
1862 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

Communication-Efficient Federated Learning:
A Second Order Newton-Type Method With

Analog Over-the-Air Aggregation
Mounssif Krouka , Anis Elgabli , Member, IEEE, Chaouki Ben Issaid , Member, IEEE,

and Mehdi Bennis , Fellow, IEEE

(Invited Paper)

Abstract—Owing to their fast convergence, second-order
Newton-type learning methods have recently received attention
in the federated learning (FL) setting. However, current solu-
tions are based on communicating the Hessian matrices from
the devices to the parameter server, at every iteration, incur-
ring a large number of communication rounds; calling for novel
communication-efficient Newton-type learning methods. In this
article, we propose a novel second-order Newton-type method
that, similarly to its first-order counterpart, requires every device
to share only a model-sized vector at each iteration while hid-
ing the gradient and Hessian information. In doing so, the
proposed approach is significantly more communication-efficient
and privacy-preserving. Furthermore, by leveraging the over-the-
air aggregation principle, our method inherits privacy guarantees
and obtains much higher communication efficiency gains. In
particular, we formulate the problem of learning the inverse
Hessian-gradient product as a quadratic problem that is solved
in a distributed way. The framework alternates between updat-
ing the inverse Hessian-gradient product using a few alternating
direction method of multipliers (ADMM) steps, and updating
the global model using Newton’s method. Numerical results show
that our proposed approach is more communication-efficient and
scalable under noisy channels for different scenarios and across
multiple datasets.

Index Terms—Distributed optimization, communication-
efficient federated learning, second-order methods,
analog-over-the-air aggregation, ADMM.

I. INTRODUCTION

RECENT developments in 5G networks and Internet of
Things (IoT) applications led to the pervasiveness of

connectivity of many devices and sensors generating massive
amounts of data. This influx of data is used to train machine
learning (ML) algorithms that span different applications, such
as trajectory optimization [1], image classification [2], and
wireless resource scheduling [3]. Traditionally, training such
ML algorithms is done in a centralized way in which multiple

Manuscript received 29 January 2022; revised 25 March 2022; accepted
28 April 2022. Date of publication 9 May 2022; date of current version
19 August 2022. This work was supported in part by the Academy of Finland
6G Flagship under Grant 318927; in part by Project SMARTER; in part
by Projects EU-ICT IntellIoT and EUCHISTERA LearningEdge; and in part
by CONNECT, Infotech-NOOR, and NEGEIN. The editor coordinating the
review of this article was Z. Niu. (Corresponding author: Mounssif Krouka.)

The authors are with the Center of Wireless Communications,
University of Oulu, 90014 Oulu, Finland (e-mail: mounssif.krouka@oulu.fi;
anis.elgabli@oulu.fi; chaouki.benissaid@oulu.fi; mehdi.bennis@oulu.fi).

Digital Object Identifier 10.1109/TGCN.2022.3173420

devices send their raw and often-times private data to a central-
ized parameter server (PS) equipped with high computational
capabilities for training purposes. However, the available data
for training such ML algorithms is generated across sev-
eral devices that, in many cases, require privacy-preserving
mechanisms to ensure data integrity. Moreover, the band-
width limitations create a bottleneck when transferring a huge
amount of data from devices to the PS [4]. For this reason,
federated and distributed learning algorithms have received
significant attention owing to the fact that these ML models
can be trained in a totally distributed manner without sharing
raw and private data.

A. Related Works

Several papers have addressed communication-efficient
solutions for solving distributed learning problems. The
proposed works use different techniques and approaches based
on first-order and second-order methods, as discussed next.

1) First-Order Methods: Typically, distributed model train-
ing is based on using first-order methods, such as federated
learning (FL) [5], distillation (FD) [6], and many others. With
distributed first-order methods, the model update requires a
large number of uplink and downlink exchanges, in terms
of communication rounds, between the devices and the PS
until convergence, in addition to substantial energy and band-
width resources per communication round. This bottleneck can
be tackled using two approaches: (i) reducing the number of
communication rounds and (ii) minimizing the communication
resources per round. Reducing the number of communication
rounds can be achieved by accelerating the convergence rate
using variance reduction techniques and momentum acceler-
ation [7]–[9]. On the other hand, to reduce communication
overhead per round, many techniques have been proposed
in the literature, such as gradient reuse [10], [11], quantiza-
tion [12]–[17], and sparsification [18]–[21].

2) Second-Order Methods: First-order methods suffer from
the dependency on the condition number [22]. Specifically,
for a μ-strongly convex and L-smooth function f, the gradient
descent (GD) algorithm can achieve a global linear conver-
gence rate of 1 − 2

κ+1 , where κ = L
μ denotes the condition

number, for a step-size α = 2
μ+L [23]. Hence, large val-

ues of the condition number slow the convergence of the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9295-9056
https://orcid.org/0000-0001-5012-2370
https://orcid.org/0000-0002-4481-8168
https://orcid.org/0000-0003-0261-0171

KROUKA et al.: COMMUNICATION-EFFICIENT FEDERATED LEARNING: SECOND ORDER NEWTON-TYPE METHOD 1863

learning algorithms. To overcome the large number of required
communication rounds, second-order methods have recently
gained considerable attention since they exploit second-order
curvature properties that are independent of the condition
number [22]. Although the second-order Newton-type method
improves the iteration complexity in terms of number of com-
munication rounds to reach a target accuracy, it still requires
the computation and communication of the Hessian matrix
from every device and at every round. This results in a huge
O(d2) overhead, compared to O(d) as in first-order methods,
where d being the dimension of the trained model. Moreover,
the Hessian matrix contains valuable information about the
properties of the loss function such as its local curvature,
and when shared with the PS, may violate privacy by eaves-
droppers or the honest-but-curious PS. For instance, in the
medical domain, the authors in [24] used eigenvalues from the
Hessian matrix to extract some important information from the
input images. Consequently, sharing second-order information
violates the privacy of the patients’ healthcare data.

Many works have proposed communication-efficient
second-order solutions to overcome the problem of communi-
cating the complete Hessian matrix. Works such as [25]–[27]
propose methods that rely on quasi-Newton methods, such
as the Limited-memory Broyden Fletcher Goldfarb Shanno
(L-BFGS), to update the global approximated inverse Hessian
matrix at the PS. However, these methods suffer from high
computation and communication overhead to achieve a good
approximation of the inverse Hessian matrix. Alternatively,
other works propose to solve a second-order approximation
problem locally at each device, without maintaining and
computing a global Hessian matrix [28]–[30]. Nonetheless,
a high precision solution to the local problem is required at
each device to ensure a good convergence rate. Recently,
compression schemes have been introduced for distributed
second-order methods to reduce the communication payload
size. Authors in [31] propose a communication-efficient
Hessian learning technique where a compressed version of
the Hessian is transmitted to the PS.

3) Analog Over-the-Air Aggregation: Motivated by the
superposition property of signals in the wireless multiple-
access channel (MAC), analog over-the-air aggregation is a
promising technique that is widely used in first-order meth-
ods due to the fact that the PS only requires the sum of
the local gradients/models [32]–[35]. However, for existing
second-order methods, such an aggregation step is no longer
possible since the update at the PS is no longer a simple
aggregation step. Instead, it requires decoding the (approx-
imate) Hessian matrices and gradients, inverting the Hessian
matrix and then performing multiplications. Even with existing
communication-efficient algorithms [29], [30], which involve
sending a compressed version of the Hessian, devices have to
transmit more than one vector that need to be decoded sepa-
rately at the PS, highlighting the fact that direct aggregation
of the received signals at the PS cannot be applied. Hence,
to benefit from the analog over-the-air aggregation savings in
terms of communication costs, and the convergence speed of
second-order methods, we propose a novel second-order learn-
ing technique that requires each device to send a vector of the

same model size that is aggregated at the PS (details will be
explained in Section III).

B. Contributions and Structure

In this article, we propose a novel second-order learn-
ing approach that achieves the fast convergence property of
second-order methods and low per iteration communication
cost of first-order methods. In particular, the problem of learn-
ing the inverse Hessian-gradient product is formulated as a
quadratic problem and solved in a distributed manner. Namely,
we approximate the solution of this problem with a few alter-
nating direction method of multipliers (ADMM) steps where
every device communicates only a model-sized vector to the
PS, while both the Hessian matrix and the gradient information
are concealed. Consequently, the proposed approach saves
communication resources and guarantees information privacy.
Subsequently, the global model is updated using the Newton’s
method. Moreover, we leverage analog over-the-air aggre-
gation for faster and more communication-efficient model
training. Our major contributions are summarized as follows.

• To the best of our knowledge, this is the first work to
leverage the analog over-the-air aggregation strategy for
second-order methods in the FL setting. Unlike existing
second-order methods that require sharing a significant
amount of information, in our proposed algorithm, every
device shares a single vector as in first-order methods.

• Within our framework, referred to as NAAM–Newton
Analog ADMM, we propose two variants and
their implementations, namely: (i) with channel-
inversion (NAAM-v0), and (ii) without channel-inversion
(NAAM-v1). The proposed algorithms extend the existing
analog-over-the-air aggregation algorithms in [34], [35],
which were proposed for federated learning (FL) with
first-order methods.

• The proposed framework ensures privacy since devices
neither transmit the Hessian nor the gradient to the
PS. Moreover, NAAM-v1 algorithm provides an addi-
tional layer of privacy guarantee by natively incorporating
channel perturbations into the problem formulation.

• Numerical results show that our proposed algorithms
cope with noisy and time-varying channels and outper-
form the digital baselines in terms of required com-
munication resources at different signal-to-noise ratio
(SNR) regimes. Results also show that for bandwidth-
limited systems, NAAM-v0 and NAAM-v1 demonstrate
a robust performance, especially when the number of
devices becomes large. Hence, the proposed framework is
a promising scalable second-order methods for FL since
the required communication resources are independent of
the number of contributing devices.

The rest of the paper is structured as follows. In Section II,
we briefly discuss existing first and second-order solutions, in
addition to our proposed algorithm where we first describe the
main idea under the digital transmission setting. In Section III,
we extend our discussion to the analog communication sce-
nario in the presence of time-varying channels. We then
show how existing analog-over-the-air aggregation algorithms

1864 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

TABLE I
TABLE OF NOTATIONS

can be further leveraged in our framework and present two
implementations, namely NAAM-v0 with channel inversion
and NAAM-v1 without channel inversion. In Section IV, the
effectiveness of our proposed approach is corroborated via
simulations. Finally, we conclude our work in Section V.

Notation: R denotes the set of real numbers whereas the
symbols (.)∗, (.)T , and ◦ are used for conjugate, transpose and
Hadamard product operations, respectively. Uppercase-bold
letters denote matrices, lowercase-bold letters are reserved for
vectors, and scalar values are denoted by regular-font letters.
Detailed description of the notations is found in Table I.

II. FROM FIRST-ORDER TO SECOND-ORDER TYPE

LEARNING METHODS

To alleviate the communication bottleneck related to large
data and model sizes in modern ML systems, distributed learn-
ing is a promising technique that improves performance while
scaling to larger input data and number of training devices. In
this section, we first introduce first and second-order learning
algorithms, then based on their key concepts, we describe our
main approach and its key novelty. We consider solving the
following FL problem:

min
x∈Rd

f (x) with f (x) =
1

N

N∑

n=1

fn (x), (1)

where x is the model with dimension d to be trained, N is
the number of devices, and fn : Rd −→ R is the local loss

function corresponding to device n. This formulation aims to
minimize a global loss function using data stored locally at
every device, by training a model x ∈ R

d .

A. First-Order Methods

The idea behind solving this problem using first-order meth-
ods is to iteratively update the model in the opposite direction
of the sum of the gradients received from all devices, using
an appropriate learning rate, as

x r+1 = x r − α∇f (x r) = x r − α
N

∑N
n=1∇fn (x r), (2)

where ∇f (x r) is the gradient of f (x r) and α is the learn-
ing rate. Another way to implement this solution is to apply
model aggregation at the PS instead of gradient aggregation
expressed in (2). For this, every device computes one gradient
step to update a local version of the model x r+1

n using the
local gradient, as follows,

x r+1
n = x r

n − α∇f (x r
n). (3)

At the PS side, the model x r+1 is updated by aggregating all
the local models such that,

x r+1 = 1
N

∑N
n=1 x

r+1
n = x r − α

N

∑N
n=1∇fn (x r). (4)

From the implementation in (4), instead of performing one
local update step, every device can apply multiple local gradi-
ent updates before sending the model to the PS. This approach
is called FedAvg [5].

B. Second-Order Methods

Contrary to first-order methods where only the gradient-
type updates are computed, second-order methods benefit from
the second-order information such as local curvature to speed
up convergence by additionally utilizing the Hessian matrix
to update the model. Applying Newton’s method, at iteration
(r + 1), the solution to problem (1) can be expressed as follows

x r+1=x r−
(

1

N

N∑

n=1

∇2fn (x
r)

)−1(
1

N

N∑

n=1

∇fn (x r)

)
,

(5)

where ∇2fn (x
r) ∈ R

d×d is the Hessian of fn (x r). To solve
this problem, N devices must exchange information with the
PS through many iterations until convergence. During this
process, we note the following: i) at every iteration r, every
device n locally computes the gradient and the Hessian matrix,
ii) the PS requires the transmission of both gradients and
Hessian matrices from all devices to update the model x r+1,
which incurs high communication cost, iii) the raw gradients
and Hessians provide too much information about the local
data and function, making them vulnerable to inverse attacks,
giving rise to a privacy issue [24].

FedNL was proposed in [31] to provide a communication-
efficient Hessian learning technique where, instead of sharing
the exact Hessian to the PS, a compressed version of the
Hessian is utilized. For example, if the rank-1 approximation
of the Hessian is used, every device needs to compute the
singular value decomposition (SVD) on the Hessian matrix

KROUKA et al.: COMMUNICATION-EFFICIENT FEDERATED LEARNING: SECOND ORDER NEWTON-TYPE METHOD 1865

and then send the gradient along with two vectors for the
compressed Hessian. Despite the reduction in communication
costs, two observations are in order: (i) the compression (the
number of shared vectors from the devices) is determined by
the rank of the Hessian, (ii) the gradients and the compressed
version of Hessian still reveal information about the function
and training data, (iii) every device executes SVD locally at
each iteration, which incurs high computational complexity
(quadratic complexity). The authors in [31] also proposed an
algorithm named Newton-zero to reduce the local computa-
tional complexity compared to FedNL. In this algorithm, the
model x r+1 is updated at the PS as follows,

x r+1 = x r −
(

1

N

N∑

n=1

∇2fn(x
0)

)−1(
1

N

N∑

n=1

∇fn(x r)

)
.

(6)

We note that the Hessian matrix is computed and shared only
at the first iteration (r = 0), which minimizes the local com-
putational complexity. Nonetheless, sharing the initial Hessian
matrix requires more communication resources compared to
gradient sharing. In addition, privacy concerns still exist since
the Hessian at the initial model is shared, as well as the gra-
dient which is also shared at each iteration. Unlike FedNL
and Newton-zero methods, we avoid sending the Hessian or
its compressed version at any iteration. As we will explain
next, we share only one vector that hides the true gradient
and Hessian information.

C. Proposed Federated Second-Order Newton Approach

To enable communication-efficient FL and alleviate privacy
concerns when transmitting both gradients and the Hessian
matrix, we propose a framework that enables each device to
transmit only a vector to the PS in every communication round.
This leads to the same communication cost as the first-order
distributed algorithms, while being privacy-preserving since
neither the gradients nor the Hessian matrices are shared with
the PS.

Let H 0
n = ∇2fn (x

0) be the Hessian matrix of device n at
the initial iteration r = 0. Hence, the average of the Hessian
matrices from all devices, referred to as system Hessian, is
H 0 = 1

N

∑N
n=1H

0
n . Moreover, let gr

n = ∇fn (x r) be the
gradient vector at device n, and gr = 1

N

∑N
n=1 g

r
n be the

system gradient. Therefore, the updating step of (6) can be
written as,

x r+1 = x r − (H 0)−1gr . (7)

The second term at the right hand side of (7) is calculated at
every iteration r. Consequently, this inverse Hessian-gradient
product term can be set as the solution to the following
quadratic optimization problem,

w r = argmin
w∈Rd

1

2
wTH 0w −wTgr . (8)

In other words, solving problem (8) results in w r =
(H 0)−1gr . However, this problem cannot be solved in a dis-
tributed manner. To this end, we propose to reformulate (8)

and cast it as a distributed optimization problem as follows,

argmin
{wn ,w}∈Rd

N∑

n=1

1

2
wT
n H 0

nwn − wT
n gr

n

s .t . wn = w , ∀n, (9)

where w is updated at the PS and wn is the local version for
device n. Hence, we formulate our proposed approach based
on (7) and (9) as a bilevel optimization problem consisting
of: i) inner-level problem: where the problem in (9) is solved
by all devices to obtain w r = (H 0)−1gr , and ii) outer-level
loop: we leverage the solution of the inner-level problem to
update the global model x r+1 using (7).

However, solving (9) exactly at every outer-level (Newton)
iteration may come at a huge communication cost. Hence, to
account for communication overhead, we solve the inner-level
problem by performing a few ADMM updates to approximate
the inverse-Hessian-gradient product, which is used by the
PS to update the global model. In the following, we describe
the ADMM framework used to solve the inner-level problem.
Since the objective function in problem (9) is separable across
devices, we use the Augmented Lagrangian to solve it as
a sequence of unconstrained subproblems. The Augmented
Lagrangian of problem (9) is defined as follows,

Lρ(w , {wn}Nn=1,λ) =

N∑

n=1

[
1

2
wT
n H 0

nwn − wT
n gr

n

]

+

N∑

n=1

〈λn ,wn − w〉+ ρ

2

N∑

n=1

‖wn − w‖2,

(10)

where λn is the dual variable for device n that is updated at
every step, ρ > 0 is the constant that controls the mismatch
between w and the local version wn , and 〈 ., . 〉 denotes the
inner product operation.

At outer-level iteration r and inner-level ADMM step
(k + 1), every device n updates its local version by mini-
mizing Lρ(w r ,k ,wn ,λ

r ,k). Thus, the local version w r ,k+1
n

should satisfy the following,

wr ,k+1
n = argmin

wn

Lρ
(
w r ,k ,wn ,λ

r ,k
)
. (11)

Setting the derivative equal to zero,

dLρ
(
w r ,k ,wr ,k+1

n ,λr ,k
)

dwr ,k+1
n

= 0, ∀ n ∈ [N], (12)

yields the following equation,

H 0
nw

r ,k+1
n − gr

n + λr ,kn + ρ
(
wr ,k+1
n −w r ,k

)
= 0. (13)

Hence, it results in the closed-form expression,

wr ,k+1
n =

(
H 0

n + ρI
)−1(

gr
n − λr ,kn + ρw r ,k

)
. (14)

After that, every device n sends w r ,k+1
n to the PS, where the

latter updates w r ,k+1 by solving the following optimization
problem

w r ,k+1 = argmin
w

Lρ
(
w , {wr ,k+1

n }Nn=1,λ
r ,k
)
. (15)

Setting the derivative to zero gives the following expression,

1866 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

N∑

n=1

d〈λr ,kn ,wr ,k+1
n −wr ,k+1〉
dwr ,k+1

+

N∑

n=1

ρ

2

d
∥∥∥wr ,k+1

n −wr ,k+1
∥∥∥
2

dwr ,k+1

= 0, (16)

and the update of w r ,k+1 is given by

w r ,k+1 =
1

N

N∑

n=1

[
wr ,k+1
n +

λ
r ,k
n

ρ

]
. (17)

Next, the PS broadcasts w r ,k+1 to the devices and then the
dual variable λ

r ,k+1
n is updated locally such that,

λr ,k+1
n = λr ,kn + ρ

(
wr ,k+1
n −w r ,k+1

)
. (18)

Using (17) and taking the sum of the dual variable updates
in (18) across devices gives the following expression,

N∑

n=1

λr ,k+1
n =

N∑

n=1

λr ,k
n

+ ρ

(
N∑

n=1

wr ,k+1
n −

N∑

n=1

[
wr ,k+1

n +
λr ,k
n

ρ

])
.

(19)

Consequently, we get

N∑

n=1

λr ,k+1
n = 0. (20)

Hence, the update of w r ,k+1 is simply the average of the local
versions received from the devices,

w r ,k+1 =
1

N

N∑

n=1

wr ,k+1
n . (21)

After running K inner ADMM steps, the model x r+1 is
updated following (7) such that,

x r+1 = x r −w r ,K . (22)

It is worth mentioning that the updates at k = 0 are set as:
w r ,0 = w r−1,K , w r ,0

n = w r−1,K
n , and λ

r ,0
n = λ

r−1,K
n .

III. ANALOG OVER-THE-AIR MODEL AGGREGATION FOR

SECOND-ORDER TYPE NEWTON METHOD

From the update of w r ,k+1 at the PS in (21), we notice
that the aggregation of the local versions motivates the imple-
mentation of analog over-the-air aggregation strategies since
we can take advantage of the superposition property at the PS.
This is done by sending the i th element of signals from all
devices using the same subcarrier. This significantly reduces
the communication overhead, speeds up convergence, and pro-
vides scalability. In contrast, the digital scheme necessitates
orthogonal bandwidth allocation resulting in a communication
cost that is directly proportional to the number of devices.

To solve problem (9) using analog over-the-air aggrega-
tion, we adopt two existing algorithms that were used for
first-order methods [34], [35] and extend them further using
second-order formulation. In what follows, we define the two
proposed algorithms:

• NAAM-v0: To cancel the effect of the channel, every
device n divides its i th element by its corresponding
channel coefficient hn,i before transmission. The device
is able to transmit the i th element only when |hn,i | > β,
where β is a predefined threshold,

• NAAM-v1: Instead of performing channel inversion that
can hinder the system performance, we benefit from the
non-channel inversion algorithm [34] and integrate the
channel effect into our problem formulation.

A. NAAM-v0

With the assumption of flat fading channel per subcarrier,
the channel output received by the PS at every time slot t over
the i th subcarrier is expressed as,

gi (t) =

N∑

n=1

hn,i (t) · sn,i (t) + zi (t), (23)

where hn,i (t) is the flat fading channel at the i th subcarrier
between device n and the PS at time t, sn,i (t) is the i th sig-
nal from device n, and zi (t) is the additive white Gaussian
(AWGN) noise at the PS at time t following CN (0, 1). In
order to update w

r ,k+1
i at the PS, every device n, after updat-

ing wr ,k+1
n,i using (14), transmits it to the PS for a duration of

T seconds. Hence, for every element i, the PS needs to apply
the update shown below,

wr ,k+1
i = Re

{
1

N

N∑

n=1

wr ,k+1
n,i + ẑ r ,k+1

i

}
, (24)

where Re(.) is the real part of a complex value. Since the local
versions are real-valued, we get

w
r ,k+1
i =

1

N

N∑

n=1

w
r ,k+1
n,i +Re

{
ẑ
r ,k+1
i

}
. (25)

To guarantee this, we need to perform two operations at the
devices’ side: (i) channel inversion to cancel the channel effect,
and (ii) power control such that every device’s transmit power
budget is satisfied and equal power for all the devices is
attained at the PS side.

To mitigate the effect of the channel, every device n divides
its i th element by the channel coefficient hn,i . However,
for deep fading channel, the channel inverse operation can
lead to power budget violation, thus we set the transmission
decision as

sn,i (t) =

⎧
⎨

⎩
c(t)

wr,k+1
n,i (t)

hn,i (t)
if |hn,i (t)| > β

0 otherwise
(26)

where c(t) is the scaling factor to be calculated at the PS, as
detailed next. We denote the set of devices that can transmit
over the i th subcarrier by

N̄i (t) =
{
n ∈ [N] : |hn,i (t)| > β

} ∀i ∈ [d], (27)

and for every device n, the set of elements that can be
transmitted which satisfies the condition in (26) is like this,

d̄n (t) =
{
i ∈ [d] : |hn,i (t)| > β

} ∀n ∈ [N]. (28)

KROUKA et al.: COMMUNICATION-EFFICIENT FEDERATED LEARNING: SECOND ORDER NEWTON-TYPE METHOD 1867

Therefore, every device n needs to calculate its scaling factor
αn (t) such that,

cn (t)
2

d̄n

d̄n∑

i=1

∣∣∣∣∣∣

w
r ,k+1
n,i (t)

hn,i (t)

∣∣∣∣∣∣

2

≤ Pn , (29)

where Pn is the maximum power. After that, every device n
sends the scalar cn (t) in an error free mode to the PS, and
the latter determines c(t) as:

c(t) = min
{
c1(t), . . . , cN̄i

(t)
}
, (30)

Next, the PS broadcasts the scaling factor c(t) through a con-
trol channel to the devices. Subsequently, every device trans-

mits c(t)
wr,k+1
n,i (t)

hn,i (t)
over the i th subcarrier for a duration of T

seconds. The PS receives
∑N̄i (t)

n=1 c(t)wr ,k+1
n,i (t) + z r ,k+1

i (t)
for every t ∈ [T]. Finally, after dividing by c(t), matched
filtering is performed such that the received signals are inte-
grated during T seconds, divided by T, and sampled at t = T.
This produces

∑N̄i
n=1 w

r ,k+1
n,i + ẑ

r ,k+1
i with reduced noise

ẑ
r ,k+1
i ∼ CN (0,N0/T), where N0 is the AWGN power spec-

tral density. Consequently, the PS constructs the update in (24).
In the downlink, every device n receives wr ,k+1

i + ẑ r ,k+1
n,i , and

the dual variables are updated as follows,

λ
r ,k+1
n,i = λ

r ,k
n,i + ρ

(
w
r ,k+1
n,i − w

r ,k+1
i

)
− ρ
{
ẑ
r ,k+1
n,i

}
. (31)

B. NAAM-v1

The NAAM-v1 implementation natively incorporates the
channel in the formulation of the optimization problem to
avoid channel inversion and avoid choosing β, which is a
hyper-parameter that can highly affect the system performance.
Concretely, we reformulate the problem in (9) by introducing
the channel in the constraint as follows

argmin
{wn ,w}∈Rd

N∑

n=1

1

2
wT
n H 0

nwn − wT
n gr

n

s .t . hn,iwn,i = hn,iwi , ∀n, i . (32)

Note that the constraint in (32) is equivalent to the one in (9)
since multiplying both sides with the channel coefficient does
not change it. This allows the integration of the channel effect
into the formulation. For now, we assume that the channel
is static and noise-free. Later in this section, we relax these
assumptions. The augmented Lagrangian for problem (32) is
formed as follows

Lρ

(
w , {wn}Nn=1,λ

)
=

N∑

n=1

1

2
wT
n H 0

nwn − wT
n gr

n

+

N∑

n=1

d∑

i=1

λ∗
n,ihn,i (wn,i − wi) +

ρ

2

N∑

n=1

d∑

i=1

|hn,i |2(wn,i − wi)
2,

=

N∑

n=1

d∑

i=1

⎡

⎣wn,i (
1

2

d∑

j=1

H 0
n,i,jwn,j − grn,i)

⎤

⎦

+

N∑

n=1

d∑

i=1

λ∗
n,ihn,i (wn,i − wi) +

ρ

2

N∑

n=1

d∑

i=1

|hn,i |2(wn,i − wi)
2,

where λ∗n,i is the complex conjugate of the dual variable λn,i
and H 0

n,i ,j is the element of the initial Hessian at iteration

(r = 0) over the i th row and the j th column at device n. At step
(k + 1), every device n updates its local version wr ,k+1

n,l by

minimizing Lρ(w r ,k ,wn ,λ
r ,k). Thus, wr ,k+1

n,l should satisfy

dLρ
(
w r ,k ,w

r ,k+1
n ,λr ,k

)

dw
r ,k+1
n,l

= 0, ∀ n ∈ [N], l ∈ [d]. (34)

Next, we introduce the vector e ∈ R
d whose l th element is

given by

e l =
dLρ

(
wr ,k ,wr ,k+1

n , λr ,k
)

dwr ,k+1
n,l

=
1

2

d∑

i=1

dwr ,k+1
n,i

dwr ,k+1
n,l

d∑

j=1

H 0
n,i,jw

r ,k+1
n,j

+
1

2

d∑

i=1

wr ,k+1
n,i

d∑

j=1

H 0
n,i,j

dwr ,k+1
n,j

dwr ,k+1
n,l

−
d∑

i=1

dwr ,k+1
n,i

dwr ,k+1
n,l

grn,i

+

d∑

i=1

(
λr ,kn,i

)∗
hn,i

d
(
wr ,k+1
n,i − wr ,k

i

)

dwr ,k+1
n,l

+
ρ

2

d∑

i=1

|hn,i |2
d
(
wr ,k+1
n,i − wr ,k

i

)2

dwr ,k+1
n,l

=
1

2

d∑

j=1

H 0
n,l,jw

r ,k+1
n,j +

1

2

d∑

i=1

wr ,k+1
n,i H 0

n,i,l − grn,l

+
(
λr ,kn,l

)∗
hn,l + ρ|hn,l |2

(
wr ,k+1
n,l − wr ,k

l

)
. (35)

Therefore, we can write e in a compact form as shown below,

e =
1

2
(H 0

nw
r ,k+1
n +

(
H 0

n

)T
wr ,k+1

n − g r
n

+
(
λr ,k
n

)∗ ◦ hn + ρ((hn)
∗ ◦ hn) ◦

(
wr ,k+1

n −w r ,k
)
,

(36)

where ◦ is the Hadamard product operation and (.)T is the
transpose operation. We set h̄n = (hn)

∗ ◦ hn . Equivalently,
we can write equation (36) as follows

e = H 0
nw

r ,k+1
n − gr

n +
(
λr ,kn

)∗ ◦ hn
+ ρh̄n ◦

(
wr ,k+1
n −w r ,k

)
. (37)

Theorem 1: Let a and b be real vectors of size d. Then
a ◦b = diag(a)b , where diag(a) is the d × d diagonal matrix
whose entries are the d elements of the vector a.

Proof: Let a ∈ R
d and b ∈ R

d . Then [diag(a)b]i =
[a]i [b]i = [a ◦ b]i and therefore, a ◦ b = diag(a)b .

Hence, setting the derivative equal to zero, we get,

H 0
nw

r,k+1
n − gr

n +
(
λr,k
n

)∗ ◦ hn + ρ diag(h̄n)
(
wr,k+1
n − wr,k

)

= 0. (38)

Equivalently, by arranging the terms, we can write,
[
H 0

n + ρdiag
(
h̄n

)]
wr,k+1
n − gr

n +
(
λr,k
n

)∗ ◦ hn − ρ diag
(
h̄n

)
w r,k

= 0. (39)

1868 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

Fig. 1. Schematic illustrations of the algorithms: (a) Newton-zero, (b) NAAM-v0, and (c) NAAM-v1.

As a result, w r ,k+1
n is updated as follows

wr ,k+1
n =

[
H 0

n + ρdiag
(
h̄n
)]−1[

gr
n −

(
λr ,kn

)∗ ◦ hn
+ ρdiag

(
h̄n
)
w r ,k

]
, (40)

and wr ,k+1
n,i corresponds to the i th entry of the update

in (40). After updating the local version w
r ,k+1
n,i at every

device n, the PS collects all the local versions from the
devices and updates the i th element wr ,k+1

i by minimizing

Lρ(w , {w r ,k+1
n }Nn=1,λ

r ,k). Thus, wr ,k+1
i should satisfy

dLρ
(
w r ,k+1,

{
wr ,k+1
n

}N
n=1

,λr ,k
)

dwr ,k+1
i

= 0, ∀ i ∈ [d], (41)

which yields the following update,

wr,k+1
i =

1
∑N

n=1 |hn,i |2
N∑

n=1

(
|hn,i |2wr,k+1

n,i +
(
λr,k
n,i

)∗
hn,i/ρ

)
.

(42)

In order for the PS to apply equation (42), every device n
needs to transmit h∗n,iw

r ,k+1
n,i +(λr ,kn,i)

∗/ρ for a duration of T

seconds. After that, the PS broadcasts wr ,k+1
i to the devices.

Device n updates its dual variable as follows,

λr ,k+1
n,i = λr ,kn,i + ρhn,i

(
wr ,k+1
n,i − wr ,k+1

i

)
. (43)

A schematic representation of Newton-zero, NAAM-v0, and
NAAM-v1 is depicted in Fig. 1.

1) Time-Varying and Noisy Channel: The implementation
of the algorithm needs to account for channel dynamics and
noise. First, we consider the case when hr ,kn,i = hr ,k+1

n,i for
all n ∈ [N] and i ∈ [d], which indicates that the channel
at iterations k and k + 1 remains invariant between the PS
and the devices. Second, we introduce an additional step to
account for the case when the channel changes, i.e., when
hr ,k+1
n,i �= hr ,kn,i .

To update wr ,k+1
i , every device n transmits

(hr ,k+1
n,i)∗wr ,k+1

n,i + (λr ,kn,i)
∗/ρ over T seconds. At the

PS side, the received signal from all the devices is∑N
n=1(|hr ,k+1

n,i |2wr ,k+1
n,i +(λ

r ,k
n,i)

∗hr ,k+1
n,i /ρ)+ z

r ,k+1
i (t) for

every second t ∈ [0,T], where z
r ,k+1
i (t) ∼ CN (0,N0) is the

noise term at the PS side. As illustrated in Fig. 2, matched
filtering is then applied at the PS by integrating the signal
during T seconds and sampling at t = T. This results in∑N

n=1(|hr ,k+1
n,i |2wr ,k+1

n,i + (λr ,kn,i)
∗hr ,k+1

n,i /ρ) + ẑ r ,k+1
i with

reduced noise ẑ r ,k+1
i (t) ∼ CN (0,N0/T). Hence, wr ,k+1

i is
updated as follows,

w
r ,k+1
i =

1
∑N

n=1 |hr ,k+1
n,i |2

[
N∑

n=1

(∣∣∣hr ,k+1
n,i

∣∣∣
2
w
r ,k+1
n,i

+
(
λ
r ,k
n,i

)∗
h
r ,k+1
n,i /ρ

)
+Re

{
ẑ
r ,k+1
i

}]
,

(44)

where taking the real part of the reduced noise term follows
from the fact that the update wr ,k+1

i is real-valued. In the

downlink, every device receives hk+1
n,i w

r ,k+1

i
+ ẑ

r ,k+1
n,i from

the PS and then locally multiplies it by (hk+1
n,i)∗ to fit it in

the update of wr ,k+1
n,i . We write the update in vector form as

seen below,

wr ,k+1
n =

[
H 0

n + ρ diag(h̄
r ,k+1
n)

]−1[
gr
n −

(
λ
r ,k
n

)∗
◦ hr ,k+1

n

+ ρ diag
(
h̄
r ,k+1
n

)
wr ,k + ρ (hr ,k+1)∗ ◦ ẑ r ,k

n

]
.

(45)

Finally, the dual variable is updated as follows,

λr ,k+1
n,i = λr ,kn,i + ρhr ,k+1

n,i

(
wr ,k+1
n,i − wr ,k+1

i

)
− ρẑ r ,k+1

n,i .

(46)

In the case when h
r ,k+1
n,i �= h

r ,k
n,i , similarly to [34], we first

use the previous value of the local version, i.e., w
r ,k+1
n,i =

w
r ,k
n,i and then use it to solve the equation (45) with respect

of (λ
r ,k
n,i)

∗. Thereby, we guarantee that the primal and dual
updates cope with changes in the channel. The pseudocode is
detailed in Algorithm 1.

2) Privacy Analysis: To update the model x r+1, devices
need to approximate the inverse Hessian-gradient product term
found on the right hand side of (7). For this, every device
runs for K ADMM steps during which a vector is updated
and shared between the devices and the PS. We recall the

KROUKA et al.: COMMUNICATION-EFFICIENT FEDERATED LEARNING: SECOND ORDER NEWTON-TYPE METHOD 1869

Fig. 2. Matched filtering illustration for NAAM-v1 under noisy channel.

expression of w r ,k+1
n as follows,

wr ,k+1
n =

[
H 0

n + ρ diag
(
h̄
r ,k+1
n

)]−1[
gr
n −

(
λ
r ,k
n

)∗
◦ hr ,k+1

n

+ ρ diag
(
h̄
r ,k+1
n

)
wr ,k + ρ

(
hr ,k+1
n

)∗
◦ ẑ r ,k

n

]
.

(47)

As mentioned in Section III-B1, updating w r ,k+1 means
that the PS receives h̄

r ,k+1
n ◦ w r ,k+1

n + 1
ρ (λ

r ,k
n)∗hr ,k+1

n +

Re{ẑ r ,k+1
n } at every ADMM step k + 1. Following the pri-

vacy analysis from [34], our algorithm NAAM-v1 provides
extra privacy protection, since the channel perturbations hide
the update trajectory of w r ,k+1

n , which represents neither the
gradient nor the Hessian matrix.

IV. NUMERICAL RESULTS

In this section, we numerically evaluate the performance of
our proposed approach and compare it to several baselines.
We provide details about the considered learning problem,
simulation settings, and obtained results.

Setting: We consider the regularized logistic regression
problem defined as

min
x∈Rd

{
f (x) :=

1

N

N∑

n=1

fn (x) +
μ

2
||x ||2

}
, (48)

where

fn (x) =
1

M

M∑

m=1

log
(
1 + exp

(
−bn,maT

n,mx
))

, (49)

TABLE II
DATASETS DETAILS

μ is the regularization parameter. For this task, we use real
datasets chosen from LibSVM where we consider differ-
ent numbers of devices [36]. With that in mind, we study
the performance of the proposed algorithm under different
network sizes. We use {an,m , bn,m}m∈[M] to denote the data
samples corresponding to the nth device (n ∈ {1, . . . ,N })
where M is the number of samples allocated for every device.
The details about datasets partitioning are listed in Table II.

Network Parameters and Communication Environment:
Throughout the simulation, we set the transmitted power bud-
get of each device to Pn = 1mW, ∀n ∈ {1, . . . ,N }. By
default, we consider a fixed number of available subcarri-
ers, Ns = 64 with SNR = 20 dB, where every subcarrier
provides W = 15KHz of bandwidth for τ = 1ms time dura-
tion according to [37]. We generate time-varying and fading
channel coefficients between the agents and the PS following
Rayleigh distribution with zero mean and unit variance, i.e.,
h ∼ CN (0, 1). We assume that every channel realization is
coherent during 10 communication rounds.

1870 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

Algorithm 1 NAAM-v1

1: Input: N , fn (·), ρ,R,K , d , ∀n
2: Output: x
3: Initialization: x0,w0,0,w0,0

n ,λ0,0n , ∀n .
4: while r ≤ R do
5: set: w r ,0 = w r−1,K ,w r ,0

n = w r−1,K
n ,λ

r ,0
n =

λ
r−1,K
n , ∀n .

6: while k ≤ K do
7: All devices in parallel:
8: for i = 1, . . . , d do
9: if hr ,k+1

n,i = hr ,kn,i then

10: Find wr ,k+1
n,i from (45)

11: else
12: wr ,k+1

n,i ← wr ,k
n,i

13: Find (λr ,kn,i)
∗ from (45)

14: end if
15: end for
16: Send (hr ,k+1

n,i)∗wr ,k+1
n,i + (λr ,kn,i)

∗/ρ, ∀i = 1, · · · , d
to the PS.

17: PS:
18: Find wr ,k+1

i from (44)

19: Broadcast wr ,k+1
i , ∀i = 1, . . . , d to all devices.

20: All devices in parallel:
21: Update λ

r ,k+1
n,i locally via (46), ∀i = 1, . . . , d .

22: k ← k + 1
23: end while
24: x r+1 ← x r −w r ,K

25: end while

In our simulations, we apply the analog communication
scheme only on the uplink part to highlight the communication
bottleneck in different settings, whereas digital scheme is uti-
lized in the downlink. Therefore, the update of w r ,k+1 for
NAAM-v1 under noisy channel is done by applying the ana-
log scheme as per (44). For the downlink, the PS broadcasts
w r ,k+1 to the agents through separate channels. To update
the local version wr ,k+1

n,i and the dual variable λr ,k+1
n,i , every

device locally multiplies the received element by |hr ,k+1
n,i |2

and hr ,k+1
n,i , respectively. The updates are shown as follows

wr ,k+1
n =

[
H 0

n + ρ diag
(
h̄
r ,k+1
n

)]−1[
yr
n −

(
λ
r ,k
n

)∗
◦ hr ,k+1

n

+ ρ diag
(
h̄
r ,k+1
n

)
wr ,k+1

]
, (50)

λr ,k+1
n,i = λr ,kn,i + ρhr ,k+1

n,i

(
wr ,k+1
n,i − wr ,k+1

i

)
.

(51)

For analog communication, every i th element of the updates
from all agents is sent to the PS through a time-varying and
noisy channel using the same subcarrier. In our simulation, the
number of required time slots to transmit the devices’ updates
is proportional to the ratio between the size of the model d
and the number of available subcarriers Ns , i.e.,
 d

Ns
�. For

example, for dataset a9a (d = 123),
12364 � = 2 time slots are
required to upload the devices’ updates.

For digital communication, every transmitted element is
represented by 32 bits (full precession communication).
Therefore, in contrast to the analog schemes, the required num-
ber of time slots depends on the number of bits to be sent,
as well as the channel condition between the devices and the
PS. In other words, the number of uploading time slots (τn)
needed to send the updates from device n to the PS when the
bandwidth is divided equally across devices is calculated as:

τn∑

t=0

Ns
N∑

s=1

τRn,s (t) ≥ 32d , (52)

where Rn,s(t) = W log2(1+Pn |hn,s(t)|2/N0W) is the rate
expression that follows from Shannon formula [38] and N0 is
the noise power spectral density which is set to 10−9W/Hz.
Since the devices have independent channel realizations, the
required time to receive all the updates at the PS is τ̄ =
max{τ1, τ2, . . . , τN }.

Baselines: Throughout the simulation section, we com-
pare our proposed algorithms with respect to the following
baselines

• Newton-Zero: Every device is required to compute and
transmit the Hessian matrix only at the first iteration,
whereas the gradient is computed and transmitted in all
communication rounds following this simple update step

x r+1 = x r − 1

N

[
N∑

n=1

∇2fn

(
x0
)]−1 N∑

n=1

∇fn (x r).

(53)

This method only requires the second-order information
at the first iteration, which is more communication-
efficient compared to the standard Newton’s method
where the Hessian is computed, stored, and communi-
cated at every communication round. Note that, in our
proposed algorithm, we do not require transmitting the
Hessian matrix at all. Due to the necessity of sharing
the zeroth Hessian and the gradient, this algorithm may
violate privacy.

• FedGD: The first-order FL based on distributed gradient
descent algorithm which is common in solving federated
optimization problems. The locally computed gradient
at every device is transmitted at every communication
round, then the PS updates the global model as follows

x r+1 = x r − α
1

N

N∑

n=1

∇fn (x r). (54)

Although it requires more rounds to converge, FedGD is
still favored when the computation complexity is the bot-
tleneck rather than communication resources. We chose
the learning rate α = 10−3 since larger values cause the
algorithm to diverge.

• NDAM: The digital version of our proposed formulation,
when perfect channel estimation is assumed. Here, we
divide the bandwidth equally between the devices so that
the impact of limited bandwidth is measured for different
datasets and network settings. We choose the same value

KROUKA et al.: COMMUNICATION-EFFICIENT FEDERATED LEARNING: SECOND ORDER NEWTON-TYPE METHOD 1871

Fig. 3. Training loss versus the number of communication uploads: (a) a9a dataset, (b) w7a dataset, (c) w8a dataset.

Fig. 4. Training loss versus SNR when the maximum number of channel uses is 104 (CU = 104): (a) a9a dataset, (b) w7a dataset, (c) w8a dataset.

Fig. 5. Training loss versus SNR when the maximum number of channel uses is 5×104 (CU = 5×104): (a) a9a dataset, (b) w7a dataset, (c) w8a dataset.

of ρ leading to fast convergence for all relevant algorithms
under all settings.

A. Results and Discussion

The numerical results of our experiments are shown in
Figs. 3-6. The performance of our proposed algorithms NAAM-
v0 and NAAM-v1 (decribed in Section II) is measured with
respect to different baselines using three datasets, as detailed
in Table I. We plot the loss, |f (x k) − f (x ∗)|, with respect

to different metrics. The optimal value f (x∗) for each setting
is found by performing the standard Newton’s method and
getting the value at the convergence point.

In Fig. 3, we plot the training loss of the algorithms with
respect to the number of communication uploads for different
datasets and number of devices where communication uploads
refer to the number of time slots that are needed for devices to
upload their updates to the PS. We observe that both NAAM-v0
and NAAM-v1 require a very low number of communication
uploads to reach the target training loss (10−4 in this case)

1872 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

Fig. 6. Training loss versus the number of communication uploads for
different number of ADMM steps K = {3, 10, 20}.

compared to Newton-zero, FedGD, and NDAM in all consid-
ered datasets and number of devices. For instance, in Fig. 3a,
Newton-zero, NDAM, and FedGD require around 12, 14, and
26 times more number of communication uploads compared
to NAAM-v0, respectively. This is justified by the adoption
of analog over-the-air aggregation method where every i th

element from the devices can be transmitted using the same
subcarrier, while the digital scheme implementation requires
orthogonal subcarriers to transmit all the elements. We note
that we chose K = 3 for NAAM-v1 to get a good approxi-
mation of the second term in the right hand side of (53). For
NAAM-v0, we select β = 10−6 (channel inversion threshold)
and K = 10 since it is the minimum number of local itera-
tions that enables the algorithm to reach the target training loss.
Nonetheless, NAAM-v0 suffers from fluctuating performance
at low training loss regime. This is due to the fact that chan-
nel inversion prevents devices from sending their elements
when the channel is in deep fading. This limits the available
information at the PS side, and thus results in an inaccurate
update. Comparing the results for the different datasets, we
notice that the number of transmitted elements greatly affects
the digital communication baselines (Newton-zero, FedGD,
and NDAM). For example, to send a model-size update,
devices need to transmit N × d = {9840, 15000, 42600} ele-
ments for datasets a9a, w7a, and a8a, respectively. The results
in Fig. 3 illustrate the fact that the larger the number of ele-
ments to be transmitted, the more communication uploads are
required to reach a certain training loss. On the other hand,
the performance of analog over-the-air aggregation baselines
(NAAM-v0 and NAAM-v1) is independent of the number of
devices, which justifies the large gap with respect to the digital
baselines.

Energy and Bandwidth Efficiency: Figs. 4-5 show the effects
of available bandwidth on the training loss for different SNR
values. To limit the bandwidth, we put a constraint on the
maximum number of available channel uses Cu =

∑J
j=1 Sj ,

where Sj is the number of subcarriers available at time slot
j. We consider different SNR regimes by changing the trans-
mission power since N0W is fixed. In Fig. 4, we limit the
maximum number of channel uses to CU = 104. We see

that the training loss achieved by NAAM-v0 and NAAM-v1 is
much lower than the ones of digital scheme baselines, even
at very low −20 dB SNR, i.e., low transmit power. As the
SNR value increases, the performance of NDAM and FedGD
improves and surpasses that of Newton-zero. The reason for
this is that the better the SNR gets, the higher transmission
rate is achieved, and less communication resources are needed
to transmit the updates from the device. Hence, this helps
NDAM and FedGD to run for more communication rounds
and achieve better performance. On the other hand, despite
the increase in SNR, by limiting the number of channel uses,
high training loss is experienced by Newton-zero. This is due
to the fact that the Hessian matrix is not fully transmitted, so
the matrix is not complete which hinders the training accu-
racy. In Fig. 5, when we increase the maximum number of
channel uses to CU = 5 × 104, we notice in the case of
dataset a9a, all digital baselines reach the target training loss
at SNR > 10 dB. Nonetheless, we see that the performance
of the digital baselines degrades for other datasets with higher
number of elements to be transmitted from each device since
the competition on the available subcarriers increases. For
dataset w7a in Fig. 5(b), NAAM-v1 reaches the target loss at
SNR = 0 dB, whereas its digital counterpart NDAM requires
SNR = 12 dB to reach the same target, and both FedGD and
Newton-zero need SNR > 20 dB. Hence, our algorithm pro-
vides more than 15 times reduction in transmission power,
which validates it to be a highly energy-efficient solution. On
the other hand, even at low SNR regimes for both choices
of the number of channel uses, both analog schemes achieve
low loss and significantly outperform the digital baselines. It
is also worth mentioning that NAAM-v1 (non-channel inver-
sion based scheme) outperforms NAAM-v0 (channel inversion
based scheme).

Impact of number of local Iterations K: In previous sim-
ulation results, we assume running one inner iteration (one
ADMM pass) at every outer iteration. In Fig. 6, we plot
the training loss of NAAM-v1 for different number of local
iterations K = {3, 10, 20} with respect to the number of
communication uploads and compare it to Newton-zero. The
more inner iterations, the more accurate the approximation
of the model update x r at every outer iteration r, which
in turn comes at the cost of requiring more communication
uploads (resources). Nonetheless, we clearly see that this addi-
tional overhead is not significant compared to the stringent
requirements incurred by Newton-zero.

V. CONCLUSION

In this work, we presented a novel communication-efficient
learning approach based on the second-order Newton-type
method for solving a distributed FL problem. Our proposed
algorithms NAAM-v0 and NAAM-v1 overcome the drawback
of excessive communication resources when sending Hessian
matrices from devices to the PS by allowing transmission
of only one vector at each communication round. This is
done by reformulating the Newton step as a solution to
a convex quadratic problem and solving it using ADMM.
Moreover, our approach ensures privacy since the transmitted

KROUKA et al.: COMMUNICATION-EFFICIENT FEDERATED LEARNING: SECOND ORDER NEWTON-TYPE METHOD 1873

information by the devices does not expose the gradient nor
the Hessian. Furthermore, our proposed framework enables us
to leverage analog over-the-air model aggregation, which not
only saves communication bandwidth but also adds another
layer of privacy where the trajectory of updates from the
devices is concealed by channel perturbations, as demon-
strated for NAAM-v1. Our simulation results show that our
proposed algorithms cope with noisy and time-varying chan-
nels and outperform the baselines with digital implementation
in terms of required communication resources for different val-
ues of SNR. Results also show that NAAM-v0 and NAAM-v1
provide a robust and enhanced performance for bandwidth-
limited systems, especially when the number of available
devices becomes large. For future directions, this work can
be extended to tackle modern ML problems that require deep
neural network (DNN) structures which are highly stochastic
and non-convex, in addition to addressing many challenges
such as effective modulation and coding schemes, data het-
erogeneity at the devices, and synchronization between the
devices and the PS.

REFERENCES

[1] M. Krouka, A. Elgabli, C. B. Issaid, and M. Bennis, “Energy-efficient
model compression and splitting for collaborative inference over time-
varying channels,” in Proc. IEEE 32nd Annu. Int. Symp. Pers. Indoor
Mobile Radio Commun. (PIMRC), 2021, pp. 1173–1178.

[2] M. Krouka, A. Elgabli, C. B. Issaid, and M. Bennis, “Communication-
efficient split learning based on analog communication and over the
air aggregation,” in Proc. IEEE Global Commun. Conf. (GLOBECOM),
2021, pp. 1–6.

[3] M. Krouka, A. Elgabli, and M. Bennis, “Maximum allowable transfer
interval aware scheduling for wireless remote monitoring,” in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), 2020, pp. 1–6.

[4] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5G wireless networks,” IEEE Commun. Mag.,
vol. 52, no. 8, pp. 82–89, Aug. 2014.

[5] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. 20th Int. Conf. Artif. Intell. Stat., vol. 54, Apr. 2017,
pp. 1273–1282.

[6] S. Oh, J. Park, E. Jeong, H. Kim, M. Bennis, and S.-L. Kim, “Mix2FLD:
Downlink federated learning after uplink federated distillation with two-
way mixup,” IEEE Commun. Lett., vol. 24, no. 10, pp. 2211–2215,
Oct. 2020.

[7] J. D. Lee, Q. Lin, T. Ma, and T. Yang, “Distributed stochastic variance
reduced gradient methods by sampling extra data with replacement,” J.
Mach. Learn. Res., vol. 18, no. 122, pp. 1–43, 2017.

[8] Y. Arjevani and O. Shamir, “Communication complexity of distributed
convex learning and optimization,” in Proc. 28th Int. Conf. Neural Inf.
Process. Syst. Vol. 1, 2015, pp. 1756–1764.

[9] H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of
communication efficient momentum SGD for distributed non-convex
optimization,” in Proc. Int. Conf. Mach. Learn., 2019, pp. 7184–7193.

[10] T. Chen, G. Giannakis, T. Sun, and W. Yin, “LAG: Lazily aggregated
gradient for communication-efficient distributed learning,” in Advances
in Neural Information Processing Systems, vol. 31. Red Hook, NY, USA:
Curran, 2018.

[11] T. Chen, K. Zhang, G. B. Giannakis, and T. Basar, “Communication-
efficient policy gradient methods for distributed reinforcement learn-
ing,” IEEE Trans. Control Netw. Syst., early access, May 6, 2021,
doi: 10.1109/TCNS.2021.3078100.

[12] A. Elgabli, J. Park, A. S. Bedi, C. B. Issaid, M. Bennis, and V. Aggarwal,
“Q-GADMM: Quantized group ADMM for communication efficient
decentralized machine learning,” IEEE Trans. Commun., vol. 69, no. 1,
pp. 164–181, Jan. 2021.

[13] C. B. Issaid, A. Elgabli, J. Park, M. Bennis, and M. Debbah,
“Communication efficient decentralized learning over bipartite graphs,”
IEEE Trans. Wireless Commun., early access, Nov. 17, 2021,
doi: 10.1109/TWC.2021.3126859.

[14] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
DNNs,” in Proc. INTERSPEECH, 2014, pp. 1058–1062.

[15] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“SignSGD: Compressed optimisation for non-convex problems,” in Proc.
35th Int. Conf. Mach. Learn., vol. 80, Jul. 2018, pp. 560–569.

[16] D. Alistarh, D. Grubic, J. Z. Li, R. Tomioka, and M. Vojnovic, “QSGD:
Communication-efficient SGD via gradient quantization and encoding,”
in Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017, pp. 1707–1718.

[17] A. T. Suresh, F. X. Yu, S. Kumar, and H. B. McMahan, “Distributed
mean estimation with limited communication,” in Proc. 34th Int. Conf.
Mach. Learn. Vol. 70, 2017, pp. 3329–3337.

[18] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification
for communication-efficient distributed optimization,” in Advances in
Neural Information Processing Systems, vol. 31. Red Hook, NY, USA:
Curran, 2018.

[19] H. Wang, S. Sievert, S. Liu, Z. Charles, D. Papailiopoulos, and
S. Wright, “ATOMO: Communication-efficient learning via atomic spar-
sification,” in Advances in Neural Information Processing Systems,
vol. 31. Red Hook, NY, USA: Curran Assoc., Inc., 2018.

[20] P. Han, S. Wang, and K. K. Leung, “Adaptive gradient sparsification for
efficient federated learning: An online learning approach,” in Proc. IEEE
40th Int. Conf. Distrib. Comput. Syst. (ICDCS), 2020, pp. 300–310.

[21] D. Alistarh, T. Hoefler, M. Johansson, S. Khirirat, N. Konstantinov, and
C. Renggli, “The convergence of sparsified gradient methods,” in Proc.
32nd Int. Conf. Neural Inf. Process. Syst., 2018, pp. 5977–5987.

[22] A. Beck, Introduction to Nonlinear Optimization: Theory, Algorithms,
and Applications With MATLAB. Philadelphia, PA, USA: SIAM, 2014.

[23] C. Guille-Escuret, B. Goujaud, M. Girotti, and I. Mitliagkas, “A study
of condition numbers for first-order optimization,” in Proc. AISTATS,
2021, pp. 1261–1269.

[24] X. Yin, B. W.-H. Ng, J. He, Y. Zhang, and D. Abbott, “Accurate image
analysis of the retina using hessian matrix and binarisation of thresh-
olded entropy with application of texture mapping,” PLoS One, vol. 9,
no. 4, pp. 1–17, Apr. 2014.

[25] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer, “A stochastic quasi-
Newton method for large-scale optimization,” SIAM J. Optim., vol. 26,
no. 2, pp. 1008–1031, 2016.

[26] N. N. Schraudolph, J. Yu, and S. Günter, “A stochastic quasi-Newton
method for online convex optimization,” in Proc. Int. Conf. Artif. Intell.
Stat., 2007, pp. 436–443.

[27] P. Moritz, R. Nishihara, and M. Jordan, “A linearly-convergent stochas-
tic L-BFGS algorithm,” in Proc. Int. Conf. Artif. Intell. Stat., 2016,
pp. 249–258.

[28] C. Dünner, A. Lucchi, M. Gargiani, A. Bian, T. Hofmann, and M. Jaggi,
“A distributed second-order algorithm you can trust,” in Proc. Int. Conf.
Mach. Learn., 2018, pp. 1358–1366.

[29] S. Wang, F. Roosta, P. Xu, and M. W. Mahoney, “GIANT: Globally
improved approximate Newton method for distributed optimization,” in
Advances in Neural Information Processing Systems, vol. 31. Red Hook,
NY, USA: Curran, 2018.

[30] O. Shamir, N. Srebro, and T. Zhang, “Communication-efficient dis-
tributed optimization using an approximate Newton-type method,” in
Proc. Int. Conf. Mach. Learn., 2014, pp. 1000–1008.

[31] M. Safaryan, R. Islamov, X. Qian, and P. Richtarik, “FedNL:
Making Newton-type methods applicable to federated learning,” 2021,
arXiv:2106.02969.

[32] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-
the-air computation,” IEEE Trans. Wireless Commun., vol. 19, no. 3,
pp. 2022–2035, Mar. 2020.

[33] M. M. Amiri and D. Gündüz, “Machine learning at the wireless edge:
Distributed stochastic gradient descent over-the-air,” IEEE Trans. Signal
Process., vol. 68, pp. 2155–2169, Mar. 2020.

[34] A. Elgabli, J. Park, C. B. Issaid, and M. Bennis, “Harnessing wireless
channels for scalable and privacy-preserving federated learning,” IEEE
Trans. Commun., vol. 69, no. 8, pp. 5194–5208, Aug. 2021.

[35] M. Krouka, A. Elgabli, C. B. Issaid, and M. Bennis, “Communication-
efficient and federated multi-agent reinforcement learning,” IEEE Trans.
Cogn. Commun. Netw., vol. 8, no. 1, pp. 311–320, Mar. 2022.

[36] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1–27,
May 2011.

[37] “TS 38.211 v15.2.0 release 15tr 38.802 v14.1.0,” 3GPP,
Sophia Antipolis, France, Rep. DTS/TSGR-0138211vf20, Jun. 2017.

[38] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
New York, NY, USA: Cambridge Univ. Press, 2005.

http://dx.doi.org/10.1109/TCNS.2021.3078100
http://dx.doi.org/10.1109/TWC.2021.3126859

1874 IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 6, NO. 3, SEPTEMBER 2022

Mounssif Krouka received the B.Sc. degree
from the Institute of Electrical and Electronics
Engineering (IGEE ex-INELEC), Boumerdes
University, Algeria, in 2015, and the M.Sc. degree
in wireless communications engineering from the
University of Oulu, Oulu, Finland, in 2018, where
he is a Doctoral Researcher with the Center for
Wireless Communications. His research interests
include ultra-reliable low-latency communications,
distributed optimization, resource scheduling, and
machine learning.

Anis Elgabli (Member, IEEE) received the B.Sc.
degree in electrical and electronic engineering from
the University of Tripoli, Libya, in 2004, the M.Eng.
degree from UKM, Malaysia, in 2007, and the M.Sc.
and Ph.D. degrees from the Department of Electrical
and Computer Engineering, Purdue University, West
Lafayette, IN, USA, in 2015 and 2018, respec-
tively. He is currently a Postdoctoral Researcher with
the Centre for Wireless Communications, University
of Oulu. His main research interests include het-
erogeneous networks, radio resource management,

vehicular communications, video streaming, and distributed machine learn-
ing. He was a recipient of the Best Paper Award in HotSpot Workshop in
2018 (Infocom 2018) and the most JUFO points in 2020 at the Center of
Wireless Communication, University of Oulu.

Chaouki Ben Issaid (Member, IEEE) received
the Diplôme d’Ingénieur degree in economics and
financial engineering from the Ecole Polytechnique
de Tunisie in 2013, and the master’s degree
in applied mathematics and computational sci-
ence and the Ph.D. degree in statistics from
the King Abdullah University of Science and
Technology in 2015 and 2019, respectively. He is
currently a Postdoctoral Fellow with the Centre for
Wireless Communications, University of Oulu. His
current research interests include communication-

efficient distributed learning and machine learning applications for wireless
communication.

Mehdi Bennis (Fellow, IEEE) is a Professor
with the Centre for Wireless Communications
and a Academy of Finland Research Fellow and
the Head of the Intelligent Connectivity and
Networks/Systems Group (ICON), University of
Oulu, Finland. He has published more than 200
research papers in international conferences, jour-
nals and book chapters. His main research interests
are in radio resource management, heterogeneous
networks, game theory and distributed machine
learning in 5G networks, and beyond. He was a

recipient of several prestigious awards, including the 2015 Fred W. Ellersick
Prize from the IEEE Communications Society, the 2016 Best Tutorial
Prize from the IEEE Communications Society, the 2017 EURASIP Best
paper Award for the Journal of Wireless Communications and Networks,
the all-University of Oulu award for research, the 2019 IEEE ComSoc
Radio Communications Committee Early Achievement Award, and the 2020
Clarviate Highly Cited Researcher by the Web of Science. He is an Editor of
IEEE TRANSACTIONS ON COMMUNICATIONS and a Specialty Chief Editor
for Data Science for Communications in the Frontiers in Communications and
Networks journal.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

