clearly influenced by C=O in the organic matter,
while the chlorophyll pigmen and CH2, CH3 in the organic
matter lead to fluctuations at 631 nm [55], 2284 nm [55], [59],
[60] respectively. In the Fe oxides category, the occurrence of
Fe-OH, gibbsite, ferrihydrite, water molecular vibrations, and
OH- are associated with bands of 897 nm [61], [62], 2266 nm
[59], 972 nm [63], [64], and 1422 nm [59], [65] respectively.
Among the clay minerals, 1985 nm [57], [66], 1909 nm [57],
[67], and 2152 nm [58], [59] are identified as the significant
bands for Cu concentration detection. The carbonates, the
hydroxyl group, and the Al-OH lattice structure, AL-OH, and
kaolin contained in the soil perform an essential role in these
three bands respectively.

For this research, the Pearson correlation (r) between Cu
concentration in soil and the RI and NDI indices were calcu-
lated separately by employing the optimal band combination
algorithm. For SDR, the highest correlation regions of NDI
and RI were mainly located over the range of 1800-2400
nm (Figs. 5 and 6). Considering the NDI indices for all
spectra, which were selected by the degree of correlation and
by using the top four spectral indices ranked by the NDI
strategy, resulted in NDI (r = −0.4378, NDI [SDR 623,
SDR 2091]), NDI (r = 0.4343, NDI [SDR 851, SDR 880]),
NDI (r = 0.4581, NDI [SDR 1581, SDR 2331]) and NDI
(r = 0.4571, NDI [SDR 1734, SDR 2143]). Overall, after
the FDR transformation, the four highest Pearson correlation
spectral indices of RI were RI (SDR 403, SDR 2195), RI
(SDR 870, SDR 2385), RI (SDR 688, SDR 1851), and RI
(SDR 1949, SDR 2195), with the Pearson correlation value of
0.4298, 0.4242, -0.4267, and -0.4301, respectively.

In this experiment, owing to the richness of information in

Fig. 6. Correlations (r) between soil Cu and normalized difference index
(NDI).

the expanded and unexpanded spectral data used, the required
number of Principal components was also higher when the
cumulative variances were at nearly 95% with smaller values
of the largest explained variances (Fig. 7). The diversity of
information adds difficulty to the prediction of Cu content.
Although the use of PCA can extract valid information and
reduce unnecessary noise information, it still limits the high
accuracy of the PLSR implementation. While comparing pre-
processing methods that incorporate expanded data yields the
best results (Table IV, Table VI), it still has inferior accuracy
compared to the combination of also using PCA methods and
PLSR models [10]. Furthermore, the use of PCA algorithms
results in dimensionality reduction losses, and the relatively
small amount of information can cause underfitting of deep
learning models, resulting in poorly performing deep learning
network models (Table VIII).

D. Comparisons Between the TabNet Model and the Three
Improved TabNet Models

Our experiment is based on the TabNet model and is
improved. To test the effect of the improved TabNet model, we
changed the TabNet model to the FC layer in three different
ways (Fig. 8), used the original TabNet [see Fig. 8(a)] to
experiment with soil hyperspectral data, and finally compared
the four models final results. First, when inputting data, the
data of two-band (2D) indices, and auxiliary information, the
soil spectrum data processed by the second-order differen-
tiation are used. Spectral concentration is input, and self-
supervised learning is used to learn the relationship between
features. This experimental procedure is the same for the four
experiments. Second, all models use the end-to-end model,
where the encoder architecture is shown in Fig. 9, and the
TabNet decoder architecture is shown in Fig. 10. The four
model transformation parts are the feature transformer parts.
Model 1 completely migrates the feature transformer part [see
Fig. 8(a)], and to make the input part of the model more
abundant, Model 2 adds an FC layer to the shared across
decision steps section [see Fig. 8(b)] compared with Model
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Fig. 7. Correlations of soil Cu to the first 123 principal components. (a)
calibration dataset with n = 1340. (b) calibration dataset with n = 134.

1. Model 3 adds 2 FC layers to the shared across decision
steps part [see Fig. 8(c)] on the basis of Model 1, which is
used to test whether the more fully connected layers are input
can create a better effect. Model 4 not only adds the FC layer
on the basis of Model 1 but also adds a residual network
to the FC layer for the fully connected layer [see Fig. 8(d)]
to reduce information loss when transmitting information and
protecting the integrity of the information. It can be seen from
Table II that when the number of FC layers increases by 1
layer, the RMSE value of the training set and the validation
set increases, and the R2 value and the RPIQ value decrease.
While the RMSE value of the test set decreases, the R2 value
and the RPIQ value increases, thus improving the models
effect. When the number of FC layers increases by 2 layers,
the RMSE values of the training set and the validation set are
increased from 3.07, 3.32 to 3.26, 3.42, respectively, the R2

value is reduced from 0.6818, 0.6839 to 0.6397, and 0.6656,
respectively, the RPIQ value is reduced from 1.95, 2.10 to
1.83, and 2.04, respectively. In the test set, the RMSE value
increases from 3.45 to 3.73, the R2 value decreases from 0.60
to 0.53, and the RPIQ value decreases from 1.73 to 1.60. At
this time, when the FC value increases, the model performance
is overfitted, and the effect deteriorates. In model four, after
adding the residual network, the training set, validation set, and
test set have the smallest RMSE value, the largest R2 value
and RPIQ value, and the performances of these four models
are the best, far exceeding other models.

E. Impact of Change in Sample Size on the Models Perfor-
mance

The experiment explores the influence of the changes in the
number of training sessions on the results of the experiment.

Fig. 8. A feature transformer block example. (a) Model 1, (b) Model 2, (c)
Model 3, (d) Model 4.

Fig. 9. TabNet encoder, was comprised of a feature transformer, an attentive
transformer and feature masking.

Fig. 10. TabNet decoder, was comprised of a feature transformer block at
each step.

For Model 4, which has the best model effect, half of the
dataset is used for training, and the results are obtained. After
using the TabNet method, it can be seen from Table III that
when the amount of training data increases, the RMSE value
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TABLE II
STATISTICAL SUMMARY OF CU ESTIMATION WITH THE PRETREATMENT OF STRATEGY I DEVELOPED FROM MODEL 1, 2, 3 AND 4. STRATEGY I

INDICATES THAT THE TYPES OF INPUT VARIABLES CONTAINS BOTH THE EXPANDED DATA AND ORIGINAL SPECTROSCOPY DATA WITH SECOND-ORDER
DERIVATIVE ADDING AUXILIARY INFORMATION

Strategies Models Calibration (n = 1340) Valid (n = 17) test (n = 17)

r2
RMSE

mg kg−1
RPIQ r2

RMSE
mg kg−1

RPIQ r2
RMSE

mg kg−1
RPIQ

Strategy I Model 1 0.762 2.656 2.259 0.817 2.528 2.769 0.578 3.570 1.680

Strategy I Model 2 0.682 3.072 1.953 0.684 3.326 2.104 0.606 3.450 1.739

Strategy I Model 3 0.640 3.269 1.835 0.666 3.422 2.046 0.537 3.738 1.605

Strategy I Model 4 0.967 0.992 6.051 0.970 1.022 6.852 0.940 1.341 4.474

TABLE III
EFFECT OF THE NUMBER OF CALIBRATION SAMPLE SIZE WITH THE PRETREATMENT OF STRATEGY I ON THE EVALUATION CRITERIA VALUES. STRATEGY
I INDICATES THAT THE TYPES OF INPUT VARIABLES CONTAINS BOTH THE EXPANDED DATA AND ORIGINAL SPECTROSCOPY DATA WITH SECOND-ORDER

DERIVATIVE ADDING AUXILIARY INFORMATION

Strategy Strategy I

Calibration sample size Calibration (n = 1340) Valid (n = 17) test (n = 17)

r2
RMSE

mg kg−1
RPIQ r2

RMSE
mg kg−1

RPIQ r2
RMSE

mg kg−1
RPIQ

13400 0.967 0.992 6.051 0.970 1.022 6.852 0.940 1.341 4.475

6700 0.944 1.278 4.695 0.941 1.433 4.886 0.912 1.630 3.681

decreases from 1.63 to 1.34, which shows that increasing
the dataset can increase the model’s ability to learn from
the data. Since the TabNet model uses different runs on the
same dataset, there are different results. Table III provides the
average and standard deviation of the RMSEP for 20 runs
of the dataset. Although the hyperparameters are fixed, the
weights after training will vary as the model runs. This is
due to the influence of some random factors, such as random
loss of weights and random optimization. In neural networks,
the most common way to use randomness is the random
initialization of network weights, such as the randomness of
weight regularization, the randomness of the dropout layer,
and random optimization. In addition to these, there are also
even more sources of randomness, meaning that when running
the same neural network algorithm on the same dataset, it is
destined to receive different results.

F. Three PLSR Models and Three Pretreatments

First, the traditional algorithm PLSR analyses all bands with
Strategy I and obtains regression results. In partial least square
modeling, the number of components is extracted. In most
cases, the partial least square method decomposes both the
dependent variable and the independent variable, arranges the
factors according to the correlation between them from large to
small, and decides to choose a certain number of factors to par-
ticipate in the modeling. The choice of the number of factors
is determined experimentally, which has a highly important
impact on the results of the experiment. In this experiment,
the performance of the model is evaluated by changing the
number of principal components. The parameters and results in
the experiment are shown in Table IV. When the number of LV
is 5, the model performance is the best, and when the number
of LV is 2, the model effect is the worst. This is because when
the principal component number is small, the data cannot be

effectively decomposed and filtered, and the comprehensive
variable that has the strongest explanation for the dependent
variable can be extracted. When the number of principal
components gradually increases, the RMSE of the training
set and the validation set gradually decreases, R2 gradually
increases, and RPIQ gradually increases, indicating that when
more principal components are selected, the model can obtain
more Cu concentration information from the hyperspectral soil
data. In the test set, when the selected number of principal
components gradually increases, the RMSE value, absolute
value of R2, and RPIQ first decrease and then increase,
indicating that when the number of principal components
increases, more information is extracted from the hyperspectral
spectrum, but it is not useful information related to the Cu
concentration. As the information gradually increases, some
irrelevant information is introduced, which does not improve
the performance of the model and even has a negative impact.
Therefore, the performance of the model improves and then
worsens. When the number of factors involved in modeling is
5, the result is optimal, and the RMSE, R2, and RPIQ of the
test set are 5.8104, -0.1179, and 1.0326, respectively.

When applying the pretreatment of Strategy IIthe PLSR
model outperformed the augmented data effect (Table IV,
Table V). When using the spectral and auxiliary data after
second-order differentiation (Table V), the best result obtained
was when the number of LVs was 2, with R2 values of -0.186
for the test dataset, 5.458 for RMSE and 1.099 for RPIQ.
This optimal result outperformed the strategy I preprocessing
method, yet the R2 for both preprocessing methods was
negative, illustrating that when the number of training sets was
declined, the interference by noise on the PLSR model could
be mitigated, albeit the performance of the model remained
relatively poor. As the LV value increased, the model became
progressively less effective. Whereas PLSR showed the best
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TABLE IV
EFFECT OF THE LV NUMBER AND THE PRETREATMENT OF STRATEGY I ON THE EVALUATION CRITERIA VALUES. STRATEGY I INDICATES THAT THE

TYPES OF INPUT VARIABLES CONTAINS BOTH THE EXPANDED DATA AND ORIGINAL SPECTROSCOPY DATA WITH SECOND-ORDER DERIVATIVE ADDING
AUXILIARY INFORMATION

Strategy Strategy I

LV number Calibration (n = 1340) Valid (n = 17) test (n = 17)

r2
RMSE

mg kg−1
RPIQ r2

RMSE
mg kg−1

RPIQ r2
RMSE

mg kg−1
RPIQ

2 0.528 3.740 1.604 0.559 3.928 1.782 -0.253 6.152 0.975

5 0.852 2.093 2.867 0.854 2.263 3.093 -0.118 5.810 1.032

8 0.957 1.136 5.284 0.957 1.230 5.691 -0.219 6.066 0.988

TABLE V
EFFECT OF THE LV NUMBER AND THE PRETREATMENT OF STRATEGY II ON THE EVALUATION CRITERIA VALUES. STRATEGY II INDICATES THAT THE

TYPES OF INPUT VARIABLES CONTAINS ORIGINAL SPECTROSCOPY WITH SECOND-ORDER DERIVATIVE ADDING AUXILIARY INFORMATION

Strategy Strategy II

LV number Calibration (n = 134) Valid (n = 17) test (n = 17)

r2
RMSE

mg kg−1
RPIQ r2

RMSE
mg kg−1

RPIQ r2
RMSE

mg kg−1
RPIQ

2 0.979 0.806 7.447 0.176 4.902 1.224 -0.186 5.458 1.099

5 0.883 1.896 3.164 0.143 4.999 1.200 -0.209 5.513 1.088

8 0.462 4.078 1.471 -0.094 5.649 1.062 -0.403 5.936 1.011

TABLE VI
EFFECT OF THE LV NUMBER AND THE PRETREATMENT OF STRATEGY III ON THE EVALUATION CRITERIA VALUES. STRATEGY III INDICATES THAT THE

TYPES OF INPUT VARIABLES CONTAINS ORIGINAL SPECTROSCOPY WITH SECOND-ORDER DERIVATIVE AND PCA METHOD ADDING AUXILIARY
INFORMATION

Strategy Strategy III

LV number Calibration (n = 134) Valid (n = 17) test (n = 17)

r2
RMSE

mg kg−1
RPIQ r2

RMSE
mg kg−1

RPIQ r2
RMSE

mg kg−1
RPIQ

2 0.823 0.002 2.551 0.827 0.002 2.807 0.407 0.004 1.488

5 0.924 0.002 3.882 0.888 0.002 3.491 0.184 0.005 1.269

8 0.963 0.001 5.572 0.945 0.001 4.969 -0.116 0.006 1.085

model performance when Strategy III was utilized as the pre-
processing method (Table VI). The model performed best
when the LV was equal to 2, with R2 values of 0.407, RMSE
values of 0.004 and RPIQ values of 1.488. The model over-
fitted as the number of LVs increased and was most severe at
a value of 8 for LVs, when the value of R2 for the test set
was -0.116, the value of RMSE was 0.006 and the value of
RPIQ was 1.085.

G. Four CNN Models

The first DA-CNN model (Model 5) is shown in Fig. 11(a).
It is a deep learning model with 2 convolutional layers and a
fully connected layer. Each convolutional layer is configured
with a ReLU activation function, and after the two convolu-
tional layers, there is a flattened layer and a fully connected
layer. The second convolutional neural network model (Model
6) is shown in Fig. 11(b). It includes three convolutional
layers, and there is a ReLU activation function after the first
two convolutional layers. In addition to configuring a ReLU
activation function for the third convolutional layer, there is
also a flattened layer and a fully connected layer. Compared

with the first layer model, the second layer model adds a layer
with a 3*3 convolution layer on the basis of the first two layers
of the convolution layer, and the full connection is no longer
a 2128-dimensional tensor to a 1-dimensional tensor. The full
connection is from 2112 dimensions to a 1 dimension, with
an extra convolutional layer, this is equivalent to adding a
different size filter to learn the spectral data of the feature
in order to get more information. The third convolutional
neural network model has three convolutional layers and is
composed of two fully connected layers. The third model
is shown in Fig. 11(c). It has one more convolutional layer
and one fully connected layer than the first model. There
is a ReLU function behind each convolutional layer. Table
VII shows that the training set, validation set and test set of
Model 6 are with the better RPIQ, and the smaller RMSE
value. This indicates that the more complex soil hyperspectral
dataset and more convolutional layers can extract more one-
dimensional soil spectral signals. Different levels of features
make the features richer and more complex, thereby generating
a better regression model. After Model 7 is deepened in the
fully connected layer, although the nonlinear expression ability
of the model is improved to increase the learnability of the
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TABLE VII
STATISTICAL SUMMARY OF CU ESTIMATION WITH THE PRETREATMENT OF STRATEGYDEVELOPED FROM MODEL 1, 2, 3 AND 4. STRATEGYINDICATES

THAT THE TYPES OF INPUT VARIABLES CONTAINS BOTH THE EXPANDED DATA AND ORIGINAL SPECTROSCOPY DATA WITH SECOND-ORDER DERIVATIVE
ADDING AUXILIARY INFORMATION

Strategy Strategy I

Models Calibration (n = 1340) Valid (n = 17) test (n = 17)

r2
RMSE

mg kg−1
RPIQ r2

RMSE
mg kg−1

RPIQ r2
RMSE

mg kg−1
RPIQ

Model 5 0.652 3.212 1.868 0.604 3.724 1.879 0.647 3.267 1.836

Model 6 0.762 2.656 2.259 0.752 2.947 2.376 0.761 2.687 2.233

Model 7 0.749 2.723 2.203 0.737 3.036 2.305 0.748 2.756 2.177

Model 8 0.941 1.322 4.537 0.949 1.341 5.222 0.942 1.324 4.531

model, after adding 2 layers, it learns more interference in
the soil to correctly predict the spectral information of the Cu
concentration, which make the results overfitting. And thus,
the model performance is better than that of the first model,
but it is worse than that of the second model. Model 8 [see
Fig. 11(d)] adds residual connections on the basis of model 7,
which improves the learning ability of network representation
and predicts heavy metal content best. The above findings
further illustrate the pervasiveness of data augmentation for
deep learning.

H. Impact of Two Different Traditional Pretreatments on Deep
Learning Models

In order to explore the impact of traditional preprocessing
methods on deep learning, two different traditional prepro-
cessing methods were used and combined with deep learning
models to perform regression prediction on Cu content. As can
be seen from Table VIII, the two deep learning models with
the best performance in strategy I, under the preprocessing
methods of strategy II and strategy III, the accuracy of model
prediction is no better than that under the condition of strategy
I preprocessing. For the two deep learning models, the effect of
using strategy II preprocessing is significantly better than using
Strategy III. The RMSE, R2 and RPIQ of model 8 in trategy II
pretreatment test set were 4.316, 0.259 and 1.390, respectively.
In Strategy III, RMSE, R2 and RPIQ were 0.007, -1.099 and
0.826, respectively. In model 4, the values of RMSE, R2 and
RPIQ in the test set of model Strategy II are 4.446, 0.213
and 1.349, respectively. However, in Strategy III, the effect
was poor, and R2 was negative, while RMSE and RPIQ were
0.005 and 1.089, respectively.

V. DISCUSSION

In this paper, we studied the data after processing the
measured hyperspectral data combined with second derivative
processing and the data enhancement method. In addition to
using the measured spectral data, we added the 2D index and
other heavy metals and SOM in the soil l features using a
deep learning model to predict the Cu concentration. After
second-order derivation of the spectral data, a more detailed
relationship between spectral band information and the Cu
concentration can be obtained. Using spectral parameters that
are more sensitive to soil Cu, we experimented with two-band

Fig. 11. The structure of the CNN model. (a) Model 5, (b) Model 6, (c)
Model 7, (d) Model 8.

spectral indices called RI and NDI to detect their correlation
with the soil Cu concentration. Many existing studies have
confirmed that certain hyperspectral bands are related to other
substances in the soil, but the influence of the composition
of this substance on the bands changes with the geographic
location; therefore to understand the prediction mechanism
of Cu in the Eastern Junggar District, we introduced the
concentration of five substances (SOM, As, Cr, Pb, and Zn)
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TABLE VIII
STATISTICAL SUMMARY OF CU ESTIMATION WITH THE PRETREATMENT OF STRATEGY II AND STRATEGY III DEVELOPED FROM MODEL 4 AND 8,

RESPECTIVELY. STRATEGY II INDICATES THAT THE TYPES OF INPUT VARIABLES CONTAINS ORIGINAL SPECTROSCOPY WITH SECOND-ORDER
DERIVATIVE ADDING AUXILIARY INFORMATION. STRATEGY III INDICATES THAT THE TYPES OF INPUT VARIABLES CONTAINS ORIGINAL SPECTROSCOPY

WITH SECOND-ORDER DERIVATIVE AND PCA METHOD ADDING AUXILIARY INFORMATION

Strategies Models Calibration (n = 134) Valid (n = 17) test (n = 17)

r2
RMSE

mg kg−1
RPIQ r2

RMSE
mg kg−1

RPIQ r2
RMSE

mg kg−1
RPIQ

Strategy II Model8 0.541 3.768 1.593 0.161 4.948 1.213 0.259 4.316 1.390

Strategy III Model 8 0.905 0.002 3.498 -0.736 0.007 0.843 -1.099 0.007 0.826

Strategy II Model 4 0.493 3.959 1.516 0.244 4.695 1.278 0.213 4.446 1.349

Strategy III Model 4 -0.250 0.006 0.965 -0.264 0.006 0.988 -0.207 0.005 1.089

to assist in predicting the Cu concentration. Finally, we used
the extended spectral data processed by the second-order
differential, the 8 data selected by the 2D index, and the
spectral concentration of the five soil substances as features
and used a deep learning model that can learn the fine-grained
spectral features to predict the Cu concentration in the soil.

Deep learning has been reasonably well developed within
the available spectroscopy domain, and this research chose to
employ a deep learning model rather than the more commonly
applied PLS model when using hyperspectral empirical data
to predict the Cu concentration in the soil. Nevertheless, the
quality of feature selection can have a significant impact on
the performance of a deep learning model, and the use of well-
chosen features as input to a deep neural network enables a
more effective model for predicting the Cu concentration in
the soil. Consequently, to achieve more effective outcomes
in the deep learning model for predicting the Cu concentra-
tion in the soil, the present experiment adopted the second-
order derivative preprocessing methodology to preprocess the
hyperspectral data by learning from the experience of pre-
vious scholars on the processing and selection of features,
and incorporated two-band spectral indices as well as five
substances (SOM, As, Cr, Pb, and Zn) as auxiliary information
to predict the Cu concentration in the soil. As can be observed
from the outcomes, the features selected for this research
demonstrated superior performance in both deep learning
models. Furthermore, of the selected auxiliary data in the
better performing and interpretable TabNet model, only one
ranked outside the top 30 in terms of the importance of the
features, which indicates that the auxiliary data constitute the
more significant information in the improved TabNet model
and that the auxiliary information has a positive impact on
the model performance. While 18 of the soil hyperspectral
data processed by the second-order derivative algorithm were
ranked in the top 30 in terms of the importance of the
features, which demonstrates that a number of spectral bands
processed by the second-order derivative are essential to the
performance of the model. Simultaneously, the soil hyperspec-
tral data processed by the second-order derivative algorithm
accounted for the largest proportion of the input features. As
can be demonstrated by the ultimate optimally performing
deep learning model with RMSE = 1.324, R2 = 0.942, and
RPIQ = 4.531, it is appropriate to handle the soil hyperspectral
data by employing the second-order derivative algorithm.

To be able to perform properly, deep learning requires
not only good features, but also extensive data. The FSL
may reduce data-intensive work on data collection when
obtaining sufficient examples with supervised information is
either difficult or impossible. This research makes use of
the data category from the three broad categories of data,
model, and algorithm in few-shot learning, and transforms the
training dataset to obtain a priori knowledge via augmenting
the soil hyperspectral training dataset. The measured data in
the research area only has 168 data points and too little of a
data volume cannot train a neural network model with better
effects and strong robustness. Therefore, this experiment used
data enhancement techniques commonly employed in deep
learning to expand the data to enable the neural network
training to obtain the optimal hyperparameters. The values of
hyper-parameters were selected for this research by taking the
reference from the guidelines for hyperparameters mentioned
in the TabNet. For most datasets, Nsteps ∈ [3, 10] is the
best option. Nevertheless, the value of Nsteps should be
larger when more feature quantities need to be learned, in
which case the network is too deep can lead to potentially-
problematic ill-conditioned matrices. Taking into account the
small amount of expanded data used in this experiment, and
referring to the setting of Nsteps for smaller datasets in
TabNet, the debugging range of Nsteps for this experiment
is 3-5, and a setting of 3 gives the most effective results
with other hyperparameters unchanged. Nd and Na provide
a balance between the performance and complexity of the
model, with equal values that are reasonable for most datasets.
Simultaneously, the values of Nd and Na should not be too
large, or else overfitting and poor generalization may occur.
For this experiment, the values of Nd and Na are still made
equal, and the reference set mentioned by TabNet (i.e. {8,
16, 24, 32, 64, 128}) has been experimented individually, and
the final result is that 8 is the optimum value. The value of
γ is positively correlated with the value of Nsteps. As the
value of Nsteps is relatively small, γ is chosen from {1.0,
1.2, 1.3, 1.4, 1.5}, and the debugging result is that the model
performs most effectively when γ is 1.3. In comparison to a
small batchsize, when the batchsize is enlarged, it is faster to
process the same amount of data, yet when it is too large,
the memory tends to be insufficient and it affects the outcome
of training loss and generalization ability. According to the
volume of soil datasets and the number of features, as well
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as referring to the settings of B and Bv values in TabNet,
B is chosen from {256, 512, 1024, 2048, 4096, 8192} and
BV is chosen from {128, 256, 512}, and after debugging,
it is concluded that B = 2048 and BV = 128 are the most
suitable parameters. For the present research, the expanded
data together with the auxiliary soil information comprised
the training set and yielded relatively positive outcomes in
both the CNN and TabNet models, yet the outcomes were less
favorable in PLSR models. Data augmentation is a commonly
applied technique in deep learning, and when coupled with
the ResNet block, both the CNN and TabNet models can
effectively learn useful information for the model from a
wider range of features, and achieve the optimal outcomes
respectively. This illustrates that the use of data augmentation
techniques solely, without analyzing and refining models for
soil hyperspectral data, would not achieve optimal outcomes.
To optimize the outcome of predicting Cu concentration, it is
necessary to take into account data augmentation techniques,
as well as the strategies of deep learning networks enhanced
by relevant expertise. What also has an impact on the accuracy
of the TabNet model is the size of the training dataset, as it
increases, the training, validation, and test sets also undergo
corresponding changes, with R2 value, RPIQ value becoming
larger and RMSE value becoming smaller. This demonstrates
that the increased dataset would have a beneficial effect on the
improved TabNet model to learn vital patterns from manifold
data sources. When the number or type of hyperspectral data
decreases, the deep learning model cannot be fully trained
and the optimal results cannot be obtained (Table VIII). And
in Table IV, the combination of data augmentation and PLSR
performed the worst in the test set, with R2 even showing
a negative number. Yet, when contrasted with the test set,
the performance of PLSR in the training and validation sets
performed well with the increasing number of the LV, which
was only slightly inferior to the optimal model of deep
learning, while the model in the test set became worse with the
increasing number of LV, demonstrating that the increase in
latent variables enabled PLSR to learn more noise information
from the expanded data, making the model appear to be
overfitted. Both the PCA processing and PLSR combination
of hyperspectral data have yielded a high level of heavy metal
prediction in previous studies without the use of data augmen-
tation (Table VI). The current experiment also preprocessed
the hyperspectral data with a combination of PCA and data
augmentation techniques and predicted the Cu concentration
by employing PLSR and revealed that the performance was
better than the model without PCA processing. The reason for
this is that the method of expanding the data is to add random
noise, which is beneficial to the training of the deep learning
model, yet enables PLSR to learn more noise information. The
PCA method can minimize the input of noise information,
and the model performs optimally when the number of LV is
minimal, since the more LV there are, the more noise in the
variables is learned, resulting in poor model performance and
a state of overfitting.

Apart from the influence of the preprocessing approach on
the ultimate outcomes, the choice and optimization of the
model are also vital for the prediction of the Cu concentration

in the soil. The preprocessing approach employed in this
research performed at its best in deep learning. In particular,
the effects of the CNN model and TabNet model with ResNet
learning were excellent; whereas the CNN model with ResNet
learning was slightly higher than the modified TabNet model
in terms of its performance, yet its interpretability was weaker,
while the TabNet model can directly select the more significant
features and rank them in order of importance. In previous
research on the prediction of the heavy metal concentration
from soil hyperspectral, Pyo et al. [27] performed PCA on
98 visible and near-infrared spectroscopy soil samples and
experimentally revealed that the CNN model with convo-
lutional autoencoder yielded the highest As, Cu, and Pb
estimates. For this research, the PCA was used to reduce
the dimensionality and extract the essential information as
the data volume was small, which reduced the burden of the
neural network to learn excessive features from the original
data, and both the CNN model with convolutional autoencoder
and the CNN model with ResNet learning added proposed
in this paper showed satisfactory results in predicting the
heavy metal concentration. This indicates that CNN and its
adapted models offer great potential in predicting the heavy
metal concentration with high accuracy, simplicity, and rapid
prediction by utilizing soil hyperspectral data. Nonetheless,
none of the above models are able to explain the impact of the
input data on the prediction of heavy metal concentration well
enough nor are they able to carry out the analysis related to
soil spectroscopy due to the limitations of convolutional neural
networks, which, however, still have a good rapid detection
capability. The deep learning model mentioned in this paper
is mainly used to extract important information and to predict
the Cu concentration. There are, nevertheless, existing studies
that can apply deep learning models to data augmentation
and perform regression predictions with traditional regression
models, which are distinct from the purpose of the deep
learning models used in this paper [28]. Also, some studies
were done without the use of real soil hyperspectral data and
instead used some data from other mediums combined with
deep learning to estimate heavy metal concentration. Since
no hyperspectral data were used and the number of features
used was relatively small, yet with a strong correlation to the
heavy metal concentration, little but essential information can
contribute to a better performance of the deep learning model
GRU [29]. This is consistent with the improved TabNet model,
whereby the auxiliary information is all ranked in the top 30 of
the importance list. Compared to the sensitivity analysis where
the SHAP values represent the contribution of the input vari-
ables to the predicted concentrations of the four heavy metals,
TabNet only lists 30 significant features in the model, however,
the model is able to obtain the magnitude of the contribution
of all the features to the prediction of the heavy metals. The
TabNet model has not only a regression function, but also
a sensitivity analysis function, which is both comprehensive
and powerful. The improved TabNet model with its multiple
functions offers both high accuracy and high speed compared
to deep learning models that require large-scale data training
[31], and is suitable for practical application in the Zhundong-
Xinjiang Economic & Technological Development Zone.
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TABLE IX
SOIL ABSORBANCE AND AUXILIARY INFORMATION IN THE VISIBLE-NEAR-INFRARED REGIONS

Ranking
Soil constituent
or Wavelength

Relative importance of
the predictor variable

Reference

1 Cr 0.05932 Balasoiu et al. (2001) [68]

2 SDR688, SDR1851 0.05888 Hong et al. (2018) [42]

3 As 0.05646 Nearing et al. (2014) [69], Kabirinejad et al. [70]

4 SOM 0.05380 Wang et al. (2018) [71], Sharma et al. (2015) [72], Zhang et al. (2018) [73]

5 897 nm 0.05185 Sherman and Waite (1985) [61], Wang et al. (2011) [62]

6 SDR403, SDR2195 0.05002 Hong et al. (2018) [42]

7 1909 nm 0.04617 Liu et al. (2018) [67], Hunt (1977) [57]

8 2036 nm 0.03288 Clark et al. (1990) [59], Clark (1999) [58]

9 2152 nm 0.03058 Clark et al. (1990) [59], Clark (1999) [58]

10 1761 nm 0.03045 Ben-Dor et al. (1997) [55]

11 631 nm 0.02843 Ben-Dor et al. (1997) [55]

12 SDR1581, SDR2331 0.02820 Hong et al. (2018) [42]

13 Zn 0.02726 Li (2007) [74], Mittal et al. (2015) [75], Abd-Elfattah et al. (1981) [76]

14 Pb 0.02722 Li (2007) [74], Mittal et al. (2015) [75], Abd-Elfattah et al. (1981) [76]

15 2365 nm 0.02396 Clark (1999) [58]

16 SDR623, SDR2091 0.02291 Hong et al. (2018) [42]

17 2380 nm 0.02196 Fourty et al. (1996) [56]

18 SDR851, SDR880 0.02090 Hong et al. (2018) [42]

19 2284 nm 0.02022 Clark et al. (1990) [59], Ben-Dor et al. (1997) [55] Post and Noble (1993) [60]

20 1829 nm 0.01728 Hunt (1977) [57]

21 SDR1949, SDR2195 0.01649 Hong et al. (2018) [42]

22 2320 nm 0.01637 Clark (1999) [58]

23 2266 nm 0.01627 Clark et al. (1990) [59]

24 2327 nm 0.01612 Ben-Dor et al. (1997) [55]

25 1947 nm 0.01607 Fourty et al. (1996) [56]

26 SDR870, SDR2385 0.01467 Hong et al. (2018) [42]

27 2321 nm 0.01430 Clark (1999) [58]

28 1985 nm 0.01214 White (1971) [66], Hunt (1977) [57]

29 972 nm 0.01188 Liu et al. (2013) [63], Scheinost et al. (1998) [64]

30 1422 nm 0.01122 Clark et al. (1990) [59], Oinuma and Hayashi (1965) [65]

The improved TabNet model achieves the best results
through expanded data and additional auxiliary information.
According to the advantages of the TabNet, the top 30 most
important features input to the neural network are sorted, as
shown in Table IX. It can be seen from Table IX that except
for some bands selected from the hyperspectral bands, only
one of the auxiliary information selected in this experiment
is not in the table, indicating that this information is an
important feature and is useful for the generation of deep
learning models.

In the ranking of importance, there are two heavy metal
elements in the top 5 features. This is because when two
or more heavy metals coexist, the heavy metals formed by
physicochemical reactions between each other and between
metals and soil ions will affect the physicochemical environ-
ment of the soil, and hence will be reflected in the spectrum
measurement. Since peat carbon has a greater correlation with
the retention of Cu and Cr in the soil and soil organic matter
has similar effects on the concentration of Cr and Cu, the
correlation between Cu and Cr is the largest in the Eastern
Junggar coalfield [68]. Copper has the following five forms

in soil, with increased levels of exogenous heavy metals, the
various forms of heavy metals are redistributed in the soil
because Cu and As are in the soil of the same environment,
and the main form of Cu in the soil is similar to that of
As; therefore, As and Cu have strong relevance [69], [70].
Copper ions have a special affinity for organic matter, because
Cu2+ easily forms complexes, so Cu has a strong correlation
with organic matter [71], [72], [73]. Both Zn and Pb are
shown to correlate with Cu, and studies have demonstrated
that as the concentration of exogenous Pb2+, Cu+, Zn2+, and
Cd2+ increases, the chance of their collision with the soil
surface increases correspondingly, thus improving soil sorption
of heavy metals [74], [75], [76].

Seven of the eight 2D index data selected are included in
the top 30 features of importance, proving that the data pairs
selected by Pearsons coefficient are also extremely valuable in
the overall characteristics [42]. In this experiment, the order
of importance of 2D data in the features is not exactly the
same as the order of Pearsons coefficient, suggesting that
although features of higher importance can be identified by
the magnitude of Pearsons coefficient, new weights are judged
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Fig. 12. Relative importance of the predictor variables used in model 4.

when the model uses the data to find the optimal combination
of features, and will no longer be based on a single index. In
this experiment, the performance of the ratio index is better
than that of the normalized difference index. The four sets of
data selected by the ratio index are all in the top 30 features,
with 1451 nm ranking 2nd and 3 nm ranking 6th, and the
normalized difference index has only three features among
the top 30 feature selections; the highest ranking of the data
selected using the normalized difference index is 12.

The 18 bands processed by the second derivative are among
the top 30 features selected, proving that the spectral features
after second-derivative processing have a greater influence
on the deep learning model. In the top 10 bands, because
897 nm is at the Fe-OH [61] stretching vibration peak,
with increasing Cu+ concentration, an Fe-O-(Cu) structure
is formed on the surface of hematite, and the adsorption
mechanism is approximately as shown in formulas 3 and 4
[62]. The significant correlation at 1909 nm is the result of
the hydroxyl group and the Al-OH lattice structure [57], [67].
The bands at 2036 nm, 2152 nm, and 1761 nm are due to
organic molecules and proteins with C=O, Al-OH, and C-H
bonds in soil organic carbon [55], [58], [59], [65]. The bands
ranked 11th to 20th corresponding to the substance that are
all animal and plant residues and intermediate products; this
is due to the reaction of Cu2+ with organic functional groups,
which fixes the metal ion in a stable inner complex [64]. There
are a total of 8 bands with an importance ranking between 21

and 30. 2320 nm [58] and 2321 nm [58] are the corresponding
bands of methyl groups where the soil components containing
methyl groups can promote the adsorption of Cu+, and the
material corresponding to the bands of 2327 nm [55] and
1947 nm [56] contains some coordination groups, which can
fix copper by complexation. The material corresponding to
the 2266 nm band [59] is gibbsite, which produces a large
amount of H+ when hydrolyzed, affecting the amount of Cu+

[77]. The strong response of Cu corresponding to the carbonate
component of the 1985 nm band can be attributed to the fact
that Cu lies in the carbonate-bound state. Because Cu2+ can
form strong complexes on the surface when it reacts with
ferrihydrite, it has a strong correlation at 972 nm [63], [64].
The relatively high degree of water in the 1422 nm band is
due to the combined effect of water molecular vibrations and
OH− [59], [65].

3(≡ FeOH) + 2Cu2+ + 3H2O ⇀↽

(≡ Fe3O(OH)2) Cu2(OH)03 + 4H+
(9)

2(≡ FeOH) + Cu2+ + 2H2O ⇀↽

(≡ FeOH)2Cu(OH)02 + 2H+
(10)

In this experiment, in the data processing stage, although
data enhancement technology is used, there are still fewer
methods for soil hyperspectral data enhancement. Compared
with image field data enhancement technology, it is not mature
and complete. Despite the generalization performance of small
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datasets through a combination of deep learning and few-
shot learning, the use of few-shot learning methods and the
use of empirical hyperspectral data to predict heavy metal
concentration is unprecedented in previous studies and requires
data augmentation with additional knowledge of soil science
and deep learning. And, existing studies that use empirical
hyperspectral data to predict heavy metal concentration, while
providing high accuracy, are unable to provide a reasonable
interpretation of the input features. More studies with a
combination of few-shot learning and deep learning are needed
in empirical soil hyperspectral data, as such studies not only
provide higher accuracy, but also the interpretation of the
features used. In addition, although the improved CNN model
and TabNet model work well, other deep learning models used
for comparison have poor results. The focus of future research
is to develop a model that is more suitable for soil hyperspectra
and to try to avoid deep learning models that are not suitable
for specific soil hyperspectra.

VI. CONCLUSION

In this study, we can prove that the combination of soil
near-infrared spectroscopy and auxiliary information in soil
can be exploited to predict the copper concentration using
deep learning methods. Due to the low concentration of Cu
in the soil, this study not only uses the spectral information
processed by the second derivative but also expands the
spectral data and adds soil auxiliary information to increase the
abundance of the effective information. In sharp contrast, when
predicting the Cu concentration, only a very small number
of hyperspectral bands are ranked in the top 30 in terms of
importance. Experiments have proven that organic matter, Fe
oxides, and clay minerals significantly affect the response of
near-infrared spectroscopy to the Cu concentration, and the
addition of features such as the 2D index and other heavy
metal concentrations is also important. The abovementioned
characteristics provide effective information for the deep learn-
ing model to train a model with high accuracy and strong
robustness. The improved TabNet and CNN high-precision
regression prediction results show that using near-infrared
hyperspectral imaging and auxiliary information in soil to
identify heavy metal pollution is an effective method.

Using hyperspectral data for Cu concentration detection can
detect pollution in a timely manner, avoiding further deterio-
ration of heavy metal pollution and enabling soil remediation
measures to be taken. Due to the different compositions of
soil in different regions, different spectral characteristics are
needed to model in heavy metal pollution areas, and then,
effective pollution prevention measures can be taken. In recent
years, due to the wide application of ultralight and high-
resolution drones and the successive launches of hyperspectral
satellites at home and abroad, this research can facilitate large-
scale monitoring and prevention measures for heavy metal-
polluted areas.
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