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Abstract— Cyber-physical manufacturing systems (CPMS) can
be defined by the integration of control, network communication,
and computing with a physical manufacturing process. In this
work, we present a hybrid model of CPMS combining sensor
data, context information, and expert knowledge. We used the
identification of global operational states and a multimodel
framework to improve anomaly detection and diagnosis. The
anomaly detection is based on context-sensitive adaptive thresh-
old limits. Root cause diagnosis is based on classification models
and expert knowledge. The proposed approach was implemented
using the Internet of Things (IoT) to extract data from a
computer numerical control machine. Results showed that using
a context-sensitive modeling strategy allowed to combine physics-
based and data-driven models for residual analysis to detect an
anomaly in the part, machine, or process. The identification
of root cause was improved by adding context information in
classification models to identify worn or broken tools and wrong
material.

Note to Practitioners—Anomaly detection and diagnosis of
manufacturing equipment is a complex problem. Some of the
challenges are complex machine dynamics and nonstationary
operating conditions. This paper describes a framework for mod-
eling manufacturing equipment using a combination of sensor
data, context information, and system knowledge. The proposed
modeling framework is used to improve anomaly detection for
diagnostics using a context-sensitive strategy. This work aims
to support more effective maintenance actions by identifying
problems in the machine, part, or process. The modeling and
anomaly detection strategy was used to identify anomalies in
computer numerical control machines and can be extended to
other equipment on the plant floor.

Index Terms— Cyber-physical systems (CPSs), fault detection,
manufacturing systems.

I. INTRODUCTION

EQUIPMENT and process monitoring play a key role in
manufacturing. Anomaly detection has arisen as a critical
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first step in monitoring machine, part, and process to support
health monitoring, scrap avoidance, and process optimization.
An anomaly can be defined as an occurrence that is different
from what is standard, normal, or expected, and it can be
abrupt or gradual [1]. The root cause diagnosis focuses on
finding the cause of abnormal behavior with as much detail as
possible to determine the location and size of a fault. In man-
ufacturing machines, proper anomaly detection and diagnosis
represents a challenge partly due to machine interactions,
multiple operational states, and similarities between symptoms
of different failure modes.

Physics-based model fault detection and diagnosis (FDD)
requires the knowledge of equations that govern the machine
dynamics. Physics-based model FDD approach has been devel-
oped to detect machine tool faults. However, due to noise
caused by component and part interactions during the man-
ufacturing process, implementation has not been completely
feasible [2]. Data-driven models have been used to detect
anomalies in computer numerical controls (CNCs), gantries,
and robots. Extensive research has been done to monitor
machining operations to detect anomalies based on differ-
ent signal processing and analysis strategies [3]. However,
in order to improve detection and diagnosis, some knowledge
of the system, whether from physics-based models or experts,
is required [4]. A comparison between physics-based and
data-driven models [5] shows that both have advantages and
disadvantages based in part on factors such as the detail of
data available, model development efforts, and implementation
challenges. The goal of this work is to improve anomaly
detection to answer the following questions: 1) How to detect
anomalies considering the different machine–part interactions?
and 2) How to improve the diagnosis of anomalies by consid-
ering the operational context?

Recent advances in machine communication, data extrac-
tion, and real-time analysis have enabled the development
of cyber-physical systems (CPSs). A CPS is defined by the
integration of cyber and physical components such as com-
munication and control networks, sensors, and actuators in a
multilayer architecture [6]. In this work, a novel approach to
model manufacturing operations as a hybrid system is pre-
sented. This work is based on Hybrid Discrete Event System
Specification (HDEVS), a general, scalable, and hierarchical
formalism for modeling hybrid and discrete event system
(DES) used for representing systems with a finite number
of states in finite intervals of time. The model considers the
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machine–part interaction to define discrete states based on the
operational context of the machine. Moreover, the model lever-
ages local computing, communication, and control for CPS
in manufacturing to estimate discrete states and continuous
variables. Initial work for anomaly detection was developed by
Lee et al. [7]. This paper extends [7] with three main
contributions:

The first contribution of this paper is a framework for mod-
eling cyber-physical manufacturing systems (CPMS) merging
both physics-based and data-driven models. The framework is
based on a hybrid model combining discrete states and con-
tinuous dynamics (CD) developed using HDEVS formalism.

The second contribution is to develop a framework
for anomaly detection based on context-sensitive adaptive
threshold limits and diagnosis based on context-specific clas-
sification models. Context is defined based on machine, part,
and process data and information.

The third contribution is an experimental demonstration of
the proposed framework to detect and diagnose anomalies
contained within the part, machine, and process of a machining
operation. Data from the machine controller and electric drives
were extracted using industrial communication protocols.

This paper introduces two new aspects to consider when
modeling manufacturing equipment, first context information
to provide insight into the machine operation and part inter-
actions, and second noninstantaneous events as some events
are defined by a pattern in a continuous signal. Moreover,
other formalisms such as hybrid finite state machines (FSM)
can be extended by defining global operational states (GOS)
introduced in this work and be used to develop models of
CPMS using other formal methods.

The remainder of this paper is organized as follows.
Section II provides background on the research area.
Section III defines the modeling framework providing details
of discrete states and CD. Section IV describes the anomaly
detection and diagnosis methods. Section V presents a case
study to validate the approach for anomaly detection and diag-
nosis in a machining application. Finally, Section VI concludes
the paper and discusses other applications and future work.

II. BACKGROUND

In this paper, an abstract model of manufacturing operations
studied as CPMS is presented for anomaly detection and
diagnosis.

A. Cyber-Physical Manufacturing Systems

A CPMS is composed of cyber and physical components.
The cyber component includes data, control algorithms, and
communication networks. The physical component includes
machines, robots, and actuators interacting with a product as
part of the manufacturing process. The analysis of CPMS
requires data extraction and model development.

1) Data Extraction: Communication networks in manufac-
turing have evolved over time from the transfer of a simple
binary signal to a complex exchange of messages and variables
in “bus” architectures. Recent developments in Ethernet Indus-
trial Protocol (I/P) for the machine–machine communication
have enabled data exchange between different machines on the

manufacturing floor. Some of the most common protocols for
data extraction are OPC-UA and MTConnect. Both protocols
aim to standardize information exchange in a hierarchical
fashion to enable machine controller data extraction. OPC-UA
is more flexible when dealing with multiple machines in a
system [8], while the MTConnect protocol has been developed
specifically to extract controller data from CNC machines [9].

To model and study CPMS, information about the machine
and physical process is needed to create an abstract repre-
sentation. Extraction of the required sensor data and context
information can be accomplished by setting up a message
gateway from a local controller to a server. These messages
contain data from sensors monitoring continuous variables,
binary signals, machine states, and event occurrences. In [10],
a CPS model of a CNC machine tool was developed by
extracting energy consumption and instruction codes from the
controller using OPC-UA. Electric current consumption data
have also been used to improve manufacturing sustainability
using MTConnect [11]. However, the capability of extracting
sensor data and context information to provide insight into
machine operations has not been fully developed for anomaly
detection.

2) Modeling: CPSs are often modeled as hybrid systems
based on both discrete and continuous variables. Different
formalisms have been used to model hybrid systems such as
hybrid automata or FSM and hybrid Petri-nets. The formalism
can be seen as the “semantics” linking the cyber and physical
domains. In [12], different formalisms and tools to model
CPS are discussed and compared for different applications
concluding that the selection of the proper formalism depends
on the application (i.e., robot control design, software design,
and simulation).

Formal methods such as hybrid FSM have also been
explored for modeling manufacturing machines to evalu-
ate the reachability and robustness of a control strategy at
machine level [13]. However, the analysis of manufacturing
systems with multiple machines and parts using finite states
machines can present some scalability challenges, particularly
when adding state that describes the machine–part interaction.
Hybrid Petri-nets have been used to model manufacturing
systems with multiple machines for verification of possible
deadlock conditions in the control logic [14], [15]. No matter
which formalism is used for modeling the discrete behavior of
CPS, the increasing complexity of the manufacturing operation
can represent a challenge due to possible “state explosion” as
the number of states increases when studying the combination
of machine, part, and process.

The modeling framework presented here is based
on the HDEVS formalism developed for modeling and
simulation [16]. This formalism can be used for representing
discrete and continuous variables along with their transition
and trajectories in a hierarchical fashion [17]. In [18],
the supply chain of a semiconductor manufacturing facility
was modeled and simulated using HDEVS to define inventory
control policies. Results in [19] show the ability to simulate
complex machine operation using HDEVS. The validation
and verification of hybrid or DES developed using the
HDEVS formalism has been developed based on Quantized
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State Systems methods and translating a HDEVS model
into a hybrid automaton for verification with tools such as
UPPALL [20].

Physics-based models have been developed using the
identification of model parameters to estimate state and out-
put variables. For manufacturing machines such as milling
machines, robots, and conveyors, the system identification
and model development steps are presented in [2]. Model
development without the need for prior knowledge is discussed
in [21]. In [22] a hybrid timed automaton model was developed
using energy consumption based on historical data for estima-
tion of expected behavior. However, for many manufacturing
applications, information about the control strategy can be
combined with expert knowledge to improve both physics-
based and data-driven models.

Analysis of CPMS in industry has had a wide range of
applications such as process control, manufacturing planning
and scheduling, condition monitoring, and network reconfigu-
ration. In [23], the system-level control of CPMS for decision
making shows how the implementation of communication
networks and cloud computing can improve the flexibility of
material handling systems. Anomaly detection models have
also been improved by studying CPMS given that more data
is made available for process monitoring. Different models
have been suggested for modeling CPMS; however, many
seem to converge on a hybrid model based on discrete and
continuous variables. An algorithm to specify a hybrid automa-
ton based on historical data is presented in [22]. However,
applications are still limited, and expert knowledge is needed
for diagnosis in cases where results require operational context
considerations.

B. Anomaly Detection

In manufacturing, anomaly and fault detection on machine
tools have been extensively studied using both physics-based
and data-driven models. The former is based on a mathe-
matical model representing physical parameters and machine
dynamics. The latter is based on a statistical analysis of
historical data. In [2], physics-based models for fault diag-
nosis were developed for different machines and actuators by
monitoring the difference between real and expected values
of state and output variables. However, case studies show
implementation challenges due to changes in the machine
dynamics and an increase in signal noise during the manu-
facturing operation caused by the machine–part interactions.
In [24], fault diagnosis of linear drives subject to system noise
was improved through the use of Kalman filters. However,
model uncertainties and noise are not considered.

Data-driven models often implement machine learning to
build a regression or classification model. In [25], a data-
driven model for fault detection was developed using joint
motor torque data. The study focused on changes in data
distribution caused by a fault. The model used historical
data from a repetitive task under the assumption of constant
trajectory and working conditions. Faults have also been
detected by evaluation of states of the plant and a DES model
of fault-free behavior at any point in time [26]. Supervised
machine learning, where knowledge of data class, source, or

condition is used by the classification algorithm, has proven
to be an effective tool for diagnosing anomalies. Nonetheless,
the selection of the proper classification algorithms for study-
ing time-series data should be based on the type of data and
application [27].

Limit-based methods for anomaly detection often require
consideration of the impact of FPs and false negatives (type I
and type II errors, respectively). This consideration can be
based on cost [28], [29] or risk [30], [31]. In manufacturing,
the risks associated with part or process anomalies are eval-
uated using failure mode and effect analysis (FMEA) [32].
However, the ability to assign risk for specific threshold limits
often requires the knowledge of the manufacturing task.

Efforts to model the dynamics and operations of CPMS
have been constrained to physics-based or data-driven models.
Moreover, anomaly detection and diagnosis methods often do
not consider the different machine–part interactions. However,
new data extraction techniques such as IoT have granted access
to context information that can complement both modeling
strategies and anomaly detection and diagnosis algorithms.
This work aims to improve modeling and analysis of CPMS
for anomaly detection by introducing a multimodel framework
for detection and context-sensitive classification for diagnosis.

III. MODELING CYBER-PHYSICAL

MANUFACTURING SYSTEMS

The interconnection of information management systems
and plant floor data has set the groundwork for modeling
and analysis of CPMS. Information from the cyber domain,
the data from the physical domain, and expert knowledge
can be combined to develop new abstractions of manufac-
turing machines and processes. In this section, we describe
an approach to model CPMS as a hybrid system, merging
contextual information about the part, machine, and process
with sensor and controller data and knowledge-based models.
The development of the hybrid system model requires three
steps: identification of GOS, identification of CD models, and
definition of the hybrid system by specifying the CD for each
GOS of the manufacturing operations. The hybrid system here
presented is developed using the HDEVS formalism for anom-
aly detection. Other formalisms such as hybrid FSM could be
extended by defining each GOS including the appropriate CD
within each GOS.

A. Discrete States

GOS represent the discrete set of states characterized by the
operational context of the machine. In [7], GOS was defined as
the combination of functional, dynamic, and interactive states
identified using implicit process descriptors. In this work,
we extend the GOS by adding explicit process descriptors.

1) Implicit Descriptors: Implicit descriptors require inter-
pretation of machine data and control logic by an expert
to provide context. In this work, implicit descriptors are
defined as states in different domains: Functional (F),
Dynamic (D), and Interactive (I) using Discrete Event System
Specification (DEVS) [16]. Each domain is represented in an
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atomic model defined as a tuple H

H i = (Ei , Si , δi ) for i ∈ F, D, I where

Ei = {e1, e2, . . .} Set of events

Si = {s1, s2, . . .} Set of States

δ : S × E → S Transition function.

a) Functional: The functional domain is defined by the
working conditions of the machine based on states and events.

1) Functional State: A qualitative aspect that captures the
working condition of the machine. The functional states
can be defined from the control logic based on a discrete
set of conditions in which the machine can be operating
(e.g., idle, standby, positioning, processing, changing
tool, setup, etc.).

2) Functional Event: An instantaneous occurrence that
causes a transition from one state to another.
Functional events can be determined by changes in
digital signals or adjacent machine states (e.g., part
arrival, e-stop pushed, etc.).

Identification of functional states requires some information
about the control system. This information can be in the
form of an FSM or control logic in the programmable logic
controller (PLC). The study of the manufacturing operation
may help identify the states, events, and transitions relevant
for anomaly detection.

b) Dynamic: The dynamic domain is defined by the type
of motion of the different actuators during the manufacturing
process.

1) Dynamic State: It is defined as a quantitative aspect of
the machine operation such as velocity. The behavior of
continuous variables is bounded within specific ranges to
define a discrete set (e.g., constant speed, accelerating,
stopped, etc.).

2) Dynamic Event: An occurrence defined by
rising or falling of a continuous state variable or its
derivative beyond a specific limit. Dynamic events can
be detected by monitoring changes in signal descriptors
such as mean or slope, or root mean square (rms) (e.g.,
velocity or acceleration changes).

Dynamic states can be defined based on ranges of velocity,
acceleration, or deceleration. Events or transitions can be
detected using change-point detection [33].

c) Interactive: The interactive domain is defined by the
type of contact between the machine and the part.

1) Interactive State: A description of the tasks or processes
during a manufacturing operation based on the machine
effects on the part (e.g., “cutting air,” face milling,
drilling).

2) Interactive Event: A change in the machine–part inter-
action characterized by a specific pattern in the time-
series data. An interaction event eI can be described by
a matrix of machine output signals describing a specific
pattern (Ypat) (e.g., rise and fall of electric current when a
machine starts cutting a part) eI = [Ypat(1) . . .Ypat(n)]T .

In the manufacturing process, machines interact with a
part in multiple ways. The nature of these interactions

affects machine output signals differently. An understanding
of the interactions can aid in anomaly detection and diag-
nostic processes. Identification of interactive states and events
requires knowledge of the manufacturing operation to identify
data patterns. Given a matrix of continuous output variables
G = [Y (1) . . .Y (m)]T collected during a manufacturing oper-
ation, the time instance when eI has occurred can be obtained
using the search algorithm in [7].

The functional, dynamic, and interactive states provide
context information about the manufacturing process. The
combination of all possible states from each domain can
result in a state explosion. However, some combinations of
states are unfeasible (e.g., idle, constant speed, face milling,
etc.). A data- or knowledge-driven approach can help reduce
the number of possible combinations to consider and avoid
“state explosion” by identifying unreachable states. Unreach-
able states can be defined by those states of the machine–
part interaction that cannot be reached as specific process
steps are not defined as part of the manufacturing process.
Moreover, when studying the machine–part interactions, some
interactions are constrained due to the process requirements
such as processing speeds or events for a specific manufac-
turing process. The knowledge of the control logic and the
manufacturing operation can support limiting the number of
combined states to a feasible set.

2) Explicit Descriptors: Explicit descriptors extracted from
the machine- or system-level controller provide context infor-
mation without the need for expert analysis. In this work,
explicit descriptors are defined by the part (p), the tool (t),
and the process step (s).

a) Part: A number identifying the type of part being
processed is often available in the system level controller.
Considering that modern machines have the ability to process
different parts, extracting part type information allows one to
differentiate between materials, geometries, or features when
defining the operational context.

b) Tool: A number identifying the tool used in the
manufacturing process is often available in the machine level
controller. Considering that a machine could use different
tools in a manufacturing process such as cutting tools on a
CNC, or end-effectors on a robot, differentiation between tool
size, geometry, or material can provide context information
about the manufacturing operation.

c) Process step: A number identifying the specific step
in a manufacturing process is often available in the machine
level controller. Identifying the specific step in the process
provides information about the task a machine is performing,
which could be related to G-code instruction within a CNC
machine or a moving instruction to a robot.

Machines are typically able to process various part types,
operate with different tools, and perform a large number of
process steps. However, the manufacturing operations for a
specific part type are often limited to a finite number of tools
and process steps. Expert knowledge can help identify the
relationship between explicit descriptors.

3) Global Operational State: The abstraction of manufac-
turing equipment as a CPMS requires machine and system
level controller data (e.g., continuous variables, discrete states
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of adjacent machines, internal and external events, part, tool,
and process step) collected in discrete time given a fundamen-
tal timestep �t . Variables are monitored every k�t where
k ∈ Z

+ represents the discrete-time unit. In this paper,
we define the CPMS abstraction at a machine level as a
coupled model describing a GOS defined based on implicit
and explicit descriptors

GOS(k) = [SF (k), SD(k), SI (k), p(k), t (k), s(k)].
For every timestep k, the GOS is defined by implicit descrip-
tors given SF (k), SD(k), and SI (k) representing functional,
dynamic, and interactive states and explicit descriptors as
defined by p(k), t (k), s(k) describing part, tool, and process
step, respectively. The operational context of the machine
then is studied based on a set of states represented in
G O S = {GOS1,GOS2, . . . }. For example, if the machine
is idle while waiting for a part to be loaded, one can define
GOS1 = {Idle, Stopped, NoInteraction, 0, 0, 0}. Once a
part with ID number 1 has been loaded, tool number 5
is installed, and the manufacturing operation is initiated
with process steps number 1, one can define GOS2 =
{Processing, Accelerating, NoInteraction, 1, 5, 1}.

B. Continuous

The CD model captures state and output variables in con-
tinuous time. In the most basic form, the machine dynamics
can be captured in a differential equation of the form ẋ =
f (x, u, t) and y = h(x, u, t), where x ∈ R

n , y ∈ R
m , and

u ∈ R
q represent state, output, and input vectors, respectively.

The functions f (·) and h(·) describe the evolution of con-
tinuous state and output variables, respectively. The proper
structure of f (·) and h(·) to capture the machine dynamics
can be represented in a physics-based or data-driven model.
Physics-based models require prior knowledge of the machine
dynamics. In [2], the structure and parameter estimation to
develop physics-based models for different machines is pre-
sented. Data-driven models the historical data instead of prior
knowledge of the machine dynamics. In [34], different types
of data-driven models are discussed. In this work, we leverage
prior art in the development of continuous models to develop
a multimodel framework. Different continuous models are
defined within various discrete states to develop a hybrid
model.

C. Hybrid

In this paper, we define a model of the CD of a machine
while operating in a specific context. Combining the discrete
state and CD into a model leads to the hybrid system repre-
sentation defined by the tuple M

M = (G O S,U,Y, X, F, H ), where:

1) G O S represents the discrete set of GOS;
2) U is the continuous input space of the system in which

the continuous input variables u take their values. For
our purpose U ⊂ R

m ;
3) X is the continuous state space variable where X ⊂ R

n;
4) Y is the continuous output space of y where Y ⊂ R

q ;

Fig. 1. Example of a hybrid model for the analysis of a machining operation.

TABLE I

HYBRID SYSTEM DESCRIPTION

5) F : G O S × X × U → T X is the mapping of U and X
into T X that assigns a model of state variable evolution
f to each GOS;

6) H : G O S × X × U → Y is the mapping of U and X
into Y that assigns a model of output variables h to each
GOS.

A simple example is a machining operation of the part
number 1 using tool number 5 following a sequence of steps 1
to 13. The machine, part, and process are modeled as a hybrid
system presented in Fig. 1. Discrete and continuous behaviors
are summarized in Table I.

D. Scalability

Expert knowledge can be obtained through process observa-
tion, analysis of the part manufacturing process, and review of
the machine control sequence and logic. Information about the
machine, part, and process can help reduce the complexity of
the model by identifying an unfeasible set of states due to the
machine control logic reachability constraints. For example,
the logic on the programmable controller might limit the
operational speed during specific cycles or process steps. Also,
the command or processing steps to manufacture a specific part
might require a specific type of machine–part interaction such
as face tool interaction to drill a hole or high speed for face
milling. Expert knowledge can help reduce model complexity
by identifying two key aspects of the hybrid model, which are
as follows.

1) Discrete States: Modeling all possible implicit and
explicit descriptors of the GOS could result in a state
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explosion. A knowledge-based approach can leverage
the repetitive action of manufacturing to reduce the
number of states based on the process requirements and
capabilities.

2) Dynamic Models: The machine dynamics and the effect
of the machine–part interaction during the manufac-
turing process can be captured by a limited number
of models. A library of physics-based and data-driven
models can then be used to monitor the manufacturing
process while operating in different discrete states.

3) Hybrid System: As shown in Table I, the models in
F can be shared between GOS as the dynamic model
f1 is used for studying the machine in GOS1 and
GOS3. Moreover, the mapping between discrete states
and dynamics models developed using a knowledge-
based approach can help identify what model from the
library best captures the operation on a discrete state.

IV. ANOMALY DETECTION AND DIAGNOSIS

Identification of the proper operational state and context
can help the evaluation of machine data for anomaly detec-
tion. In this work, a context-sensitive analysis framework is
proposed for the detection of static anomalies. Anomalies
are detected based on adaptive threshold limits by studying
residuals between estimated and actual values at a single point
in time. The root cause is diagnosed using supervised clus-
tering or classification models where a specific classification
model is assigned to each operational context.

A. Detection

In this work, anomalies are detected by evaluating residual
values within specified intervals called thresholds. Residuals
at time t are the difference between measured signals Y (t) and
estimated outputs Ŷ (t). The proper dynamic model to generate
the estimated output for each operational context is defined
by the hybrid model. The residual generation for the output
variables can then be defined as

ry(t) = Y (t)− Ŷ (t).

Noise in the measured signal and model errors could lead to
nonzero values under normal conditions. Filtering the signal
to reduce noise and using a set of n measured values as a
reference for normal or expected performance, it is possible
to define the mean μy and standard deviation σy of the residual
as

μy(t) =
n∑

i=1

(ryi (t)/n) and σ 2
y =

n∑

i=1

(ryi (t)− μy(t))
2/n.

Context-sensitive adaptive threshold limits are defined to
separate normal and abnormal values. These limits are based
on confidence in the model and risks associated with the
operational context as defined by the GOS.

1) Confidence Intervals: Based on the experimental data,
the confidence intervals describe the likelihood that residual
values fall within a specific range. The confidence intervals
for GOSi are defined based on mean (μi ), standard deviation
(σi ), and standard score (Zi ) as

�ryi = μi ± Ziσi .

The score Zi defines the confidence level (e.g., 90%, 95%,
and 99%) to balance detection errors. The Receiver Operating
Characteristic (ROC) curve can be used to evaluate the accu-
racy of a binary classifier as determined by a discrimination
threshold based on the ratio between true positives (TPs)
(detection) and an FP (false alarm) [28].

Guidelines: The Z-score defines the classification limits
between normal and abnormal performance as the number of
standard deviations from the mean of the expected residual.
Optimal Z-score can be obtained by:

1) collecting data from normal and abnormal operations;
2) evaluate the mean and standard deviation of the residual;
3) build ROC curve by assessing the TP and FP for Z ∈

{0.1, . . . , 3.0};
4) calculate the slope m(T P, F P) of the ROC curve for

every Z-score;
5) the optimal Z-score balancing the tradeoffs

between detections and false alarms is defined by
m(T P, F P) = 1.

If the cost associated with false negatives is larger than
the cost of an FP the optimal slope can be less than 1 [i.e.,
m(T P, F P) = 0.8] [35].

As part of a manufacturing operation, it is possible to
have multiple tasks with different combinations of processes,
machine setups, and parts. The confidence in a dynamic model
capturing the behavior of input or output variables might be
different based on the operational context. The confidence
intervals for each state in G O S are defined by mean μy,
variance σy

2, and score Zy.
2) Process Risk Analysis: Using relational identifiers of

specific steps or tasks in the manufacturing process can help
map the risks associated with anomalous performance based
on information from the FMEA. The data extracted out of the
machine regarding both part and process can be used to change
the allowable threshold for the output variables residuals ry .

Different techniques to assess risk are presented
in [30], [31]. In this work, we introduce a risk coefficient ψR

to modify the detection limits for each GOS so that

�ry = μi ± ψRi Zσi .

The risk coefficient modifies the classification limits defined
by the confidence intervals based on prior risk analysis.
The confidence intervals as defined by the Z-score can be
calculated based on the tradeoffs between detection errors. The
risk coefficient can be assigned based on the negative impact
of an anomaly over the part’s performance or process safety.

Guidelines: The risk coefficient ψR is defined by evalu-
ating the severity of part or process failure based on FMEA.
The value of ψR can be selected based on the following.

1) Evaluate design and process FMEA.
2) Define the critical part features or process step based on

high-risk priority number.
3) Assign ψR < 1 to the GOS associated with critical part

features or process steps.

The vector ψ R defines the risk coefficient for each oper-
ational context in G O S. An example of context-sensitive
adaptive threshold limits for the part and process in Fig. 1 is



SAEZ et al.: CONTEXT-SENSITIVE MODELING AND ANALYSIS OF CPMS FOR ANOMALY DETECTION AND DIAGNOSIS 35

Fig. 2. Data partitioning and adaptive threshold limits.

presented in Fig. 2. Considering that the accuracy of physics-
based or data-driven models during various GOS could be
different, it is possible to have offsets on mean residual values.

B. Diagnosis

In a manufacturing operation, the abnormal behavior could
be related to problems in the part, machine, tool, or process.
Identifying the root cause using data-driven methods could
be a challenge partially because changes in speed, task, and
machine–part interaction cause the signal to be nonstationary.
Moreover, not all anomalies are equally likely to occur under
different operating conditions.

Partitioning a nonstationary output signal by GOS can
improve the diagnosis model by creating multiple segments of
similar operational context. After an abnormal condition has
been detected in a specific GOS, a classification model is used
for root cause diagnosis. In this work, we introduce context-
sensitive classification models for diagnosis by 1) partitioning
the signals; 2) extracting features from the different parti-
tions of the signals; and 3) defining a specific classification
model for partitions of GOS. The selection of the features
to be extracted from the continuous signal such as peak
value, rms, or decay time can be sensitive to the operational
context of the machine as defined in the GOS partition.
Moreover, different classification models can be defined for
various partitions. An example would be to use supervised
classification methods for root cause diagnosis [36]. A support
vector machine (SVM) classification model can be developed
for each partition, i.e., for each GOSi , an SV Mi is defined
for i ∈ {1 . . . p}. Moreover, understanding the process and
different machine–part interactions can help improve anomaly
diagnosis by defining the most likely failure mode of each
GOS and the effect that different anomalies have over features
of a signal in the time or frequency domain.

V. IMPLEMENTATION AND EVALUATION

The methodology presented in Sections III and IV was
implemented to detect anomalies in a machining opera-
tion. The experimental setup is based on a three-axis CNC
machine enabled with OPC-UA communication. Using Rock-
well Automation IoT adapter, we were able to extract position,
velocity, acceleration, current, and voltage from each drive on
the CNC machine, along with part and process information

Fig. 3. IoT data extraction schema.

Fig. 4. Sample part machining description.

such as the part number and G-code command. The continuous
signals were preprocessed using a Finite Impulse Response
(FIR) filter. The machine was studied as a CPMS by con-
sidering the control architecture, communication capabilities,
and manufacturing operation. The model was developed using
a combination of continuous signals and context information
described in Fig. 3. The validity of the model was evaluated
by comparing the error between the model output and data
from the real system under normal operating conditions.

The case study focused on a part with multiple features
manufactured using different tools and machining operations.
The study aims to detect and diagnose anomalies on the
machine, part, or process. The detection was performed by
monitoring the residual of output variables throughout the
entire manufacturing operation, while diagnosis utilized clas-
sification models developed using context information. Fig. 4
shows the part, features, and tool trajectory. Table II describes
the manufacturing operation and tool used for each part
feature.

A. Cyber-Physical Manufacturing System Model

The manufacturing operation was modeled as a hybrid sys-
tem based on discrete states and CD. The discrete states were
defined by the operational context of the machine according to
the Global Operation States GOS, and the CD in each GOS
were studied by either physics-based (pb) or data-driven (dd)
models.
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TABLE II

SAMPLE PART AND PROCESS INFORMATION

Fig. 5. Functional atomic model.

Fig. 6. Dynamic atomic model.

1) Discrete States: Defined by the combination of implicit
(functional, dynamic, and interactive states) and explicit
descriptors (part, tool, and process step) to specify the GOS.
The implicit descriptors were defined using PLC logic, cutting
speed, and tool–part interaction. The explicit descriptors were
defined by part number, tool number, and line of the G-code
program. The data required to identify the descriptors were
extracted from the machine and system controller. The atomic
model for each domain is defined as follows.

a) Functional: An atomic model of functional states
built using information from the control logic. The functional
states were machine Idle or Processing. The transition
between states was triggered by events Part Arrival and
Part Departure. The occurrence of an event was detected
by a Presence Sensor (PS) mounted in the CNC machine.
Fig. 5 shows the functional atomic model H F including states,
events, and transitions:

H F = (U F , SF , δF ) where

U F = {
eF

1 , eF
2

}
Set of events

SF = {
sF

1 , sF
2

}
Set of states

sF
1 = Idle sF

2 = Processing.

2) Dynamic: The atomic model for dynamic states included
cutting and traveling speeds of the manufacturing operation.
The cutting speed is defined as the rate at which the cutting
tool passes along a workpiece. The speed is calculated as the
magnitude of the velocity vector, C S = (q̇2

x + q̇2
y + q̇2

z )
1/2.

The states were segmented by speed and acceleration for each
drive. Fig. 6 presents the dynamic model

H D = (U D, SD, δD) where

U D = {
eD

1 , eD
2 , . . . , eD

8

}
Set of events

SD = {
s D

1 , s D
2 , . . . , s D

5

}
Set of states

s D
1 : C S = 0 s D

2 : C S = 1.8 s D
3 : C S = 2

s D
4 : C S = 2.5 s D

5 : C S = 50.

Fig. 7. Machine–part interaction states.

Fig. 8. Current of XY drives and spindle partitioned by interactive state.

3) Interactive: It is defined by the contact between
tool and workpiece which is distinct for different
machining operations. The states and operations, in this
case, study include NoInteraction for “cutting air”
operations, End Interaction for drilling operations, and
SideInteractions for pocket or shoulder milling operations.
Fig. 7 shows the states and transitions.

Interactive events are defined by the characteristic effects
that machine–part interactions have over output signals.
Process observation and signal analysis methods were com-
bined to identify patterns that describe the effect of changes
in interaction over output signals (e.g., current, voltage, etc.).
Fig. 8 shows the current signature of the X-axis, Y -axis,
and Spindle while machining part feature 6. Events are char-
acterized by time-series patterns such as a spike in spindle
current and a drop in the Y -axis current. Using the partition-
ing algorithm presented in [7], interactive events within the
manufacturing process were identified.

4) Continuous Dynamics: State variables include position
q and velocity q̇, and the output variables were current I
and voltage V . Considering that the dynamics of the machine
and signal noise are different depending on the machine–part
interaction, the multimodel framework presented in Section III
was used.

a) Physics-based: Models of the X- and Y -axes drives on
the CNC machine. A one-mass model based on the physics of
the electric drive is defined as [2]

V̂ (t) = ψ q̇(t)+ L İ (t)+ RI (t) (1)

Î (t) = (J q̈(t)+ MF1q̇(t)+ MF0sin(q̇(t)))/ψ (2)

where the measured signals are speed q̇, acceleration q̈,
armature voltage V , and armature current I . The iden-
tified machine parameters are magnetic flux ψ , armature
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Fig. 9. Description of hybrid model with interactive events.

inductance L, armature resistance R, overall moment of
inertia J , and friction coefficients MF0 and MF1.

b) Data-Driven: Autoregressive models were developed
to study the current and voltage of the X- and Y -axes drives.
The order of the models was estimated based on the Box–
Jenkins analysis using time series data [34]. The model was
developed to estimate current (I ) and voltage (V ) based
on previous observations, and exogenous inputs velocity (q̇)
and acceleration (q̈). An autoregressive model with indepen-
dent predictors (autoregressive–moving-average model with
exogenous inputs) was defined as

φ
V
(B)V̂ (t) = β

V
(B)q̇(t − n)+ ε(t) (3)

φ
I
(B) Î (t) = φ

I 1
(B) ˙q(t − n)+ φ

I 2
(B)q̈(t − n)+ ε. (4)

The parameters φ and β are polynomials with respect to the
backward shift operator (B) identified by fitting norm-based
models with regularization, n is the system delay, and ε is the
system disturbance [37].

5) Hybrid Model: Used to specify which continuous model
to use in each discrete state. Each part feature involved
multiple GOS, but only two types of models (physics-based
and data-driven) are defined based on interactive state SI . The
value of some model parameters such as friction or autoregres-
sive terms changed based on the dynamic state SD .

Fig. 9 shows the discrete states and continuous dynamic
model for machining part feature 1 (side milling—filet) rep-
resented as a hybrid system. Two different GOS are defined.
GOS2 captures the operational context with no machine–part
interaction when the machine is “cutting air” and the tool is
traveling to the part entry point. During GOS2, the machine
dynamics are estimated using a physics-based model. The
interactive event eI

3 is characterized by a spike in the spindle
current consumption caused by the contact between the tool
and the part and indicates the transition to GOS3. During
GOS3, the tool is machining the part, and the machine dynam-
ics are estimated using a data-driven model. The interactive
event eI

4 is characterized by a drop in the spindle current
consumption and indicates the transition back to GOS2.

B. Anomaly Detection

This case study aims to detect anomalies by monitoring
residuals and event occurrence. The models used to estimate
the output variables are defined by the operational context of
the machine and characterized by the GOS. In this case study,
we evaluate the abilities to detect the following anomalies:

1) Tool: worn tool and broken tool.
2) Part: wrong material and wrong dimensions.
These anomalies can be detected by monitoring the magni-

tude of the residual and time intervals between occurrences of
interactive events.

Fig. 10. Adaptive threshold limits of electric current residual.

TABLE III

RESIDUAL ANALYSIS INFORMATION

Fig. 11. Effect of worn or broken tool on spindle current for two different
tool sizes and part features.

1) Residual Analysis: For anomaly detection, we imple-
mented context-sensitive adaptive threshold limits presented
in Section IV-A. The context is defined by the discrete states
described in the GOS. The limits on residual were defined by
mean μ and standard deviation σ estimated by evaluating the
output of the continuous dynamic model for 20 independent
data samples collected under normal operation. Fig. 10 shows
the GOS and residual of the output variables for three part
features under normal and abnormal conditions. Table III
summarizes the partitions, states, model, and limits.

Results illustrate that both the wrong material and worn tool
conditions cause the residual to exceed the threshold during a
GOS that involves a machine–part interaction. The root cause
was identified using supervised learning classification models
to differentiate between these two conditions.

2) Event Occurrence: The time at which an interactive event
occurs can be used to identify anomalies. Changes in the
part geometry, machine fixture location, orientation, or tool
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Fig. 12. Classification model for diagnosing wrong material or a worn tool. (a) Features from the entire signal, accuracy 75%. (b) Features extracted using
signals partitioned by part feature, accuracy 81.2%. (c) Signal partitioned by part feature and G OS during side interaction and multiple passes, accuracy
93.6%.

condition might affect the time instance in which the machine
and part interact. The time when the interactive event should
occur and the time lapse of each GOS under normal conditions
can be identified using historical data. As part of the case
study, we identified the average and standard deviation time
intervals associated with each GOS. Results showed that
wrong part dimensions of −5 mm on the X-axis and −0.8 mm
on the Z -axis caused an average delay on the occurrence of
the interactive event of 1.39 and 0.42 s, respectively. A sim-
ilar effect was observed when the part was poorly clamped
causing the part to shift during the machining operation and
changing the duration of an interactive state. Abnormal dura-
tion of the time interval of an interactive state can complement
the anomaly detection and diagnosis process.

C. Root Cause Diagnosis

In this study, classification and rule-based methods were
used to perform root cause diagnosis. After an anomaly was
detected, context information was used to decouple the failure
modes as not all the anomalies are equally likely to occur in
different GOS and could affect the output signal in different
ways.

1) Classification-Based: Supervised learning was used to
identify the root cause of residual values outside the normal
thresholds. A linear SVM for binary classification was trained
using key characteristics in the time domain such as mean,
max, peak-to-peak, and rms, and features on the frequency
domain such as peak magnitude and frequency. The orthogonal
transformation was used to define the set of variables that best
describe the difference between different failure modes was
defined to improve the classification accuracy. A soft margin,
to define hyperplane that separates many, but not all data points
were specified using L1-norm minimization.

The signals we studied were current and voltage from
the XY drives and spindle. A total of 36 features were
used to develop the classification model. Fig. 12 shows the
classification hyperplane and rms values of spindle and X
drive current. The results showed that considering the context
information helped improve the diagnosis. The accuracy of the
classification model improved from 75% when using the entire
signal to 93.6% when the signal was partitioned by GOS.
Partitioning the signal by part feature and GOS, and using

only the states associated with side interactions SI
2 and SI

3
helped isolate the signal to stationary conditions of similar
operational context.

2) Rule-Based: In this work, we used process observation
and signal analysis to define the characteristics of the peak in
spindle current such as max magnitude, rise time, rise level,
fall time, and fall level for different part features prior to break-
age. Magnitudes and patterns were used to define context-
sensitive diagnosis rules. Fig. 11 shows different effects of
tool breakage while machining feature 6 with a 3/8” diameter
mill bit and feature 7 with a 5/16” diameter mill bit. The
effect of tool breakage over spindle current is distinct for
each part feature due to the different tool size and machine–
part interactions involved in the manufacturing operations.
The difference in magnitude between the two graphs can be
explained by the distinct spindle current consumption required
to increase the torsional shear stress above the failure point
for the different tools. The pattern of the current consumption
prior to failure could be explained by the particular interaction
between the tool and the part for machining each part feature.

D. Discussion

In a manufacturing operation, anomalies can be caused by
problems in the machine, part, tool, or process. In this work,
anomalies in the part and tool were detected and diagnosed
using a context-sensitive modeling framework. For detection,
we implemented residual analysis using both physics-based
and data-driven models. Results showed that anomalies related
to part material or tool condition can be detected by monitoring
the magnitude of the residual. Anomalies caused by changes
in part dimensions or orientation had no effect on the residual
but affected the time intervals between interactive events.

The nonstationary condition of the signal when studying the
entire process represents a challenge for root cause diagnosis.
Features extracted from the entire signal do not show a clear
difference between the wrong material and worn tool. How-
ever, considering the GOS of the machine helped partition
the signal and develop context-specific classification models.
Moreover, knowledge of the magnitude and pattern of spindle
current consumption prior to tool breakage for each part fea-
ture and GOS helped develop diagnosis rules. Results showed
the advantages of using context information to improve the
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diagnosis of some anomalies. The steps for anomaly detection
and diagnosis using the modeling framework here presented
can be summarized to; first modeling, define the machine GOS
and continuous dynamic models, second anomaly detection,
Monitor the residual between estimated variables and machine
data within the limits specified for each GOS, third diagnosis,
partition the data by GOS and extract signal features for each
partition for classification.

VI. CONCLUSION

In this paper, we presented a modeling strategy to study
CPMS using a hybrid model. Discrete states are defined based
on implicit and explicit process descriptors as GOS. CD are
described using both physics-based and data-driven models.

The main contribution of this work is a framework to
improve anomaly detection and diagnosis. Anomaly detection
is based on residual analysis considering the GOS to define
context-sensitive adaptive threshold limits. Root cause diag-
nosis is based on context-specific classification models. The
benefit of this framework is the ability to diagnose anomalies
in the machine, part, or tool to support effective maintenance
actions. Timely and effective maintenance action can help
reduce downtime and improve manufacturing productivity. The
modeling approach was implemented in a machining opera-
tion. Results demonstrated that context information improved
the classification accuracy from 75% to 94%, and enhanced
the detection and diagnosis of tool breakage.

Future work will focus on expanding the modeling
framework, testing scalability, model verification, and imple-
menting additional data extraction techniques. The effect of
hidden or nonobservable states in the machine controller will
be explored in the continuation of this work. This research
work will be extended to study other machines, including a
wider range of anomalies, and developing predictive models
to detect dynamic anomalies.
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