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Abstract—Without developing dedicated countermeasures, fa-
cial biometric systems can be spoofed with printed photos,
replay attacks, silicone masks, or even a 3D mask of a targeted
person. Thus, the threat of presentation attacks needs to be
addressed to strengthen the security of the biometric systems.
Since a 2D convolutional neural network (CNN) captures static
features from video frames, the camera motion might hinders
the performance of modern CNNs for video-based presentation
attack detection (PAD). Inspired by the egomotion theory, we
introduce an adaptive spatiotemporal global sampling (ASGS)
technique to compensate the camera motion and use the resulting
estimation to encode the appearance and dynamics of the video
sequences into a single RGB image. This is achieved by adaptively
splitting the video into small segments and capturing their global
motion within each segment. The proposed global motion is
estimated based on four key steps: dense sampling, FREAK
feature extraction and matching, similarity transformation, and
aggregation function. This allows using deep models pre-trained
on images for video-based PAD detection. Moreover, the in-
terpretation of ASGS reveals that the most important parts
for supporting the decision on PAD are consistent with motion
cues associated with the artifacts, i.e., hand movement, material
reflection, and expression changes. Extensive experiments on four
standard face PAD databases demonstrate its effectiveness and
encourage further study in this domain.

Index Terms—Dense sampling, Image warping, Face recog-
nition, Global Motion, Presentation Attack Detection, Deep
learning.

I. INTRODUCTION

FACIAL recognition technology has been successfully
applied in numerous real-world applications, such as mo-

bile payments, automated teller machines (ATMs), automatic
border control, and surveillance. However, there are various
physical and digital attacks, such as face manipulation attacks
(e.g., deepfake, face swap) [1], face morphing [2], face adver-
sarial attacks [3], and face spoofing (i.e., presentation attacks)
[4], that can be utilized to spoof the biometric systems. Thus,
designing reliable approaches for presentation attack detection
(PAD) is vital to enhance the security of face recognition
systems.

The main issue for face PAD is to extract discriminative
features to distinguish a bona fide face from an attack pre-
sentation. In the past few years, deep learning techniques
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Fig. 1. Illustration of the black framing of the clip in CASIA dataset [23].
(A) We observe black framing issue at the boundary of the image in most
of the estimated clips in [11]. (B) Our proposed method minimizes the black
framing issue. This black framing provides artificial cues for PAD and should
be removed [32].

[5], [6], have demonstrated significant improvements over
traditional texture-based methods [7], [8] on several large-scale
PAD databases. For instance, a novel framework based on
central difference convolution (CDC) is introduced [9], which
encapsulates intrinsic detailed patterns via accumulating both
intensity and gradient information. Despite the success of deep
learning methods, domain shift or domain adaptation (DA) is
one of the main challenges that still need to be addressed.
This refers to the degraded system performance when the PAD
model is trained or tuned on the source domain and then tested
on a completely unseen database (target domain) [10].

One way to address the problem of domain shift consists
in using temporal feature learning. Existing works in this area
can be roughly categorized into three streams: (i) extracting
dynamic features through CNN network, e.g., using optical
flow, (ii) extracting Spatio-temporal features based on 3D
CNN, and (iii) learning long-range (sequential) data e.g.,
through Recurrent Neural Networks (RNN) [11]. Although
there are other multimodal-based methods [12], [11], such as
meta-teacher learning, self-supervised learning , or single-shot
face anti-spoofing, these methods require a careful domain
adaptation to transfer the knowledge from one domain to
another. Moreover, these methods focus on enhancing the
generalization ability of PAD methods from the perspective of
domain generalization (DG), which intends to train a model by
exploiting multiple available source domains without viewing
any target data [13]. However, seeking a generalized feature
space for the spoofed faces always remains challenging.
Motion patterns in PAD videos contained in bona fide and
attack videos are different. In bona fide face, the motion cues
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Fig. 2. Flow chart of our proposed method. Given a video of length S, we divide it into non-overlapping segments of smaller length s. ASGS estimates
global motion by using dense keypoints matching and similarity transformation between consecutive frames. Using an aggregation function, we obtain a single
RGB image from each segment of the video. Finally, off-the-shelf CNN features are provided to BiLSTM for final PAD detection.

depend on different factors such as eye blinking, head rotation,
and mouth development. On the other hand, print attacks
are mainly due to hand movement or material reflection, and
artifacts caused by screen sloping are visible in a replay attack
[6]. These motion cues are useful and important to analyze
live and spoofed attacks where the relative motion between
the background and the face region can be vital. However,
extracting these motion cues remain difficult in many PAD
databases [8], [14] due to noisy camera movements. Since
the video data include not only camera movements but also
motion information of the objects along the time axis, we need
to determine whether the actual actions (e.g., eye blinking,
hand trembling, head rotation) are caused by the objects or
from the noisy (camera) motions. Thus, we argue that existing
works do not explicitly focus on compensating this effect
which might degrade important details to analyze live and
spoofed attacks. Moreover, each PAD video might comprise
hundreds to thousands of frames, not all of which are valuable.
It makes not only the training much slower but also hard to
extract meaningful information for the CNNs. Besides, the
fixed-size spatio-temporal windows of analysis make the frame
orders do not influence the performance of 2D CNN. Thus,
effective handling of such spatiotemporal variations is pivotal
to enhance the performance of PAD detection.

Inspired by the above discussion, our key idea is to cope
with global (camera) motion while proposing a new video
representation method that distills the motion information con-
tained in video sequences into a single RGB image. To achieve
this, the video is partitioned into a set of non-overlapping
segments. Then, local features are extracted independently
for each segment and their trajectory is evaluated to estimate
inter-frame motion. Finally, an aggregation function is used to
capture the gist of the dynamics and to encode the appearance
information of the video sequences into a compact image.

Intuitively, this idea has at least four main advantages. First,
the encoded RGB image can be fed to any CNN architecture
for a still image, where “still” captures the long-term dynamics
in the video. Second, the encoded images reduce the analysis
of video sequences to the analysis of a single RGB image
and make the CNN model computationally attractive when
accessing only a few images will be enough for subsequent
analysis, instead of all frames during both training and test
phases. Third, since the local motion vectors are calculated at
consecutive frames using image registration, this aggregation
contains motion cues without still spatial distribution informa-
tion, which decreases the risk of over-fitting of human faces.
Fourth, the representation provides a fast approximation in
comparison to the expensive optical flow and allows the CNN
model to enlarge the temporal receptive field with respect to
a fixed-size temporal window.

In summary, our key contributions can be summarized in:
(i) we propose a novel method called adaptive spatiotemporal
global sampling (ASGS) for video representation, which en-
codes the appearance and dynamics of video sequences into a
single RGB image. (ii) To model temporal correlation across
multiple encoded images at different time steps, a unified
CNN-BiLSTM is suggested to make full use of the motion
cues across video frames for presentation attack detection. (iii)
The effectiveness of the proposed approach is demonstrated
on four PAD databases and the results show that our proposed
method provides a state-of-the-art performance on three pub-
licly available databases.

This work builds on our preliminary findings reported in
[11]. More specifically, we extend [11] by (i) we propose to
use dense representation and utilize similarity transformation
that helps to minimize the black framing issue as shown
in Fig.1 and provides good coverage of image features for
improving the robustness of homography estimation; (ii) we
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TABLE I
PERFORMANCE EVALUATION USING MSU-MFSD (M), IDIAP (I), CASIA (C) AND OULU-NPU (O) DATABASES. COMPARISON RESULTS ARE

OBTAINED FROM [12].

O&C&I to M O&M&I to C O&C&M to I I&C&M to O
Method HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)
IDA [8] 66.67 27.86 55.17 39.05 28.35 78.25 54.20 44.59
Color Texture [7] 28.09 78.47 30.58 76.89 40.40 62.78 63.59 32.71
LBP-TOP [8] 36.90 70.80 42.60 61.05 49.45 49.54 53.15 44.09
Auxiliary [12] 22.72 85.88 33.52 73.15 29.14 71.69 30.17 77.61
MADDG [25] 17.69 88.06 24.50 84.51 22.19 84.99 27.89 80.02
DAFL [10] 14.58 92.58 17.41 90.12 15.13 95.76 14.72 93.08
DR-MD [15] 17.02 90.10 19.68 87.43 20.87 86.72 25.02 81.47
SSDG-R [13] 7.38 97.17 10.44 95.94 11.71 96.59 15.61 91.54
MA-Net [16] 20.80 - 25.60 - 24.70 - 26.30 -
RFMetaFAS [5] 13.89 93.98 20.27 88.16 17.3 90.48 16.45 91.16
FAS-DR-BC(MT) [12] 11.67 93.09 18.44 89.67 11.93 94.95 16.23 91.18
ASGS (Ours) 5.91 99.88 10.21 99.86 45.84 76.09 13.54 99.73

provide extensive evaluations, especially from the perspective
of the domain generalization (DG) with baselines for PAD,
such as DAFL [10], DR-MD [15], SSDG-R [13], MA-Net
[16], RFMetaFAS [5], and FAS-DR-BC(MT) [12]; (iii) we
use off-the-shelf CNN features to avoid initializing pre-trained
weights that cause increasing the computational resources; and
(iv) a challenging dataset [24] is added for detecting silicone
mask faces.

II. PROPOSED METHOD

The proposed approach is divided into two main com-
ponents: (1) global motion estimation through an adaptive
spatiotemporal global sampling, and (2) a joint CNN-BiLSTM
network for PAD detection. We first explain the procedure
of estimating the global motion and, then, the procedure of
incorporating the CNN in BiLSTM model is described.

A. Spatiotemporal Global Sampling

As illustrated in Fig. 2, a video A is equally partitioned
into s non-overlapping segments, i.e., A = {Tk}sk=1, where
Tk is the k-th segment. The length of each segment is set to
be (l = 30) frames. In order to estimate the global motion, the
trajectory of local motion vectors must be calculated between
consecutive frames. For this, interest points play an important
role as they determine the quality of the motion estimation.
Moreover, the spatial distribution of the image features signif-
icantly impacts the performance of the calculated homography
[17]. Taking this into consideration, we first define a region
(grid) over the entire image, where the patch size 16 × 16 is
used to detect dense features by selecting the sliding step equal
to 1 pixel. Specifically, given an image I,Ω 7−→ RQ where
Ω = {0, 1, ..., g − 1}×{0, 1, ..., h− 1}, g and h represent the
number of rows and columns of image I . The sampling patch
t is the number of sampled grids divided by the number of
pixels in I; the objective is to determine a subset W of Ω for
a given sampling patch t, such that:

W =
{
z| z ϵ Ω, I(x) is informative, # Z

g×h = t
}

(1)

where z denotes the local patches (i.e., grids) defined at the
image pixel x, I(x) is the response map at x and #Z repre-
sents the number of grids. In our work, the size of sampling
patch is set to t = 16 × 16. The content of W represents all

of the patches (rectangular regions) on the image to be equal.
Thus, by using the proposed sampling, Fast Retina Keypoint
(FREAK) descriptor [18] is utilized to extract dense keypoints
from each patch of the image I . The FREAK descriptor is
famous due to its efficiency in smartphone deployment as
compared to other local descriptors such as SURF [11]. Once
these dense keypoints are extracted from the moved and fixed
image, the second step is keypoints matching where Hamming
distance (HD) is utilized in our work. The inter-frame motion
parameters are estimated throughout the whole length of the
segment by using the similarity transformation. A similarity
transform is a special kind of geometric transformations that
retains angles (shapes). More formally, let X denote the
moving image keypoints and Y be the fixed image keypoints,
we have

X = m ∗ s ∗ cosθ − y ∗ s ∗ sinθ + b, (2)

Y = n ∗ s ∗ sinθ − y ∗ s ∗ cosθ + v, (3)

where s, θ, and (b, v) are scaling, rotational, and translational
differences between the images, respectively. These four pa-
rameters can be calculated based on the corresponding interest
points in the images. The rotational difference is estimated
from the angle of rotation between the lines corresponding
to interest points in the images. The scaling is computed
from the ratio of distances between the interest coordinates
(points) in the images. To perform a scaling transformation,
the translation variables (b, v) are obtained by replacing the
coordinates of one of the correspondences into equations (1)
and (2) and solving for b and v. Finally, the moving frame can
be warped using these parameters to generate the final image.

To ensure optimal warping, we use the M-estimator SAmple
Consensus (MSAC) [19] algorithm to detect outliers and re-
move false matching points before computing the final warped
frame. MSAC is a variant of Random Simple Consensus
(RANSAC) based on an improved cost function from the
required functional relation. In order to estimate temporal
information of all previous interframe motion vectors, we
assume that warping is applied on segment k of video A to
compute the homography ha,k. Then the aggregation approach
is used as follow:

ha =
1

wa

wa∑
k=1

hak, (4)
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TABLE II
COMPARISON RESULTS WITH LIMITED SOURCE DOMAINS ARE OBTAINED FROM [26].

O&I to M M&I to C O&I to C O&M to I C&M to O
Method HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%) HTER(%) AUC(%)
Supervised [26] 12.1 94.2 30.4 77.0 18.0 90.1 16.8 93.8 17.9 89.5
Mean-Teacher [27] 19.6 86.5 31.1 76.6 23.7 84.9 18.4 86.0 23.5 84.9
USDAN [28] 15.8 88.1 35.6 69.0 33.3 72.7 19.8 87.9 20.2 88.3
EPCR-labeled [26] 12.5 95.3 18.9 89.7 18.9 89.7 14.0 92.4 17.9 90.9
EPCR-unlabeled [26] 10.4 94.5 25.4 83.8 16.7 91.4 12.4 94.3 17.8 91.3
ASGS (Ours) 8.2 97.3 23.4 91.8 13.9 96.8 42.9 79.4 21.7 85.1

TABLE III
THE PERFORMANCE EVALUATION IN TERMS OF INTRA-DATASET. THE

COMPARISON RESULTS ARE OBTAINED FROM THE ORIGINAL PAPER [24].

Method SMFMVD Dataset
APCER(%) BPCER(%) ACER(%) EER(%)

CDCN++ [9] 10.0 36.0 23.0 21.5
IDA [8] 35.0 4.00 19.5 14.1
Videolet [24] 4.0 73.0 38.5 22.1
CT [7] 9.0 15.0 12.0 12.3
Ref. [29] 8.0 51.0 29.5 34.1
MS-LBP [30] 6.0 9.0 7.5 8.1
VSFM [24] 4.0 2.0 3.0 1.1
ASGS (Ours) 3.7 0.1 2.8 1.6

where wa is the number of selected frames for video A. By
using the proposed aggregation function, we aggregate both
temporal and spatial information of the frames to estimate
the final RGB image. These enriched spatiotemporal encoded
frames are the ones used for the end-to-end training of the
joint CNN-BiLSTM model.

B. Recurrent Neural Network (RNN)

Mainstream CNN frameworks are connected to conventional
statistical models, thus lacking the capacity to map sequence-
to-sequence. To handle this issue, we first extract the high
discriminative features of encoded video frames using the
pooling layer of pretrained DenseNet-201 architecture [20].
Since the input of the CNN is video frames which comprise
spatiotemporal patterns, the variations between video frames
may accumulate complementary information for distinguish-
ing live and spoofed faces. Thus, the Bidirectional Long Short-
Term Memory Networks (BiLSTM) [21] is used to encode
the temporal dynamic information across video frames. The
BiLSTM computes long-range temporal relationships using
the memory cell activation vector (Mc). It has an input gate
(rc), an output gate (ec) and a forget gate (ic). The three gates
represent a fully connected layer, and its input is a vector and
the output is a real number in [0, 1].

III. EXPERIMENTS

To assess the generalization of the proposed face PAD
approach, we considered four widely used publicly available
databases consisting of bona fide and 2D face presentation
attack videos, namely Idiap Replay-Attack database [22] (de-
noted as I), CASIA Face Anti-Spoofing database (denoted as
C) [23], MSU Mobile Face Spoofing database [8] (denoted
as M), and OULU-NPU database [14] (denoted as O). Three

Fig. 3. Image explanation using LIME for ASGS encoded videos correspond-
ing to a print attack (first row), video-replay attack (second row) and real face
(third row).

datasets are randomly selected for training and treated as
source domains. The EER is computed on the source domain,
and then Half Total Error Rate (HTER) is reported on the
final testing set (target domain). To validate the performance
of the proposed method on other types of attacks, a silicone
mask face motion video dataset (SMFMVD) [24] is utilized
that consists of 200 real and silicone masked facial motion
videos.

A. Implementation details

All the images are resized to 224 × 224, and no data
augmentation or face cropping is applied. For silicone mask
dataset, the segment size was set to l = 10 frames. The off-the-
shelf features from the last pooling layer of CNN (DenseNet-
201) model are extracted and used as input to BiLSTM. For
training, Adam optimizer is utilized by fixing a learning rate
of 0.0001 with 500 hidden layer dimension. We do not use
fixed epochs because an early stopping function is utilized that
automatically stops the model when it starts over-fitting. He
initializer is used to initialize recurrent weight of BiLSTM
for multiple source domains while random initialization is
performed in the case of silicone mask attacks and limited
source domains evaluation. We argue that one must conduct a
proper statistical analysis for initializing the network weights
of BiLSTM.

B. Comparison against the state-of-the-art methods

In Table I, we evaluate our proposed method against state-
of-the-art PAD methods. In the first row, O&C&I, O&M&I,
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O&C&M and I&C&M represent the training sets while M, C, I
and O are the testing sets, respectively. It can be observed that
the model outperforms on three domain generalization test sets
by a fair margin. Especially, in contrast to previous methods,
[25], [15], [10], [25], our proposed method explicitly learns
generalized features (e.g., eye blinking, hand movements, head
rotation) across video frames and takes advantage of BiLSTM
to capture the dynamic changes revealed by individuals. In
Table II, we compare the domain generalization ability of
our proposed method when limited source domain databases
are accessible (i.e. only two source datasets).Furthermore,
the proposed method is also evaluated on a silicone mask
attacks. Based on the experimental results in Table III, we
show that the proposed ASGS is not only effective for photo
and replay attacks, but also outperform several state-of-the-art
silicone-based PAD methods [9], [8], [7], [7], [29], [30], [24]
under intra-dataset test environment. The main reason for the
performance drops on O&C&M to I, O&M to I and C&M to O
is due to the domain shift issue. For instance, two print attacks
may be quite different in case of the same face if reprinted
with different kinds of paper (e.g., glossy vs. rough paper).
Thus, due to a large diversity of real-world environments,
such as differences in (i) spoofing mediums (printing material,
LCD screens), and (ii) the quality of video recording devices
(different mobile phones, tablets), the proposed approach does
not provide high accuracy on all cases.

Fig.3 illustrates the interpretability of the model using
LIME (local interpretable model-agnostic explanations) [31]
to understand the importance of the proposed ASGS and
model’s decision in a human-understandable way. The first row
represents images for the print attack where the model focuses
on face texture and hand movement cues are valuable for the
prediction of the network. The second row represents images
for a video-replay attack where one can see that the network
gives importance to the material reflection and the tablet’s
edges provide salient information. The live class images are
displayed in the third row where head motion and eye blinking
contribute positively to distinguish live and spoofed faces. The
masked images in the last column show the most important
features used for final detection.

IV. CONCLUSION

This letter addresses the domain shift issue of 2D face PAD
and presents a novel video representation method (ASGS) to
compress the fine-grained motions (e.g., eye blinking, hand
trembling, head rotation) into a single color image. Then a
CNN-BiLSTM architecture is exploited to discriminate real
and spoofed faces. Experimental results on four benchmark
datasets demonstrate the proposed approach not only outper-
forms several state-of-the-art PAD methods for print or video
attacks but also silicon-based masked attacks. However, a
drawback of ASGS is that it falls behind real-time require-
ments and cannot be operated on those biometric systems that
are operating on single facial images. Moreover, the estimation
of feature trajectory can bring positioning errors in the case
of significant motion blur. In future works, we will focus on
building the model based on tracking the facial landmark-
based trajectories for video-based PAD detection.
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