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Abstract–Over the past decade keystroke-based pattern recognition techniques as a forensic tool for behavioural biometrics have gained 
increasing attention. Although a number of machine learning based approaches have been proposed, they are limited in terms of their 
capability to recognise and profile a set of individual’s characteristics. In addition, up to today their focus was primarily gender and age, 
which seem to be more appropriate for commercial applications (such as developing commercial software), leaving out from research 
other characteristics, such as the educational level. Educational level is an acquired user characteristic, which can improve targeted 
advertising, as well as provide valuable information in a digital forensic investigation, when it is known. In this context, this paper proposes 
a novel machine learning model, the Randomised Radial Basis function Network (R2BN), which recognises and profiles the educational 
level of an individual who stands behind the keyboard. The performance of the proposed model is evaluated by using empirical data 
obtained by recording volunteers’ keystrokes during their daily usage of a computer. Its performance is also compared with other well-
referenced machine learning models using our keystroke dynamic datasets. Although the proposed model achieves high accuracy in 
educational level prediction of an unknown user, it suffers from high computational cost. For this reason, we examine ways to reduce the 
time that is needed to build our model, including the use of a novel data condensation method, and discuss the trade off between an 
accurate and a fast prediction. To the best of our knowledge, this is the first model in the literature that predicts the educational level of 
an individual based on keystroke dynamics information only. 

Index Terms— Forensic analysis, keystroke dynamics, user profiling, machine learning, data analytics 

——————————   u   —————————— 

1 INTRODUCTION
OOGLE has recently announced its ambitious plan to 
eliminate passwords in favor of systems that take into ac-

count a combination of sensor data  such as  typing patterns, 
gait patterns, and  coarse or exact location, etc. Keystroke dy-
namics, the patterns of rhythm and timing created when an 
individual types, has been used as a tool by many studies for 
the purpose of user authentication and user characterisation. 
The lion’s share of the research belongs to user authentication, 
since there are many studies that attempt to replace the tradi-
tional authentication with passwords, which suffers from 
many security and usability limitations.  

Keyboard dynamics refers to the process of identifying the 
unique patterns of an individual’s behaviour with a computer 
based keyboard device. It is closely related to the study of be-
havioural biometrics in digital forensics [1][2]. Examples in-
clude gait, speech patterns, signatures and keystrokes. Key-
stroke dynamics that measure an individual’s unique typing 
rhythms have been the subject of considerable research over 
the past decade and their use as a tool for authentication has 
shown promising results [3]. From a digital forensics perspec-
tive, the ability to identify the user and link him or her to a set 
of activities performed within an information system is of par-
amount importance. This is seen as an attribution problem, 

and this practically relates to finding and correlating circum-
stantial evidence ranging from digital artifacts found on a sus-
pect’s hard disk, to analysing the user’s behaviour from ob-
servable metrics. 

User behaviour-based biometrics technologies provide a 
number of advantages over traditional or physical biometric 
technologies. The information can be collected non-obtru-
sively or even without interfering with the users’ ongoing 
work or consent. Collection of such behavioural data often 
does not require any additional hardware and thus is cost ef-
fective as well [4]. However, the efforts in the literature in pro-
filing the user’s characteristics using behavioural biometrics 
techniques have been limited to gender or age only. Some 
highlights are as follows. Yan and Yan [5] proposed a method-
ology that categorises the authors of weblogs according to 
their gender. They used 75,000 blog entries and exploited the 
features of word appearance frequency, the blog’s background 
color, font type and style, punctuations, and emoticons. Their 
methodology achieved the F-measure of 0.68. Mukherjee and 
Liu [6] developed a machine-learning-based system that clas-
sifies the gender of blog’s author. They collected data from 
3,100 blogs and classified the gender of authors using the fea-
tures of styling words (like “hmm” and “lol”), gender prefer-
ential words (like “sorry”, words ending with “-able”, “-ful” 
and “-ous”) and sequence of consecutive part-of-speech tags 
that satisfy some constraints. The system utilised Naïve Bayes 
and SVM classifiers and it achieved the accuracy of 88%. 
Cheng et al. [7] also proposed a machine-learning-based sys-
tem that identifies the gender of author of a text. This research 
was motivated by the rapid increase in crime on the Internet. 
Their dataset includes a collection of texts from Reuters’ news-
groups and a collection of emails of Enron employees. They 
studied hundreds of text features and learned models using 
Bayesian based logistic regression, AdaBoost decision tree, 
and SVM. The SVM showed the best results achieving 85% ac-
curacy. Jones et al. [8] collected the data of user profiles and 
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search keywords from Yahoo.com and learned a model using 
SVM-based classifier. Their SVM-based model achieved 83.8% 
accuracy on the gender classification and predicted the age of 
users with 63.9% accuracy. The study of Rangel et al. [9] has a 
consolidated list of 21 candidate models and classified the au-
thors of English or Spanish texts based on their gender and 
age. Using decision trees, SVM, Naïve Bayes, and logistic re-
gression models, they successfully classified the users into 
three age classes and the best accuracies were 59% for English 
speaking users and 65% for Spanish speaking users. 

The aforementioned approaches however rely on computa-
tional machine learning models and have limitations. The 
most important of them is that all or some of features used to 
classify the users are limited to certain phrases, words, N-
grams and the characters of a language. Most of the ap-
proaches are incapable of dealing with the heterogeneity of to-
day’s Internet as they were tested on English language only. It 
is reported that 25.9% of the Internet users are native English 
speakers and the half of websites worldwide are in English 
only [10]. Clearly, the keystroke dynamics information used in 
this study could be seen as a remedy for such problem. Key-
stroke dynamics is defined as the detailed and precise timing 
information that describes when each key was pressed and 
when it was released as a user types on a keyboard and is first 
introduced in 1970’s. Since then, many keystroke dynamics-
based methods have been proposed to replace the password-
based authentication. 

The features used for analysing keystroke dynamics can be 
categorised into temporal and non-temporal. As temporal fea-
tures are usually time-based, they are measured in millisec-
onds. The most well-accepted temporal features are key-
stroke-duration-based such as dwell time (the time a key 
pressed) and flight time (the time between “key up” and the 
next “key down”) [11]. Other temporal features include the 
time associated with the trigrams and tetragrams [12]. Non-
temporal features are non time-based such as typing speed 
(e.g. words per minute), the frequency of errors, error correc-
tion mode, which key is used when there are two or more op-
tions (“Shift”, “Ctrl”, “Alt”, “Enter”, etc.) [13]. Other non-tem-
poral features may include the time of day, applications used, 
and the frequency using the keyboard. 

In this context, this paper introduces a novel learning archi-
tectured model, Randomised Radial Basis function Network 
(R2BN). R2BN can recognise and profile the educational level of 
an individual who stands behind the keyboard. The perfor-
mance of the proposed model achieves a test error comparable 
to or better than the state-of-the-art machine learning models. 
The contribution of this work can be summarized as follows: 
• R2BN, a novel machine learning model predicting the edu-

cational level of users from keystroke dynamics only. We 
compare our model with other well-known machine learn-
ing models that have been used in the domain. Our experi-
mental results suggest that our model is much more suita-
ble model with regards to accuracy of predicting the edu-
cational level of the users. Moreover, we discuss the ways 
to address the limitation of the proposed model, namely the 
time needed to build the model (TBM). In this regard, we 
discuss tradeoffs of accuracy vs. TBM when we: a) use dif-
ferent iterations to build the model and b) use different 
sampling rates (100% to 10% sampling) in a proposed data 
condensation method.   

• We create a dataset that can be used to study keystroke dy-
namics that have been captured from free text over long pe-
riods of time. To the best of our knowledge, a similar da-
taset, i.e. one containing keystrokes recorded from real us-
ers during the daily usage of their computer for a long 

period of time instead of typing 2-3 sentences, is not avail-
able in the literature. 

Having the ability to identify the educational level of an indi-
vidual who types a certain piece of text is of significant im-
portance in digital forensics. This holds true, as it could be the 
source of circumstantial evidence for “putting fingers on key-
board” and for arbitrating cases where the true origin of a mes-
sage needs to be identified. Moreover, if the proposed method 
is included as part of a text composing system, such as emails 
and instant texting, it could increase trust towards the appli-
cations that use it and may also work as a deterrent for crimes 
involving forgery. Also, accurately extracting the typing pat-
terns of users who attempt to authenticate in a computing sys-
tem that does not use the password scheme, like Google Aba-
cus, effectively reduces types II errors. Finally, knowing the 
educational level of a user, could improve targeted advertising 
as the focus on his/her interests could be predicted easier. In 
this regard, we make the features used from our dataset avail-
able to the research community, hoping that we will inspire 
and aid more research in this domain. 

The rest of the paper is organised as follows. Section II de-
scribes the data acquisition, the keystroke dynamics feature 
extraction, and the design and construction of novel data con-
densation method and R2BN model. Section III summarises the 
results obtained by comparing the performance of the pro-
posed model and other nine well-known machine learning 
models. Section IV provides related work and Section V con-
cludes the paper. 

2 METHOD 
Our aim is to recognise and profile the educational level of an 
individual who stands behind a keyboard. To this end, our ap-
proach consists of two successive phases. Firstly, we collect 
free text data from the volunteers who agreed to participate in 
this venture of capturing their daily, real-life keystrokes over 
a period of 10 months. Then, we construct a novel machine 
learning model, R2BN, predicting the educational level of users 
from keystroke dynamics only.  Finally we propose a data con-
densation method in order to reduce the training time of R2BN. 

2.1 Keystroke Dynamics Dataset 
For the data collection, two main issues have been considered. 
We first considered Internet heterogeneity and standardisa-
tion. The heterogeneity of the Internet comes along the issues 
in languages, locations, and structural and operational varie-
ties. The users may have received education from different ed-
ucation systems around the world. They are particularly dif-
ferent in terms of length of time and grade. We addressed this 
by adopting the International Standard Classification of Edu-
cation (ISCED) [16], which aims to attain a standardisation 
and classification of different education systems around the 
world. 

The second is related to the keystroke dynamics data itself. 
Data acquisition for the purpose of analysis of keystroke dy-
namics requires deploying a keylogger on a volunteer’s com-
puting device. The volunteer may either be requested to type 
a specific and fixed text, or a free text. The latter is preferred 
as it integrates better with the subject’s regular typing activi-
ties and is less intrusive. However, the continuous recording 
of a volunteer's typing over an extended duration of time in-
troduces the risks of disclosing passwords and personal mes-
sages to a third party. This is the main reason for the lack of 
existance of such recorded free text data in the literature. 

We designed and developed a free text keylogger, called 
“IRecU” for the purpose of recording the user’s free text. This 
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can be installed into any Microsoft Windows based device. 
The IRecU is available at [17]. The volunteers were asked to 
provide their educational information and the available levels 
of ISCED-2011 to be selected were ISCED-2, ISCED-3, ISCED-
4, ISCED-5, ISCED-6 and ISCED-7-8. To mitigate the effect of 
the aforementioned risks, the volunteers were given an option 
to clear out what they have typed.  

The IRecU creates a comma-delimited text (.txt) with the 
following data for each volunteer. 

75,#2014-05-02#,47353342,"dn" 
65,#2014-05-02#,47353436,"dn" 
75,#2014-05-02#,47353441,"up" 
73,#2014-05-02#,47353529,"dn" 
65,#2014-05-02#,47353545,"up" 
73,#2014-05-02#,47353639,"up" 
32,#2014-05-02#,47353779,"dn" 
32,#2014-05-02#,47353904,"up" 

Each line represents a record of the volunteer’s action. The 
first field represents the virtual key code of the key that the 
volunteer pressed or released. The second field indicates the 
date the action took place in the format of yyyy-mm-dd. The 
third field is the elapsed time since the beginning of that day 
(12:00 am) in milliseconds, and the forth field is the action, 
“dn” for key-press and “up” for key-release. We then extracted 
all the features of keystroke dynamics from the text files. For 
example, the duration of keystroke is calculated from the sub-
traction of ms that correspond to the “up” action minus the ms 
that correspond to the “dn” action, for the same key. Similarly, 
all the digram latency representations are calculated. Exam-
ples are press-press, release-press, press-release, and release-
release digram latency. The number of log files per educational 
level is shown in Table 1. 
 

TABLE 1 
EDUCATIONAL LEVEL LOG FILES 

Levels No. of Files Percentage 

ISCED-3 40 16.5 
ISCED-4 15 6.2 
ISCED-5 43 17.8 
ISCED-6 85 35.1 
ISCED-7-8 59 24.4 

Total 242 100.0 
The log files varied in size from 170 KB to 271 KB and contained data from 2,800 
to 4,500 keystrokes. The class ISCED-2 is absent because there was no log file 
from a volunteer with this educational level. 

There are many useful features that can be extracted from 
keystroke dynamics. Some of them are temporal, which are 
usually time-based and measured in millisecond. The most 
used features in the literature are keystroke duration, which is 
the time that a key is kept pressed, and the digram latency, 
which is the time between the pressing or releasing of a key 
and the pressing or releasing of the next key (this creates four 
combinations, down-down, down-up, up-down and up-up). 
In addition, there are other temporal features that have been 
used or may be used, such as: a) those which include the time 
associated with the trigrams, tetragrams, etc. [18], b) the num-
ber, the duration and the frequency of pauses during typing 
[19], and c) the typing rate [20]. 

Except from temporal features, there are non-temporal fea-
tures that are non time-based, such as: typing speed (e.g., 
words per minute), the frequency of errors, error correction 
mode, finger pressure on the keys [21], which key is used 
when there are two or more options (e.g., “Shift” [22], “Ctrl”, 
“Alt”, “Enter”, etc.) [23]. Other non-temporal features may 

include the time of day, applications used, and the frequency 
of using the keyboard. 

In this study, we use the most popular features of keystroke 
dynamics, i.e., keystroke durations and digram latencies. The 
reason for this is that for keystroke pressure features, a dedi-
cated pressure-sensitive keyboard is essential, which contra-
dicts with the main advantage of keystroke dynamics biomet-
rics. Moreover, the frequency of word errors, typing rate and 
duplicate keys features are merely practical for text with large 
number of characters. Finally, trigrams, tetragrams, etc, are 
much rarer than monograms and digrams [24]. More specifi-
cally, we preferred down-down digram latencies (DDDL) to 
avoid negative values, because the second key may be pressed 
or may even be released before the releasing of the first key. 

The total number of features to consider could have been 
almost 10,000 if we had used all the keystroke durations and 
digram latencies assuming an average computer’s keyboard 
has 100 keys. However, some keys and digrams are used 
rarely or never. Based on our observation, we decided to in-
clude 42 keys and 120 digrams only. To extract features from 
the log files, we developed “ISqueezeU” software, which 
reads the text files created by “IRecU” and calculates the aver-
age values of durations or latencies. The keys that have at least 
10 appearances and the digrams with at least 5 appearances 
have been taken into account only. The values for the rest keys 
and digrams were marked as unknown. 

The features from our dataset that were used in this work 
are available on [25]. 

2.2 Randomised Radial Basis Function Network 
In this section, we design and modify the radial basis function 
neural network (RBFN), which was initially proposed by 
Broomhead and Lowe [26]. RBFN shows faster convergence, 
smaller extrapolation errors, and higher reliability. It is built 
on a typical feedforward and three-layered architecture with a 
single hidden layer, where the activation functions for hidden 
units are defined as radially symmetric basis functions phi, 
such as the Gaussian function. Training a RBFN involves two 
phases: clustering like unsupervised on the hidden layer to de-
termine N receptive field centroids in the training data set and 
the associated widths, and supervised on the output layer to 
estimate the connection weights w. The output layer is 
straightforward as it implements a simple multiple linear re-
gression using the iterative gradient descent based training 
method. In each RBF neuron, it is stored a vector with as many 
dimensions as the number of the input layer neurons. This 
vector is called “center vector” and is denoted as c. Similarly, 
the input forms a vector of equal dimensions and the Euclid-
ean Distance between the input and the center vector is calcu-
lated. The calculated distance is then multiplied by a coeffi-
cient b and finally the product is applied to a radial basis func-
tion. This procedure is illustrated in Figure 1. 
 

 
Fig. 1. The structure of the RBF neuron. 

The wavy line marks the boundaries of the RBF neuron, the 
x1, x2, …, x162 denote the components of the input vector and the 
c1, c2, …, c162 denote the components of the center vector. The 
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output of the RBF neuron is given by the outcome of a radial 
function on the Euclidean distance, i.e.: 
 

 (1) 
 

The index in (1) indicates that it is the output of the ith neu-
ron of the network and the double bar denotes the Euclidean 
distance between vectors. Besides Euclidean distance, Ma-
halanobis distance could also be useful as it may give better 
results in some situations [27]. The radial function produces 
its largest response when the input vector is equal to the center 
vector. On the contrary, as the input moves near to the center, 
the response falls off exponentially as in (2). 
 

 
(2) 

 
In the third layer, the number of neurons is as many as the 

number of the categories in which the data will be classified. 
This means that in our case there are 5 neurons in the output 
layer. Each output node computes a sort of score for the asso-
ciated category. Typically, a classification decision is made by 
assigning the input to the category with the highest score. The 
score in every output neuron is computed by taking a 
weighted sum of the activation values from every RBF neuron, 
as shown below: 
 

 
(3) 

 
where N is the number of neurons in hidden layer, a(i) is the 
weight assigned to the ith neuron, b(i) is the coefficient of the ith 
neuron and c(i) is center vector of the ith neuron. During the 
training process, it selects three sets of parameters: the center 
vectors (c(i)) and beta coefficient (b(i)) for each of the neurons, and 
the matrix of output weights between the neurons and the out-
put nodes (a(i)). Schwenker et al. [28] provide an overview of 
common approaches to training such radial basis based mod-
els. In short, they perform the k-Means clustering on their 
training set and the cluster centers are used as the center vec-
tors. The trade off in choosing the number of neurons in hid-
den layer is that the more neurons the higher the classifier’s 
accuracy, while the less neurons the shorter the system’s train-
ing time. The average distance between all instances in a clus-
ter and the corresponding cluster center is given by: 
 

 
(4) 

 
where m is the number of instances belonging to this cluster, xj 
is the jth instance in the cluster and C is the cluster center. Hav-
ing the value s, the beta coefficient for the cluster is calculated 
as: 
 

 
(5) 

 
The output weights can be trained using the gradient de-

scent optimisation technique. The training inputs are the val-
ues obtained by the RBF neurons using the training set x. Gra-
dient descent runs separately for each output node (that is, for 
each class in the data set).  

Finally, the modified radial basis neural network is ran-
domized [29]. A model that does not give satisfactory results 
we call it “weak”. A strategy to enhance its performance is to 
combine many “weak learners” (WL) in a way that the output 
of each classifier can be aggregated to form a final decision. To 
provide a training set to the next-level classifier, weights are 
assigned to the instances, which determine the probability that 
should appear in the next training set. This probability is equal 
for every instance at the beginning of the procedure and there-
fore the first-level classifier uses the entire available training 
set. Instances with higher weights are more likely to be in-
cluded in the next training set, and vice versa. The idea is to 
increase the weight on the misclassified instances so that these 
instances will make up a larger part of the next classifiers 
training set, and hopefully the next trained classifier will per-
form better on them. To explain how this works, let assume 
that there is a binary problem (only two classes) and every kth 
instance in the training set has the value pk, while qk is the cor-
rect output after the procedure. Because the problem is binary, 
the qk may have the values +1 and –1. As mentioned earlier, 
weights are assigned to instances of the training set, which are 
stored to a vector W. Initially, these weights are equal for every 
instance and therefore all of them participate in the training 
procedure of the first WL. The weights are adjusted using the 
equation below: 
 

 
(6) 

 
where Wt(k) is the weight of the kth instance of the tth classifier 
training set, At is a coefficient corresponding to the tth classifier 
and indicates its importance to the final result, ft(pk) is the pre-
diction of the tth classifier for the kth instance and St is a normal-
ise factor which ensures that the sum of the instance weights 
is equal to 1. From the above, it follows that the qk·ft(pk) product 
will be positive when the prediction is correct and negative 
when it is incorrect. Because this product is part of a negative 
exponent entails that when the prediction is correct the weight 
of the instance will be decreased and when it is incorrect will 
be increased. Moreover, the Wt is a distribution because each 
weight Wt(k) represents the probability that the kth instance will 
be selected as part of the next training set, and because every 
weight has value between 0 and 1 and their sum is 1. Once the 
training of all WL is completed, the output of the final classi-
fier is given by: 
 

 
(7) 

 
where T is the number of WL, ft(p) is the output of the tth WL, 
which is +1 or –1 in the case being studied and At is the coeffi-
cient that was assigned to the tth WL. Therefore, the final output 
is just a linear combination of all of the WLs and the final de-
cision is simply the sign of this sum. It should also be noted 
that the At coefficients, each of which is computed after the 
training of the corresponding classifier as: 
 

 (8) 

 
where 𝜀" is the number of misclassifications over the training 
set divided by the training set size. According to equation (8), 
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when the 𝜀" quantity approaches 0 the 𝐴" coefficient grows ex-
ponentially, which means that better classifiers play more im-
portant role to the final result. When the 𝜀" quantity is equal to 
0.5, i.e., the classifier accuracy is 50%, the 𝐴" is 0 and therefore 
every classifier with accuracy no better than random guessing 
is ignored. Finally, when the 𝜀" is over 0.5, the 𝐴" is negative, 
which means that the opposite decision of the classifier is 
taken into account. 

Algorithm 1 summarises the abovementioned operation of 
R2BN procedure.  

 
The parameters of the Algorithm 2 are the training set x, the 

“weak learner”, which is the RBFN, and the number of itera-
tions T, while n is the training sample size. In each iteration 
the weighted error ε%, the coefficient At, and the weights Wt are 
calculated. 

2.3 Data Condensation Method 
One of the problems in any classification procedure is that, ir-
respective of the sophistication of the classifier in use, as the 
dataset size increases so does the computational time. As with 
any other classifier, the training time of R2BN is considerable 
and highly depends on the number of iterations. One possible 
solution is to build the classification model on a much smaller 
representative subset of the original dataset. The aim is to re-
duce the dataset size as much as possible with the minimum 
loss of classifier performance. 

To this end, this subsection proposes a new data condensa-
tion method, which precedes R2BN as shown in Fig. 2. 
 

 
Fig. 2. R2BN and data condensation method block diagram. D is stratified 
sampled by percentage S and R is produced. Voronoi diagrams V(R) are 
produced based on R. Dataset D overlies over V(R). VBGM clustering al-
gorithm is used to produce dataset C. A number of RBFNs where each 
one uses different training set, calculated by the previous neural network, 
performs the classification. 

The proposed filter-based random sub-field data condensa-
tion method consists of a three stages. In the first stage, 

assuming that B is a given training set, with N instances and 
M features, then the dataset D is a concatenation of B and the 
target values t. In simple random sampling (SRS), a sample R 
is selected from B uniformly with replacement following a bi-
nomial distribution. Equivalent weights are given to all sam-
ples in the dataset, so that any sample is chosen with equal 
probability regardless of whether it was previously sampled 
or not [30]. Although SRS simplifies analysis results, it suffers 
in performance when D is imbalanced, just as it happens in 
our case, where the class ISCED-4 occupies the 6% of the in-
stances and class ISCED-6 the 35%. In the filter-based random 
sub-field data condensation, D is divided into a set of strata 
according to the different target values in t, and SRS is per-
formed on each stratum independently. In this context, we use 
the proportional sampling approach, where the proportion 
sampled from each stratum is equal in the sample as it is in the 
original dataset. Thus, if D is highly imbalanced, then higher 
sampling percentage would be given to the small target stra-
tum. 

Upon sampling from D to produce R, we need to assess 
whether this sample is a good representative or not. There are 
two types of statistical tests, namely parametric and nonpara-
metric statistical tests. Parametric tests make assumptions 
about the statistical distribution of the original dataset, while 
non-parametric tests assume no underlying statistical struc-
ture about the data. Thus, in order to maintain generality in 
this framework, the nonparametric preference is adopted. 

In this study, the test was performed on the most significant 
features. The topic of feature subset selection has been well 
studied in the literature, whereby a feature selection algorithm 
consists of a search technique in conjunction with an evalua-
tion metric. Here, a filter-based feature selection method, 
which utilises the information gain as an evaluation metric 
with respect to the class value is used. It can be formalised as: 
 

 (9) 

 
where H(x) is the entropy of x, given by 
 

 
 (10) 

 
where E is the length of the vector x and Pr(x[i]) is the proba-
bility of the x[i]. 

The second stage is the construction of a Voronoi diagram 
V(R) based on the subsampled dataset R. The Voronoi diagram 
V(R) is the collection of all Voronoi regions VR(rn, R) whose cen-
ters rn are instances in R. For a brief definition of Voronoi dia-
gram let x, y Î ÂM. Then the bisector of x and y: 
 

 (11) 

 
is the perpendicular line through the center of the line segment 
𝑥𝑦(((. Where 𝐴̅ denotes the closure of some set A and ‖. ‖, is 
the p-norm distance, defined as: 
 

 (12) 

 
The half plane D(x, y) which is separated by the bisector is: 
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 (13) 

 
and the corresponding Voronoi region of x with respect to R is 
written as: 
 

 (14) 

 
The main method for computing a Voronoi diagram is by 

the brute force approach. Thus, it could be defined as: 
 

 (15) 

 
Variety of efficient algorithms exists to compute the Voronoi 

diagram, such as the incremental construction, divide & con-
quer, and plane sweep. According to [31], the divide & con-
quer algorithm and the plane sweep constructs a Voronoi dia-
gram of n points within time O(n·logn) and linear space, in the 
worst case, where both bounds are optimal. 

Here, we used the Euclidean distance measure to calculate 
the Voronoi regions. Nonetheless, it is worth mentioning that 
variety of other distance metrics can be chosen depending on 
the nature of the problem and the data. For example, for con-
tinuously-valued attributes, one can employ the Mikowsky, 
Mahalanobis, Chebychev, Camberra, Quadratic, Correlation, Chi-
square, and many others. This stage is very crucial since it re-
duces the complexity of the next clustering stage, where we 
assume that data points that are far apart do not have an effect 
on each other. As you may have noticed, this approach allows 
the condensation process performed in parallel to the different 
Voronoi regions. 

In third stage the original dataset D overlies over the Voro-
noi diagram V(R). The goal of this stage is to fetch representa-
tive centroids from each Voronoi region, for which the collec-
tion of all centroids comprise the reduced dataset C. It is re-
mained to be decided which clustering algorithm must be 
used and how many centroids per Voronoi region should be 
fetched. By specifying as clustering validity measure that the 
clustering algorithm should attempt to minimise the inter-
cluster distance measures and maximise the intra-cluster dis-
tance measures, the VBGM clustering algorithm [32] is used to 
fetch at most -𝑈𝑛/2 centroids from each 𝑛"2 Voronoi region, 
with 𝑈3 to be the M-dimensional data instances that constitute 
the Voronoi region. In this work, α0 is set to 0.01, which most 
often results in selecting less than -𝑈𝑛/2. Although, the sam-
pling percentage is specified in the beginning of the algorithm, 
the final sampling percentage most often ends up being 
slightly less, where the highest worst case condensation per-
centage 𝑃𝐸𝑅78 is 
 

 
(16) 

 
where 𝐾3 is the number of clusters. The three stages of the fil-
ter-based random sub-field data condensation are described 
in the following pseudo code. 

 
Algorithm 2 has as parameters the Dataset D and a sam-

pling percentage S which takes values between 0 and 1. In 
stage 1, a representative set R from D is selected by calling a 
stratified random sampling. The number of selected instances 
corresponds to the specified parameter S. In stage 2, based on 
R, a Voronoi diagram V(R) is constructed by partitioning the 
dataset space into L = 𝑆 × 𝑁 Voronoi regions Î V(R). Finally, in 
stage 3, the original instances from D is overlayed back onto 
V(R) and VBGM clustering algorithm is used to fetch at most 
-𝑈3/2 centroids from each 𝑛"2	Voronoi region. Thus, now it 
can be assumed that for each local region in the input space 
represented by a centre vector and there is corresponding sca-
lar output into which it maps then the centroids can be fol-
lowed by convolution process as below. 

In addition, for datasets of high dimensions, one might em-
ploy cheap distance metrics. For instance, only the most sig-
nificant features can be chosen for the distance metric, which 
in turn reduces the time latency of computing the distances 
drastically. Moreover, one could rely on the construction of an 
approximate Voronoi diagrams as in the proposed architecture. 
This stage is very crucial since it reduces the complexity of the 
next clustering/learning stage. Another note that merits a 
mention is that this framework allows for parallel condensa-
tion to be performed to the different Voronoi regions. 

3 MODEL EVALUATION AND ANALYSIS 
In this section we evaluate and compare the performances of 
the proposed R2BN model and other well-known nine machine 
learning models, namely: i) radial basis function network 
(RBFN), ii) multi-layer perceptron (MLP), iii) support vector 
machine (SVM), iv) random forest (RF), v) logistic model tree 
(LMT), vi) naïve Bayes tree (NBTree), vii) best first tree 
(BFTree), viii) naïve Bayes (NB) classifier, and ix) simple lo-
gistic (SL). The models are tested on the benchmark keystroke 
dynamics dataset in terms of: a) the model accuracy (Acc.), 
which is the percentage of correctly classified instances, b) the 
stability (𝜎),	which is the measure of deviation of all the model 
accuracies over 10-folds, and c) time complexity (TBM), which 
is the CPU time required to build the model.  

More specifically, to assess the performance of the proposed 
model fairly with regards to the abovementioned criteria (i.e., 
accuracy, stability, and time complexity), the well-referenced 
cross-validation is used [33]. In the 10-fold cross-validation, 
which is the most commonly used version, the dataset is di-
vided into 10 subsets. Each time, one of the 10 subsets is used 
as the testing set and the other 9 subsets are put together to 
form a training set. Then, the average error across all 10 trials 
is computed. The advantage of this method is that the way the 
data gets divided matters less. Every data point gets to be in a 
testing set exactly once, and in a training set 9 times. 

Moreover, to validate the quality of the proposed model, 
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the F-score and ROC index are computed and provided. For 
the F-score, we calculated the harmonic mean of the specificity 
and sensitivity [34], where its value falls in the range between 
0 and 1. Accuracy is measured by ROC index, the area under 
the ROC curve [35]. 
 

TABLE 2 
RESULTS OF MODEL COMPARISONS ON DIFFERENT CLASSES 

Model Class Acc. 𝜎 ROC TBM 

R2BN 
3 88.43 9.20 0.959 73.82 
4 87.19 7.73 0.949 49.09 
5 86.78 6.61 0.966 67.70 

Avg.  87.6±0.8 7.9±1.3 0.957±0.008 61.5±12.4 

RBFN 
3 80.99 8.70 0.880 1.26 
4 77.27 5.19 0.860 1.67 
5 79.34 4.60 0.885 1.58 

Avg.  79.1±1.9 6.7±2.1 0.873±0.013 1.5±0.2 

MLP 
3 75.62 7.58 0.898 77.27 
4 67.77 7.67 0.874 85.82 
5 69.83 14.08 0.876 80.73 

Avg.  71.7±3.9 10.8±3.2 0.886±0.012 81.5±4.3 

SVM 
3 69.83 5.49 0.802 0.61 
4 63.22 12.23 0.808 0.49 
5 64.88 10.82 0.839 0.90 

Avg.  66.5±3.3 8.8±3.4 0.820±0.018 0.7±0.2 

RF 
3 79.34 9.32 0.899 5.80 
4 71.49 9.36 0.896 9.50 
5 71.49 11.67 0.911 6.46 

Avg.  75.4±3.9 10.5±1.2 0.904±0.008 7.7±1.9 

LMT 
3 71.07 10.53 0.862 4.43 
4 67.77 8.06 0.847 3.38 
5 62.40 10.56 0.817 6.68 

Avg.  66.7±4.3 9.3±1.3 0.840±0.023 5.0±1.7 

NBTree 
3 66.12 12.73 0.771 132.19 
4 60.74 8.41 0.795 102.73 
5 61.16 10.26 0.783 107.58 

Avg.  63.4±2.7 10.6±2.2 0.783±0.012 117.5±14.7 

BFTree 
3 71.90 7.95 0.802 13.53 
4 59.50 11.00 0.724 1.30 
5 58.68 8.56 0.750 2.50 

Avg.  65.3±6.6 9.5±1.5 0.763±0.039 7.4±6.1 

NB 
3 57.25 10.12 0.699 0.01 
4 51.24 10.81 0.712 0.03 
5 55.37 8.10 0.722 0.02 

Avg.  54.2±3.0 9.5±1.4 0.711±0.012 0.02±0.01 

SL 
3 69.83 8.01 0.834 2.04 
4 66.53 11.84 0.824 1.67 
5 55.79 8.10 0.795 5.63 

Avg.  62.8±7.0 9.9±1.9 0.815±0.020 3.7±2.0 
R2BN (30 clusters for K-Means, 0.9 minimum standard deviation for the clusters and 
55 iterations for adaptive boosting, for 5-classes dataset, 30 clusters for K-Means, 1.9 
minimum standard deviation for the clusters and 45 iterations for adaptive boosting, 
for 4-classes dataset, and 60 clusters for K-Means, 1.0 minimum standard deviation 
for the clusters and 70 iterations for adaptive boosting, for 3-classes dataset), RBFN 
(70 clusters for K-Means and 1.0 minimum standard deviation for the clusters, for 5-
classes dataset, 100 clusters for K-Means and 1.0 minimum standard deviation for 
the clusters, for 4-classes dataset,  and 40 clusters for K-Means and 1.2 minimum 
standard deviation for the clusters, for 3-classes dataset) MLP (0.7 learning rate and 
0.4 momentum, for 5-classes dataset, 0.5 learning rate and 0.6 momentum, for 4-clas-
ses dataset, and 0.8 learning rate and 0.6 momentum, for 3-classes dataset), SVM (1.0 
C-value and Polykernel as kernel type, for 5-classes dataset, 1.0 C-value and Polyker-
nel as kernel type, for 4-classes dataset, and 3.0 C-value and Polykernel as kernel 
type, for 3-classes dataset), RF (100 trees with 100 random features each, for 5-classes 
dataset, 100 trees with 162 random features each, for 4-classes dataset, and 90 trees 
with 120 random features each, for 3-classes dataset), LMT (10 iterations for 
LogitBoost, 1 as minimum number of instances for splitting a node and 0.01 beta 
value for LogitBoost, for 5-classes dataset, 4 iterations for LogitBoost, 1 as minimum 
number of instances for splitting a node and 0.0 beta value for LogitBoost, for 4-
classes dataset, and 10 iterations for LogitBoost, 1 as minimum number of instances 
for splitting a node, and 0.01 beta value for LogitBoost, for 3-classes dataset), BFTree 
(5 folds in internal cross validation and 1 as minimum number of instances at the 
terminal nodes, for 5-classes dataset, 3 folds in internal cross validation and 1 as 
minimum number of instances at the terminal nodes, for 4-classes dataset, and 30 
folds in internal cross validation and 2 as minimum number of instances at the ter-
minal nodes, for 3-classes dataset), and SL (no iterations for LogitBoost and 40 as 
heuristic stop, for 5-classes dataset, 130 iterations for LogitBoost and 50 as heuristic 
stop, for 4-classes dataset, and no iterations for LogitBoost and 30 as heuristic stop, 
for 3-classes dataset). 

However, as the ISCED-4 class makes only 6.2% of the 
whole dataset and the learning models rarely see the samples 
and adjust the weights, increasing the probability of unreliable 
results (i.e., imbalance effect), ISCED-3 and ISCED-4 classes 

are merged forming the new ISCED-3-4 classes. Now the da-
taset has the following four classes, i) those who do not have 
tertiary education, ii) those who have short cycle tertiary edu-
cation, iii) those who have university degree, and iv) those 
who have education higher than tertiary. Again, ISCED-3-4 
and ISCED-5 are merged to form a new ISCED-3-4-5 class da-
taset. This balances up the number of samples in each class for 
fair model evaluation and comparisons. The experimental re-
sults are summarised in Table 2. 

R2BN excels all other models in terms of Acc., in 3, 4 and 5-
classes datasets, about 8% improved from its base model 
(RBFN). More specifically, R2BN achieves an accuracy of 86.8% 
with 5-classes dataset. Similarly, with 4-classes dataset, the dif-
ference between the accuracies of the R2BN predictions and the 
baseline is over 62%, while in 3-classes case this difference is 
over 54%. In addition, R2BN becomes the second in the stabil-
ity behind the RBFN model, achieving 7.9±1.3 deviation of all 
the model accuracies over 10-folds. Moreover, R2BN has the 
greatest ROC index, over all other models, reaching a value 
only 0.043 less than the optimum 1.0 and followed by RF and 
MLP which have 0.904 and 0.886, respectively. However as our 
results suggest, almost all the other models require less train-
ing time (see Table 2). Specifically, R2BN’s is only better than 
MLP and NBTree with regards to TBM. It requires considera-
bly more time to learn a model than NB (approx. 3075x), SVM 
(approx. 88x), RBFN (approx. 41x), and RF (approx. 8x). 
 

 
Fig. 3. Accuracy comparison over three different classes’ datasets. 

Fig. 3 visualises the experimental results of accuracy for the 
ten models, over three different datasets. As suggested by our 
experimental results, randomised radial basis function net-
work, seems to be a much more suitable model, achieving 
88.43% Acc. We believe that the utility of R2BN can be con-
firmed with these experimental results, however, there is a 
drawback that should be addressed. Specifically, it is obvious 
that learning an optimal model for R2BN is still time consum-
ing. We performed additional experiments on 3, 4, and 5 clas-
ses. As shown in Table 3, the weights were converged over 70 
iterations, which we believe is causing the issue. Even though 
the standard RBFN has an advantage of faster convergence, 
the meta nature of the modified R2BN increases the model 
complexity leading to slow overall convergence. 

As it was expected, the time needed to build the model is 
increasing linearly as the number of iterations increases, while 
the accuracy of the system seems to tend to reach a maximum 
value. This is clearer in Figure 4, which visualises the findings 
of Table 3. 
 

TABLE 3 
THE PERFORMANCE OF R2BN MODEL 

ACCORDING TO NUMBER OF ITERATIONS 
Iterations 3 Classes 4 Classes 5 Classes 
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Acc. 
(%) 

TBM 
(sec) 

Acc. 
(%) 

TBM 
(sec) 

Acc. 
(%) 

TBM 
(sec) 

5 84.71 6.09 80.99 6.67 79.75 7.75 
10 86.36 12.07 83.06 13.55 84.30 13.71 
15 86.78 19.14 84.30 17.53 84.30 19.56 
20 87.19 24.56 85.12 24.27 85.12 25.73 
25 87.19 29.89 85.95 30.69 85.54 30.54 
30 87.19 34.62 85.95 34.62 85.12 34.86 
35 87.19 41.17 86.36 40.54 85.12 41.55 
40 87.19 44.19 86.78 44.94 85.12 47.55 
45 87.19 54.24 87.19 49.09 85.54 56.63 
50 87.60 58.22 86.78 54.32 85.95 58.81 
55 87.60 66.08 86.36 61.28 86.78 67.70 
60 88.02 69.79 86.36 63.82 86.36 73.88 
65 88.02 70.54 86.36 70.55 86.78 79.64 
70 88.43 73.82 86.36 75.99 85.95 86.08 
75 88.43 83.76 87.19 82.16 86.36 91.85 
80 88.43 90.13 87.19 86.58 86.36 97.53 

The highest accuracy on each dataset is bolded and underlined. 
 

 
Fig. 4. Accuracy and time needed to build model of different classes’ 
datasets according the number of iterations. 

As seen in Table 3, however, with the configurations of 15 
iterations for 3 classes, 25 iterations for 4 classes, and 20 itera-
tions for 5 classes, the time complexities could be reduced by 
74%, 60% and 62%, respectively which makes the R2BN the 
most accurate model with time complexity of 24.9±5.8, mean-
ing that the time required to build the model is reduced by 
60% with less than 2% drop of accuracy. 

 
TABLE 4 

THE PERFORMANCE OF R2BN MODEL 
USING DATA CONDENSATION METHOD 

R-Rate 
3 Classes 4 Classes 5 Classes 

Acc. 
(%) 

TBM 
(sec) 

Acc. 
(%) 

TBM 
(sec) 

Acc. 
(%) 

TBM 
(sec) 

0.0 88.43 73.82 87.19 49.09 86.78 67.70 
0.1 81.82 54.68 80.82 40.25 79.09 54.05 
0.2 81.68 36.39 78.50 40.76 72.28 50.95 
0.3 71.82 29.73 70.62 26.18 73.30 40.12 
0.4 77.71 26.28 76.40 23.99 70.66 45.55 
0.5 71.14 24.12 66.89 18.64 66.44 32.85 
0.6 68.50 19.44 61.72 13.87 57.94 26.68 
0.7 63.30 16.21 61.68 11.79 57.28 18.00 
0.8 69.51 7.60 56.79 6.97 57.83 15.18 
0.9 66.04 5.57 55.36 4.59 59.62 4.76 

Results from 0% to 90% condensation. 

 
An alternative way to reduce TBM is the use of a data con-

densation method. Table 4 presents the Acc and TBM of R2BN 
when the data condensation method that was described in 

Section 2.4 is used, with sampling percentage from 100% to 
10%. As shown by our results, there are instances in which the 
accuracy of R2BN does not significantly degrade, while TBM 
reduces remarkably. For example, in 3-classes dataset, when 
the sampling percentage is 0.4, the model works 3 times faster 
with a loss of 10% in accuracy. 

4 RELATED WORK 
To the best of our knowledge, we are one of the first to provide 
a dataset containing keystroke dynamics, which have been 
collected from free text, recorded from real users during the 
daily usage of their computer for a long period of time. It also 
includes demographic data to be used for user classification, 
such as educational level. The datasets in the literature contain 
keystroke data, which in most cases, are collected from users 
typing 2-3 sentences only [36]. Rybnik et al. [37] created a free 
text dataset, which contains keystrokes from 9 volunteers. 
Each volunteer typed a long text of more than 250 characters 
twice in five sessions. Similarly, the dataset of Messerman et 
al. [38] included keystrokes that were recorded over a 12-
month period by 55 volunteers using a web-mail application. 

Compared to our work, these datasets were created by us-
ers' typing in specific environments rather than from normal 
use. Some other datasets were created on specific devices ra-
ther than on the user's device, while the recording was done 
in a designated area and not in the familiar space (home, of-
fice, etc.) of the volunteers. Finally, few datasets were created 
by long time user recording than in some sessions, and few are 
those that contain data from thousands of keystrokes in each 
logfile, as is the case with our own Readers interested in a sur-
vey of free text datasets that were created to test user authen-
tication methods may refer to Alsultan and Warwick [39]. 

Regarding to data condensation, because it is a significant 
procedure in machine learning, especially in cases where the 
speed of a system is crucial, many methods have been pro-
posed to reduce the training time needed. Liu et al. [40] use 
three different methods to speed up the computation of SVM 
classifier, namely one with random selection of data and two 
other using proximity graphs. Similarly, Gamboni et al. [41] 
aim to increase the speed of SVMs on large datasets using 
three methods, i.e., blind random sampling and two linear-
time methods for guided random sampling. A different ap-
proach was proposed by Rizwan and Anderson [42], where an 
adaptive data condensation scheme for k-NN classifiers is 
used by reducing the instances in the training data based on 
the observed similarities. 

In most cases, the proposed data condensation methods 
significantly reduce the computational time with a slight de-
crease of the classification performance. The novelty of the 
proposed method of this paper lies in the possibility of apply-
ing to the highly unbalanced datasets, as with the problem we 
are dealing with. 

5 CONCLUDING REMARKS 
Keystroke-based pattern recognition techniques as a tool for 
behavioural biometrics are of great importance in digital fo-
rensics. This paper introduced a novel model which recog-
nises and profiles the educational level of an individual who 
stands behind a keyboard.  

To accomplish this objective, a new keystroke dynamics 
dataset was created, by recording free text captured from par-
ticipants’ daily usage of their computers over a period of 10 
months. We captured 242 log files from users who belong into 
5 educational level classes. Each file contains 2,800 to 4,500 
keystrokes. We extracted 162 features corresponding to the 
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dwell times and flight times of the participants keystrokes. 
Recruiting users and capturing their everyday keystroke is 

a hard task, especially if one considers that keystrokes often 
contain sensitive information. This increases the complexity of 
finding participants that can provide real keystroke dynamics 
and not synthesized ones.  While our dataset is limited and 
affected by our participants’ demographics, to the best of our 
knowledge, no other dataset with real keystroke dynamics (i.e. 
one captured from free text) exists. Instead, previous datasets 
required participants to write free text that was 2-3 sentences 
long only. By making the features used from our dataset avail-
able to the research community, we hope that we will inspire 
and aid more research in keystroke-based pattern recognition.   

In this work, the dataset was fed into a proposed model, 
named R2BN, which is the randomised modification of a well-
known radial basis neural network. R2BN is built on a shallow-
learning architecture, which aims to achieve faster conver-
gence and smaller extrapolation errors. It improved its perfor-
mance in terms of model accuracy, stability, and learning com-
plexity. The experimental results on the dynamic keystroke 
dataset proved that the proposed R2BN can achieve a test error 
comparable to or better than the state-of-the-art models.  

Our experimental results uncovered a limitation of R2BN, 
namely the long time required to build the model.  This can be 
addressed by either performing fewer iterations on the boost-
ing algorithm, or by using a new data condensation method. 
Our evaluation uncovered cases where high accuracy is main-
tained while TBM is considerably reduced. 

For a given set of keystroke data, the randomisation of ra-
dial function based model provides a way of fine-tuning the 
global model, as well as improving its predictive performance. 
Having the ability to identify the educational level of a user 
who types a certain piece of text has significant value in digital 
forensics. To the best of our knowledge, this study introduces 
the first model that can achieve above 85% model accuracy, as 
well as the greatest model stability over three different classes 
in the keystroke-dynamic-based educational level classifica-
tion task. The utility of the proposed model have been proven 
in dealing with the source of circumstantial evidence for “put-
ting fingers on keyboard” and for profiling the characteristics 
of the users. However, we note that the deployment of such a 
system must be in accordance with the current, enforced legal 
and regulatory framework, as the unauthorized analysis of 
keystrokes entails privacy violations, which might involve 
sensitive personal information (e.g., in accordance to the EU 
legislation). 

Our plans for future work include further classification 
tasks such as predicting handedness. We also plan further 
work on examining alternatives for the data condensation 
method as a means to reduce the time that is needed to build 
the R2BN.  
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