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Depression Recognition using Remote
Photoplethysmography from Facial Videos

Constantino Alvarez Casado®, Manuel Lage Cafellas®, and Miguel Bordallo Lépez

Abstract—Depression is a mental illness that may be harmful to an individual’s health. The detection of mental health disorders in the
early stages and a precise diagnosis are critical to avoid social, physiological, or psychological side effects. This work analyzes
physiological signals to observe if different depressive states have a noticeable impact on the blood volume pulse (BVP) and the heart
rate variability (HRV) response. Although typically, HRV features are calculated from biosignals obtained with contact-based sensors
such as wearables, we propose instead a novel scheme that directly extracts them from facial videos, just based on visual information,
removing the need for any contact-based device. Our solution is based on a pipeline that is able to extract complete remote
photoplethysmography signals (rPPG) in a fully unsupervised manner. We use these rPPG signals to calculate over 60 statistical,
geometrical, and physiological features that are further used to train several machine learning regressors to recognize different levels
of depression. Experiments on two benchmark datasets indicate that this approach offers comparable results to other audiovisual
modalities based on voice or facial expression, potentially complementing them. In addition, the results achieved for the proposed
method show promising and solid performance that outperforms hand-engineered methods and is comparable to deep learning-based

approaches.

Index Terms—Affective Computing, Depression Detection, HRV Features, Image Processing, Machine Learning, Remote

Photoplethysmography, rPPG, Signal Processing.

1 INTRODUCTION

AJOR depressive disorder (MDD), also known as clin-
Mical depression, is one of the most common mental
disorders with increasing prevalence that contributes signif-
icantly to the global healthcare burden [1]. Depression can
lead to severe consequences for individuals both personally
and socially [2] [3]]. In addition, several studies suggest long-
term and clinically significant depression as a trigger for
other serious medical conditions and physiological changes
such as cardiovascular disease, diabetes, osteoporosis, ag-
ing, pathological cognitive changes, including Alzheimer’s
disease and other dementias, and even an increase in the
risk of earlier mortality [4] [5].

Currently, depression screening is usually based on med-
ical interviews described in the Diagnostic and Statistical
Manual of Mental Disorders (DSM-V), but depends on
the subjectivity and experience of the psychiatrist and the
subjective memory of the patient, a fact that can lead to
misdiagnosis with its consequential social, physiological,
or psychological side effects due to undertreatment or
overtreatment of the illness.

In recent years, the assessment of depression from facial
videos has aroused interest in the scientific community,
since the clinical literature has documented particular visual
cues and behaviors on faces and facial expressions triggered
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by major depressive disorder [6]. These facial signs go from
reducing facial movements, eyebrow activity, eyes gaze,
head pose, mood expressions occurrence, body gestures,
or eyelid activity, among others. In addition, this discipline
allows the development of a non-invasive and unobtrusive
technology and modality that can support the medical diag-
nosis while the physician focuses exclusively on the patient.
The literature studies based on facial visual information
have concentrated mainly on three ideas: extracting features
from textures and dynamic textures using handcrafted tex-
tural descriptors [7], extracting temporal features from the
facial geometry and morphology to analyze facial expres-
sions using Facial Action Coding System (FACS) and Action
Units (AUs) [8] [9] or facial and head movement dynamics
[10], and using deep learning approaches [11] [12] [13],
which represent the state-of-the-art methods nowadays.

On the other hand, other objective biomarkers have been
shown to be useful for physicians to evaluate and assess
the level of depression of the patient in a more confident
and precise manner. Recent studies have demonstrated the
impact of depression on physiological biomarkers, such as
heart rate variability (HRV) calculated from the electrocar-
diogram (ECG) [14] [15], HRV using photoplethysmography
(PPG) signals [16]] [17], electrodermal activity (EDA) [18] or
acoustic physiological features from the speech [19].

Photoplethysmography (PPG) is a relatively simple and
inexpensive optical technique that uses a light source and
a photodetector to detect the blood volume changes at the
skin surface. PPG is often used to monitor the heart rate
(HR) and the blood oxygen saturation (SpO2) but has been
widely used in the scientific literature to estimate different
physiological parameters such as Heart Rate Variability
(HRV). Recent studies have utilized these PPG-derived pa-
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rameters to detect affective states such as depression or
pain [20] [17]. In particular, depression has been clinically
found to correlate with parameters on both sympathetic
and parasympathetic activity, including autonomic nerve
transient responses [16], or the high frequency (HF) and
low frequency (LF) components of the HRV [17].PPG sig-
nals can be recorded using contact-based medical-graded
devices (i.e., fingertip pulse oximeter) or wearable devices
such as smartwatches, fitness trackers, or earphones [21].
The main advantage of this modality is that it is affordable,
non-invasive, and portable. Additionally, it provides a more
comfortable and less obtrusive user experience than ECG
devices.

Remote PPG (rPPG) imaging is a contactless version of
this technique that uses a video camera as sensor and ambi-
ent light sources [22]]. Hence, rPPG can extract physiological
signals remotely using only video streams. The technique
consists in analyzing the subtle color variations or motion
changes in skin regions [22]]. Remote PPG has to deal with
several challenges such as noise, illumination variations
or the person’s movements, but allows for non-invasive,
remote and unobtrusive evaluation and monitoring of the
users. Hence, the technology offers significant advantages
compared to contact-based devices [23], since has shown
comparable results to PPG methods using FDA-approved
contact-based pulse oximeters [24]. A few studies have tried
to use rPPG signals to assess different affective states such
as pain [25] or stress [26] tPPG signals. However, they rely
on reference signals for learning or evaluating the quality of
the extracted rPPGs and features.

In this work, we aim to analyze the impact of different
levels of depression on the physiological response of the
blood volume pulse (BVP) signal. In particular, we aim
to extract heart-related features from the BVP signal using
remote photoplethysmography (rPPG) from facial videos in
a fully unsupervised manner, using a non-learning based
method that relies mostly on signal processing. Based on
this, we propose, for the first time, a novel approach for
automatic depression screening using these physiological
signals extracted from facial videos and machine learning.
Our main contribution can be summarized as follows:

e We assess depression scores by extracting remote
photoplethysmographic signals (rPPG), and use
them to compute a set of statistical and heart rate
variability (HRV) features, including linear and non-
linear geometrical parameters from the blood vol-
ume pulse (BVP), feeding them to machine learning
regressors based on Random Forests and Multilayer
Perceptrons.

e To demonstrate the validity of our approach, we
evaluate our methods in two publicly available
video-based datasets, typically used as a bench-
mark for depression assessment, AVEC2013 and
AVEC2014. The results show that the new approach
is feasible and shows more stable inter-video predic-
tions than other modalities.

e To complement our study, we compare our approach
with different audiovisual modalities. We prove that
the combination of physiological signals with both
texture-based and deep features is complementary

and improves the results further.

2 PROPOSED METHODOLOGY

In this article, we propose a regression task to determine
the level of depression of a person using remote photo-
plethysmography (rPPG). In this case, we use rPPG signals
extracted from faces recorded with a user-graded RGB cam-
era. The regression task comprises several steps: extracting
the biosignals from the facial videos, pre-processing the
extracted signals to convert them into physiological rPPG
signals, extracting features from these rPPG signals, training
the models using these features, and evaluating the perfor-
mance of the models.

In the last decade, rPPG research has advanced signifi-
cantly from simple signal processing of the raw RGB signals
extracted from the video frames to sophisticated multi-step
processing pipelines and end-to-end supervised learning
methods with dedicated architectures. In general, we can
divide the rPPG methods into two main categories: Unsu-
pervised or non-learning-based methods and supervised or
learning-based methods. The unsupervised rPPG methods
focus on recovering the BVP signal by finding skin areas
suitable to extract the raw RGB signals using face detection,
tracking, and segmentation techniques. After that, these
methods carefully process these raw RGB signals to separate
the physiological signals contained in the subtle variations
of the skin color from the rest of the information (motion,
illumination changes, or facial expressions, among others)
by applying filtering and different ways of combining the
RGB signals into an rPPG signal. RGB to rPPG conversion
methods are based on several ideas such as signal decompo-
sition (PCA, OMIT [27]), chrominance information (Green,
CHROM [28], POS [29]), or self similarity (LGI [30]).

Supervised rPPG methods are data-driven methods typ-
ically based on Deep Neural Networks (DNN). These meth-
ods are in general end-to-end solutions that focus on re-
covering the BVP signal from faces by learning to mimic
the reference signals (BVP signals) captured with fingertip
pulse oximeters during the training stage. Some of the well-
known deep learning based rPPG methods are based on
estimating the HR from sequences (HR-CNN [31])), attention
mechanisms (DeepPhys [32]), video enhancement (rPPGNet
[33]) transductive learning (Meta-rPPG [34]), and multitask
learning and autoencoders (MSTmaps [35]]). In general,
these methods represent the state-of-the-art in terms of
performance, resulting in highly accurate models. However,
there is a risk of overfitting to the training data [24].

2.1 Remote Photoplethysmographic signal extraction

To extract rPPG signals from facial videos, we utilize our
unsupervised pipeline called Face2PPG [27]. This unsu-
pervised (non-learning based) method for remote photo-
plethysmographic (rPPG) imaging is comprised of several
steps: face detection and face alignment, skin segmentation,
regions of interest (ROIs) selection, extraction of the raw
signals from ROlIs, filtering of the raw signals, RGB to PPG
transformation and spectral analysis, and post-processing to
compute different signal parameters such as such as heart
rate (HR), respiratory rate (RR), blood oxygen saturation
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(SpO2) or heart rate variability (HRV) [21]. The Face2PPG
pipeline includes modules for movement and facial expres-
sion stabilization based on geometric normalization using
landmark points and dynamic selection of the facial ROIs
that allows discarding those regions that present occlusion,
low contrast or generally bad signals when compared with
other regions, resulting in robust and accurate results in
multiple datasets. An schematic of the pipeline can be seen
in Figure [}

r
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Fig. 1. Unsupervised methodology for remote photoplethysmographic
(PPG) imaging using a RGB camera, comprising several steps: 1) De-
tection and alignment of the face at every frame. 2) Skin segmentation.
3) ROI selection. 4) Extraction of the raw signals from RGB channels at
the regions of interest. 5) Filtering of the raw signals on the frequency
band of interest. 6) Transformation of the filtered RGB signals to a pulse-
type signal. 7) Computation of heart-related features using spectral
analysis and post-processing.

In particular, our configuration includes the following
modules: First, it includes an accurate and robust deep
learning-based face detection method based on a Single
Shot Multibox Detection network (SSD) [36]. After that,
the detected faces are aligned using a deep learning facial
landmarks detector named Deep Alignment Network, [37]
which gives exceptional performance in terms of accuracy
even in challenging conditions [38]. Finally, these landmarks
are used in a geometrical skin segmentation and normal-
ization scheme that employs the 85 facial landmark points
detected in the face by creating a fixed facial mesh composed
of 131 triangles, fixing their coordinates in a normalized
frontal pose. The results of the face normalization to extract
the biosignals can be seen in Figure [2l The normalized face
is processed further using a dynamic multi-region selection
scheme that extracts raw RGB signals from the best facial
areas.

Fig. 2. Normalization of the faces to fixed coordinates of two sample
videos from the AVEC2014 database. The left image of each pair shows
face detection and landmarks. The right image shows the normalization
of each detected face in the videos. [27]. Images pixelated for privacy
reasons.

This selection is based on several signal statistics such
the mean, standard deviation, variance, signal-to-noise ra-

3

tio (SNR), Katz Fractal dimension (KFD), number of zero-
crossings (Zc), sample entropy, detrended fluctuation anal-
ysis (DFA) and the energy in terms of local power spectral
density (PSD). In addition, this step allows to discard those
parts of the signals that do not meet quality extraction
standards due to e.g. no face detected, excessive occlusion,
or facial regions with poor SNR. The raw signals are then
processed using an improved filtering module that includes
detrending and bandpass filtering to remove artifacts and
clean the raw signal to the frequency band of interest.

Finally, the framework incorporates a module to trans-
form the RGB signals into rPPG signals. For the rPPG ex-
traction we use an RGB to PPG conversion method based on
chrominance (CHROM) [28]. This version of the Face2PPG
framework has been evaluated extensively across several
references databases. Table (1| shows the performance of
the system, while complementary experiments can be seen
in our previous work [27]. The evaluation shows that the
expected HR error for rPPG signals when compared with
reference PPG signals ranges from less than 1 beat per
minute for simpler datasets with no movement (UBFC),
to around 12 beats per minute for heavily compressed
databases (MAHNOB). Although the lack of a reference
signal in both depression datasets, makes a quantitative
evaluation impossible, based on their video characteristics
such as relatively free face movement and reasonable res-
olution and image quality, we could expect the error to be
approximately in the middle of that range.

TABLE 1
Performance of the selected rPPG extraction method, evaluated using
the mean average error (MAE) of the heart rate, in beats per minute.

Databases
Method LGI-PPGI COHFACE PURE MAHNOB UBFC-1 UBFC-2
Face2PPG 3.9 8.8 1.2 12.6 0.8 1.5

2.2 Feature extraction

To train our regression models, we use rPPG signals ex-
tracted from visual information to compute 68 features
along different windows of each 1-dimensional signal. We
used windows of 6 seconds and a fixed sliding window
of 0.33 seconds, which is equivalent to 10 video frames
for a typical framerate of 30 fps. An example rPPG signal
window, is shown in Figure For each rPPG signal window,
the extracted features include 9 statistical features for time-
series, 6 fractal analysis features, 6 entropy analysis features,
and 49 heart-related features in time-domain, frequency-
domain, and non-linear features, extending the 30 features
used in our previous related work [39].

In particular, the statistical features, include the mean,
min, max, std, dynamic range and four percentiles (10, 25, 75
and 90). The fractal analysis features include the Katz fractal
dimension, Higuchi fractal dimension and detrended fluctuation
analysis of the entire window, and the mean of the three
fractal analysis features computed in sub-windows of 2
seconds of the whole window. The entropy analysis fea-
tures include permutation entropy, spectral entropy, approximate
entropy, sample entropy, Hjorth mobility and complexity and
number of zero-crossings of the entire window. The heart
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Fig. 3. An example rPPG signal window extracted from a video included
in the AVEC2014 dataset.

and HRYV related features include heart rate (HR), breathing
rate (BR), interbeat interval (IBI), differences between R-
R intervals (pNN20, pNN50), Poincare analysis, frequency
domain components (VLF, LF, HF, LF/HF ratio), the stan-
dard deviation of NN intervals (SDNN), among others [40].
To compute them, we use the Numpy Python library to
compute the statistical features, the Antropy Python package,
a software tool for computing the complexity of time-series,
to extract both fractal and entropy features [41] and two
Python libraries, namely Neurokit2 [42] and HeartPy [43], to
computer HRV related features.

For comparative purposes, we have also computed tex-
tural features from visual information. We have followed
a similar approach to the AVEC2014 baseline [44], which
employs the local dynamic appearance descriptor LGBP-
TOP, employing fixed temporal windows of 10 consecu-
tive frames. Following the baseline method, the extracted
feature vector comprises features extracted only from the
XY orthogonal plane. The computation of textural features
employs a custom Python script based on the Bob signal
processing and machine learning library [45].

2.3 Regressor selection

For both physiological and textural features, we select re-
gressors based on Random Forests and Multilayer Per-
ceptrons, as included in Scikit-learn Python library. The
Random Forest Regressor (RFR) uses n_estimator = 550,
max_depth = 15 and default values for the rest of the pa-
rameters of the model. The Multilayer Perceptron Regressor
(MLPR) uses a topology that includes an input layer with
the number of input features, three hidden layers, and an
output layer with one neuron that corresponds to the regres-
sion value of the depression. The configuration used for the
training includes: a “relu” (rectified linear unit function) for
the activation function in the hidden layers, "Adam” solver
for the weight optimization, a batch_size = 140 with a
learning rate “constant”, an initial learning rate of 0.01 and
default values for the rest of the parameters.

Again, for comparative purposes, we have implemented
an end-to-end deep-learning regression model based on a
ResNet-50 convolutional neural network [46], followed by
a regression layer composed of two fully connected layers.
Based on the literature [12]], as input to the network, we
have used all individual frames of each video by cropping
the input frame to the facial rectangle.

4

We evaluate the performance of the regression models
both individually and combined. First, we train individual
models using extracted features from the rPPG physiolog-
ical signals, and compare them with the performance of
regressors based on textural features and the end-to-end
regressor based on deep-learning. In addition, we combine
these features and models in two different ways. First, us-
ing a feature-level fusion approach (pre-fusion) by creating
a unique feature vector with features from both textural
and physiological modalities, training a model with these
feature vectors. Finally, we also use a score-level fusion
approach (post-fusion) by combining the result of the in-
ferences from the individual models using the average of
the results.

3 EXPERIMENTAL ANALYSIS
3.1 Datasets and protocol

To demonstrate the performance of the proposed method,
we evaluate the trained models on two publicly available
databases, namely the Audio/Visual Emotion Challenge
(AVEC) 2013 [47] and 2014 [48]. The experiments were
performed on the sets of the Depression Recognition Sub-
Challenge (DSC) task, where the goal was to estimate the
score of individuals on the Beck Depression Inventory (BDI-
II). Both datasets are derived from a subset of the audio-
visual depressive language corpus (AViD-Corpus) and they
are divided in three partitions: training, development, and
test set. Every video includes a label based on questionnaire
answers following the Beck Depression Inventory-II (BDI-II)
[6], resulting in a depression score of 0 to 63. According to
the BDI-II score, the severity of depression can be classified
into four levels: minimal (0-13), mild (14-19), moderate (20-
28), and severe (29-63).

The AVEC2013 dataset contains 150 videos from 84
subjects, with 50 videos on each partition. However, in
the AVEC2014 dataset, the individuals were recorded while
performing two different tasks: Freeform and Northwind.
The recordings are segmented into three parts in both tasks:
training, development, and test set containing 50 videos in
each partition for a total of 300 videos. The protocol for
AVEC2014 evaluates the models using the two different
tasks, both separately and jointly. For the separate task
models, models are trained using the subsets of either the
Northwind or Freeform tasks, while the joint models, simply
combine the data from both tasks both in the training and
testing phases.

3.2 Experimental setup

We evaluated and analyzed the proposed methodologies to
detect the level of depression using features extracted from
remote photoplethysmography signals and visual features
extracted from video frames from both benchmark data
sets. We compare the results across different trained models
using these features individually or in a fusion manner
and compare them with state-of-the-art for both supervised
and unsupervised methods. The experiments are performed
using a computer that includes an AMD® Ryzen(TM) 3700X
8-core processor at 3.6GHz, with 64 Gigabytes of RAM, 4
terabyte SSD and two NVIDIA GeForce® RTX(TM) 2080. We
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have also used the Puhti supercomputer at the IT Center for
Science (CSC) in Finland to extract the visual texture-based
features. We used Python 3.8 as the programming language.

3.3 Performance metrics

To evaluate the performance of these models and make a fair
comparison with the state-of-the-art methods, we provide
the two most common metrics in the automatic depression
assessment literature, Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE). The overall predicted depres-
sion score for each input video is obtained by averaging the
estimation scores for all its windows.

3.4 Experimental results

In this section, we evaluate the performance and validity
of the proposed modality and approach through a series of
experiments in the benchmark databases. We compare them
with other modalities and state-of-the-art approaches.

3.4.1 Performance in AVEC2013 and AVEC2014

In Table 2] and Table B we show the evaluation of the
performance of the proposed approach using HRV and BVP
features extracted from facial videos for both AVEC2013
and AVEC2014. We compare them with other unimodal
methods based on appearance and texture. We observe
that the results of the unimodal models corresponding to
HRV features and textural features on the AVEC2013 and
AVEC2014 test sets have similar performance, although
textural features seem to provide slightly better information.

In addition, we also explore a multimodal fusion by
combining the heart-related features with textural and deep
features to complement the results.

The most remarkable output is that the combination of
the features from both textural and physiological modalities,
achieves the best results, supporting the hypothesis that
both modalities are indeed complementary.

TABLE 2
Performance of the proposed method and models for depression
recognition on AVEC2013, measured in mean absolute error (MAE)
and root mean square error (RMSE). We use the following notation to
refer to the machine learning algorithms: RFR for Random Forest
Regressor and MLPR for a Multilayer Perceptron Regressor.

Modality Features Fusion Model MAE RMSE
rPPG - RFR 7.97 9.98
Unimodal rPPG - MLPR 7.54 9.75
Textural - MLPR 7.26 8.99
rPPG + Textural Pre MLPR 6.98 9.02
Multimodal  rPPG + Textural Post RFR + MLPR 7.03 8.97
rPPG + Textural Post MLPR + MLPR 643 8.01

For AVEC2014, we can observe that for the Freeform
task the regression models work slightly better than for the
Northwind task, as expected according to the baseline results
[48]. We can observe that the results of the individual mod-
els (using HRV features and textural features individually)
when using the data joining both tasks are similar in both
datasets.

We show results for individual modalities. We can ob-
serve that all modalities show similar results, while the deep

TABLE 3
Performances of the proposed methods for depression recognition
considering single task and fusion of tasks on AVEC2014. Performance
is measured in mean absolute error (MAE) and root mean square error
(RMSE). Notation: RFR: Random Forest Regressor, MLPR: MultiLayer
Perceptron Regressor, CNN: Convolutional Neural Network.

Modality Features Fusion Model Task MAE RMSE
Unimodal rPPG - RFR Freeform 7.74 9.68
Textural MLPR Freeform 7.43 9.33
Multimodal rPPG + Textural Pre RFR Freeform 8.03 9.84
rPPG + Textural Post RFR + MLPR Freeform 7.37 8.72
Unimodal rPPG - RFR Northwind 8.28 10.76
Textural - MLPR Northwind ~ 8.17 10.40
Multimodal rPPG + Textural Pre RFR Northwind ~ 7.21 8.99
rPPG + Textural Post RFR + MLPR  Northwind  7.62 9.64
rPPG - RFR Joint-tasks 7.44 9.55
Unimodal Textural - MLPR Joint-tasks 7.02 9.08
Deep CNN Joint-tasks  6.83 9.06
rPPG + Textural Pre RFR Joint-tasks 7.20 9.03
Multimodal rPPG + Textural Post RFR + MLPR  Joint-tasks 6.81 8.63
rPPG + Deep Post RFR + CNN  Joint-tasks 6.90 8.88
All Post All Joint-tasks 6.57 8.49

learning-based approach (ResNet-50) has slightly better in-
dividual results than the models trained with handcrafted
features extracted from either textural or rPPG features.

In addition, we show the fusion of HRV features with
both textural and deep features. In AVEC14, score-level
fusion also results in better performance than feature-level
fusion although slightly worse than in AVEC2013. The com-
bination of deep features and rPPG features at score-level
shows a further improvement of the results. This proves
that, in the same manner as textural and rPPG modalities,
deep models provide for information that is also comple-
mentary to that extracted from physiological signals. In any
case, the best results are obtained when fusing all three data
modalities at score level.

3.4.2 Error analysis

To further analyze the performance of the rPPG-based fea-
tures, we display the error distribution in the AVEC2014
benchmark comparing them with the texture-based models,
as shown in Figure [d] The figure shows the mean absolute
error for each of the 100 test videos sorted from the smallest
to the largest.

In Figure [ it can be seen that for rPPG-based models
(subfigure A), more than 60% of the videos show an error
below a threshold of 15, results that will not result in
heavy missclassification. Similar results can be seen for deep
ResNet-50 models (subfigure B), while LGBP-TOP models
shop up to 71% below the threshold but with a very uneven
distribution of errors (subfigure C). The score-fusion model
(subfigure D) shows improved results when compared with
unimodal models, with 73% of the videos below the thresh-
old, while also keeping a moderately uniform distribution of
errors. The error distribution suggests the complementarity
of the features and of texture, deep and rPPG based models.

3.4.3 Qualitative evaluation

For a qualitative evaluation of the models, we show the
different predictions per window for three different example
videos, depicted in Figure 5| We can observe that inference
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Fig. 4. Mean Absolute Error (MAE) distribution of the AVEC2014 Testing Video dataset (Northwind + Freeform). Error distribution of the depression
ordered from smallest to largest error per video. From left to right, and top to bottom: A) error distribution when using: rPPG+HRV features +
Random Forest regressor, B) ResNet-50 neural network, C) LGBP-TOP features + Multilayer Percepton regressor and D) Score-fusion level of the

models in A, B and C.

when using rPPG-based features to train the models is rel-
atively stable and shows less variance for the different time
windows that make up a single video. This is in contrast
with the the inferences obtained from regressors trained
with visual textural features, that show high variability
in the predictions, although a somehow accurate average.
Models trained using deep learning, show a reasonable
stability, but worse than HRV.

3.4.4 Computational Cost Analysis

We analyze the computational performance of the proposed
method to detect depression using rPPG signals. Table [4]
shows the computational costs of each block that compose
the method pipeline in terms of GFLOPs and time con-
sumption per frame. We evaluate each block separately
and compare the total cost of the proposed method with
state-of-the-art end-to-end deep learning models to detect
depression. In addition, we include the cost of the common
frame preprocessing methods, namely face detection and
alignment.

The measurement is performed using the desktop setup
described in Subsection [3.2] We used a floating point preci-
sion of 32 bits (FP32) and Python 3.8. To measure the com-
putational costs, we used Perf, a profiler tool for Linux 2.6+
based systems that includes hardware level (CPU/PMU,
Performance Monitoring Unit) features and software fea-
tures (software counters, tracepoints).

The total computational cost of the proposed method is
0.091 GFLOPs for the part of pipeline including all process-
ing modules, namely Face Normalization, raw RBG signal

extraction and skin segmentation, RGB to BVP transfor-
mation, Feature Extraction and Model Inference. The Face
Normalization module is the most time-consuming block,
mostly due to intensive memory read and write operations.

The time consumed by pre-processing related blocks
can vary depending on the face detection and alignment
method. However, although they can account for most of
the computational cost, they are also included in all end-
to-end deep learning-based models. A direct comparison of
our method, including rPPG extraction, feature computation
and model inference is from 45 to 134 times more efficient
when compared with the inference of other end-to-end deep
learning models. These results are to be expected since our
method focuses on the analysis of one-dimensional signals.

3.4.5

We compare the results of the proposed method using
different window sizes to extract HRV features from the
rPPG signals and a fixed sliding window of 0.33 seconds
(10 video frames). We have carried out this experiment in
AVEC2014 using the same Random Forest regressor as in
Table[3 and the data from both tasks included in AVEC2014
(Freeform and Northwind data). We have tested on typical
values five different window lengths: 5, 6, 8, 10, and 15
seconds. The summary of the results can be seen in Table
The results show that shorter windows that capture short
term temporal changes shows a better performance than
longer ones, while windows below 6 seconds, start showing
problems worse performance due to the lack of sufficient

Impact of the Window size
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Fig. 5. Examples of the predicted depression level per window in two videos from the AVEC2014 test set. In the first row, estimation for the video
245_3 performing the Northwind task,and in the second row, the estimation for the video 379_2 performing the Freeform task. From left to right,
estimations of: a) Random Forest regressor using rPPG features, b,) ResNet-50 trained with input facial images, and c) Multilayer Perceptron
regressor using the visual textural features.

TABLE 4
Computational cost analysis comparison. Pre-processing blocks common to all methods (orange), state-of-the-art CNN-based methods (black)
and main blocks of our proposed method (blue)

Block name Block type Method GFLOPs  Time (ms.) Processor Resolution
Preprocl Face Detection OpenCV DNN 0.3173 12.18 CPU + GPU 300x300
Preproc2 Face Alignment DAN 3.3581 121.77 CPU 112x112

CNN1 Inference 2D-ResNet50 4.13 28.37 GPU 224x224
CNN2 Inference 3D-ResNet50 [49] 12.22 91.45 GPU 224x224
CNN3 Inference MDN [49] 7.40 55.53 GPU 224x224
CNN4 Inference DMSN [50] 11.29 84.62 GPU 112x112

B1 Face Normalization Face2PPG 0.0584 15.746 CPU 640x480

B2 RGB signal extraction Face2PPG 0.0003 1413 CPU 640x480

B3 RGB to BVP transform CHROM 0.0023 0.001 CPU 640x480

B4 Feature Extraction HRV features 0.0052 0.125 CPU 640x480

B5 Model Inference Random Forest 0.0246 0.299 CPU 640x480
B1+B2+B3+B4+B5 rPPG-blocks ours 0.091 17.58 CPU 640x480

pulse peaks to compute reliable statistics, especially when
the subjects have a low heart rate.

TABLE 5
Performance of the regression model in AVEC2014 trained with HRV
features extracted from the rPPG signal using different window sizes (in
seconds) and a fixed sliding window of 0.33 seconds (10 video frames).

Window Size

3.4.6 Cross-database analysis

To observe the how rPPG-based models generalize when
exposed to additional unseen data, we perform a cross-
database analysis using the AVEC2013 and AVEC2014
databases. Although both signals are recorded using a simi-
lar setup, the test subset shows different videos.

Table [6] shows the results of the cross-database exper-
iments for features obtained from visual information. We
trained both Random Forest regressor (RFR) and Multilayer
Perceptron (MLPR) regressor from rPPG features, using the

Metrics w=5 w=6 w=8 w=10 w=15

training protocol suggested in the source dataset, testing the
RMSE 1054 955 1024 9.94 10.29 resulting models on the Test subset of the target database.
MAE 8.36 7.44 8.13 7.92 8.47

We can observe that results using the Random Forest
regressor (RFR) and the Multilayer Perceptron regressor
(MLPR) models with rPPG features show similar behav-
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TABLE 6
Performance of different methods, including the proposed method
using rPPG features and two different regression models in
cross-dataset setting. "TR13—TST14” means that the models are
trained in AVEC2013 and tested in AVEC2014. "TR14—TST13” means
that the models are trained in AVEC2014 and tested in AVEC2013

TABLE 7
Performance of different regression models in AVEC2014 using rPPG
features, visual features (LGBP-TOP) features and the fusion of both at
feature-level (pre-fusion) or score-level(post-fusion).

regression model

TR13—TST14 TR14—TST13 Metric Features RF ExTR LogR SVR SDGR MLPR

Method Modality MAE RMSE MAE RMSE 1PPG 744 818 1069 891 915 7.94

e Visual 815 799 78 792 821 7.02

rPPG + Visual (Post) 7.66 7.89 842 817 841 7.09

Ours (RFR) PPG 7.52 948 7.45 9.64 = IPPC + Visudl (Pre) 720 752 854 798 856 744
Ours (MLPR) rPPG 7.07 9.94 7.90 9.98 PPG 955 997 1471 1112 1124 1036

5 Visual 996 961 1071 1008 1037  9.08

LGBP-TOP Texture 9.01 12.97 8.33 10.81 5 rPPG + Visual (Post) 957 955 1145 1026 1027 8.83

tPPG + Visual (Pre)  9.02 927 1071 9.89  10.61 9.11

MDN-152 [49] Deep 6.40 8.04 6.19 7.90

ior, with similar performance as when used in the source
datasets (see Tables 2] and [3). We compared them with
models trained with LGBP-TOP features from textural in-
formation, which show to generalize worse to unseen data,
especially when comparing the RMSE error. On the other
hand, similar cross-database analysis using a deep features
from a 3D-ResNet type architecture [49], have shown to
maintain a similar level of performance. These comparative
experiments suggest that the rtPPG-based models learn HRV
features that are useful when used in other related, but
different unseen data.

3.4.7 Performance across different machine learning re-
gression models

We explore the performance across different regression
models and summarize the results in Table [ We have
trained a set of Machine Learning regressors selected us-
ing an exploratory strategy that tried up to 15 different
regressors, which we narrowed down to 6 based on their
type and preliminary performance. We selected Random
Forest regression (RFR) and Extremely Randomized Trees
regression (ExTR) from ensemble learning methods, Logistic
regression (LogR) and Support Vector Machine regression
(SVR) as linear regressors, Stochastic Gradient Descent re-
gression (SDGR) as iterative method and Multilayer Percep-
tron regression (MLPR) as neural network method. For each
model, we have used the default parameters of the machine
learning algorithms set by the Scikit-learn Python library,
with the exception of an increased number of estimators
and maximum depth for the models based on trees.

Similarly to the experiments shown in Table [2|and Table
we explore the results when training the different models
with visual and rPPG features individually, and using two
multimodal fusion approaches.

We can observe that in general the Random Forest re-
gressor and the Multilayer Perceptron regressor obtain the
best results. The RFR works especially well when using the
features extracted from the rPPG signals. The MLPR works
especially well when using the visual features. We hypoth-
esize that in the case of the HRV features, the RFR is able
to find nonlinear relationships between the dependent and
independent variables whereas the MLPR works better with
linear relationships, assuming that the features extracted
from dynamic textures of a face have a strong linear de-

pendency. The logistic regressor works well when using the
LGBP-TOP features but achieves poor performance when
using the HRV features. As expected, extra-trees ensemble
regressor has similar performance than the Random Forest,
but slightly worst when using rPPG features and slightly
better with the LGBP-TOP features, especially for the RMSE
metric.

3.5 Comparison of features and sensor modalities

We have compiled a series of previous works for each
modality from baseline to state-of-the-art methods. The pri-
mary sensor modalities are based on the typically available
sensor modalities such as audio and RGB video, as for
AVEC2013 and AVEC2014 database benchmarks. However,
the main differences are related to the type of information of
interest and the way of computing features from it. Since we
introduced a data and feature modality extracted from a re-
mote facial video to regress the level of depression, namely
remote physiological features from visual information, we
focus on these comparisons. Table [8|shows a comparison of
different approaches, sensors, and data modalities to infer
depression levels in an unobtrusive manner automatically
from audiovisual material. We have identified five types of
features extracted from both audio and video sensors.

From the audio sensor, previous works have employed
features extracted from:

e Speech signals as an audio time series. We have iden-
tified features such as handcrafted speech features
(LLDs, MFCCs, statistical features, spectral features,
etc.), deep learning features, or the conversion to
spectral images to extract deep learning visual fea-
tures.

e Speech as semantic information. Features such as
linguistic and para-linguistic features or emotion
recognition features.

From the RGB videos, we have identified in the literature
four different data (feature) modalities:

o Geometrical features, mostly associated with motion
and morphology of both the image and the facial
landmarks. The approaches and methods that use
these features focus primarily on translating the tem-
poral information of the landmarks or head pose to
images such as spectral heat maps, motion history
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TABLE 8

Comparison of different sensor and data (feature) modalities for depresion estimation from audiovisual data. Notation: TCN: Temporal
Convolutional Network, SVM: Super Vector Machine, SVR: Super-Vector Regressor, MLP: Multilayer Perceptron, DCNN: Deep Convolutional
Neural Network 2DCNN: 2-Dimensional Convolutional Neural Network, STA: Spatio-Temporal Attention, EEP: Eigen Evolution Pooling, LR: Linear

Regression, PLS: Partial Least Square Regression, DMSN: Decomposed Multiscale Spatiotemporal Network.

Sensor modality Feature type Feature Extraction  Year Method approach Method MAE RMSE  Test dataset
Audio Speech Handcrafted 2013 Speech features (Baseline) Valstar et al. [47] 10.35 14.12 AVEC2013
Audio Speech Handcrafted 2014 Speech features (Baseline) Valstar et al. [48]  10.04 1257 AVEC2014
Audio Speech Handcrafted 2018 MFCC + LR Jan et al. [51] 8.07 10.28 AVEC2014
Audio Speech Deep Learning 2020 Spectrum images + STA network Niu et al. [52] 7.14 9.50 AVEC2013
Audio Speech Deep Learning 2020 Spectrum images + STA network Niu et al. [52] 7.65 9.13 AVEC2014
Audio Speech Deep Learning 2021 Speech S‘g“il Eeilf\l"'gmm 1mages Dongetal [53] 732 873  AVEC2013
Audio Speech Deep Learning 2021 Speech S‘g“il Eessli’\]eecttmm mages Dongetal. [53] 680 882  AVEC2014
Audio Speech Deep Learning 2021 Attention TCN-based (TDCA-Net) Cai et al. |54] 6.90 9.22 AVEC2013
Audio Speech Deep Learning 2021 Attention TCN-based (TDCA-Net) Cai et al. [54] 7.08 8.90 AVEC2014
. . . Motion + AlexNet (Landmarks Motion History, , I
RGB Video Geometrical Deep Learning 2018 Motion History Image, Gabor Motion History) S’adan et al. |55] n/a n/a AVEC2014
RGB Video Geometrical Deep Learning 2020 Spectral heatmaps and vectors + CNN + ANN Zhu et al. [56 6.16 8.10 AVEC2013
RGB Video Geometrical Deep Learning 2020 Spectral heatmaps and vectors + CNN + ANN Zhu et al. [56 5.95 7.15 AVEC2014
. . Facial landmarks motion + SVM .
RGB Video Geometrical Handcrafted 2022 (Landmarks Motion Magniture, Gaze, Action Units) Rathi et al. [57] n/a n/a DAIC-WOZ
RGB Video Texture Handcrafted 2013 LPQ-TOP + ¢-SVR (Baseline) Valstar et al. [47] 10.88 13.61 AVEC2013
RGB Video Dynamic texture Handcrafted 2014 LGBP-TOP + SVR (Baseline) Valstar et al. [48] 8.86 10.86 AVEC2014
RGB Video Dynamic texture Handcrafted 2015 Facial LBQ-TOP + SVR Wen et al. [58] 8.22 10.27 AVEC2013
RGB Video Textures Deep Learning 2017 Facial Apparence + DCNN Zhu et al. [59 7.88 10.19 AVEC2013
RGB Video Textures Deep Learning 2017 Facial Apparence + DCNN Zhu et al. [59 7.82 10.36 AVEC2014
RGB Video Textures Deep Learning 2019 Facial + ResNet-50 Melo et al. [60] 6.30 8.25 AVEC2013
RGB Video Textures Deep Learning 2019 Facial + ResNet-50 Melo et al. [60] 6.15 8.23 AVEC2014
RGB Video Dynamic Textures Deep Learning 2020 Facial + Two-stream 2DCNN Melo et al. [[12] 5.96 7.97 AVEC2013
RGB Video Dynamic Textures Deep Learning 2020 Facial + Two-stream 2DCNN Melo et al. [12] 6.20 7.94 AVEC2014
RGB Video Dynamic texture Deep Learning 2021 Facial 3DCNN features + SVR Niu et al. [13] 6.19 8.02 AVEC2013
RGB Video Dynamic texture Deep Learning 2021 Facial 3DCNN features + SVR Niu et al. [13] 6.14 7.98 AVEC2014
RGB Video Dynamic texture Deep Learning 2022 Facial + DMSN Melo et al. [50] 6.14 7.66 AVEC2013
RGB Video Dynamic texture Deep Learning 2022 Facial + DMSN Melo et al. [50] 5.69 7.50 AVEC2014
RGB Video Dynamic texture Deep Learning 2021 Upper body images + CNN AlexNet Ahmad etal. [11]  5.64 7.28 AVEC2013
RGB Video Physiological Handcrafted 2022 rPPG and HRV features + RF Ours 7.54 9.75 AVEC2013
RGB Video Physiological Handcrafted 2022 rPPG and HRV features + RF Ours 7.44 9.55 AVEC2014
Multimodal Speech + Textures Handcrafted 2013 Speech features + LBP + PLS Meng et al. [61] 9.14 11.19 AVEC2013
Multimodal Speech Handcrafted 2014 Speech features + LGBP-TOP + SVR Valstaretal. [48]  7.89  9.89  AVEC2014
+ Dynamic textures
Multimodal (ie%‘e‘)‘ftffr‘gsl Handcrafted 2014 Geometrical features + LPQ + k-NN Kaya et al. [62 786 972  AVEC2013
Multimodal Speech Deep Learning g MECC + VGG-Face features + PLS Janetal [51] 614 743  AVEC2014
+ Dynamic textures + Handcrafted
. Speech . Speech spectrum images + Facial . ]
Multimodal + Dynamic textures Deep Learning 2020 + STA network 1. EEP Niu et al. [52] 6.14 8.16 AVEC2013
. Speech . Speech spectrum images + Facial . ]
Multimodal + Dynamic textures Deep Learning 2020 + STA network 1 EEP Niu et al. |52] 521 7.03 AVEC2014
Multimodal Physiological Handcrafted 2022 rPPG features (RFR) + LGBP-TOP (MLPR) Ours 643 801  AVEC2013
+ Dynamic textures
Multimodal Physiological Handcrafted 2022 1PPG features (RFR) + LGBP-TOP (MLPR) Ours 681 863  AVEC2014
+ Dynamic textures
. Physiological Deep Learning rPPG features (RFR) + LGBP-TOP(MLPR)
Multimodal + Dynamic textures + Handcrafted 2022 + ResNet-50 Ours 6.57 8.49 AVEC2014

images or motion maps. But other approaches use
temporal and morphological information and facial
landmark features, gaze, or Action Units (AU) to
regress the level of depression.

Texture features, mostly associated with the static
visual features of only one frame. The approaches
and methods use handcrafted visual descriptors such
as LPQ or LBP features or deep learning features
based on the facial appearance of one frame to infer

an instantaneous level of depression from the ap-
pearance.

Dynamic texture features include the temporal infor-
mation based on visual features from a sequence of
frames. This is the most explored feature modality
since it is known that temporal facial reactions or
expressions throw more information about a per-
son’s emotional state. The approaches focused on
this modality have explored different features such
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as handcrafted spatio-temporal visual descriptors
(LGBP-TOP, LBQ-TOP), different deep learning ar-
chitectures that encode temporal information, or
low-level deep learning features extracted from se-
quences of images.

e And finally, to the best of our knowledge, we have
introduced a new data (feature) modality that can be
used on RGB videos. It consists on the extraction of
physiological signals (BVP) from faces using the tem-
poral RGB information. We use remote photoplethys-
mographic waveforms to extract features related to
the pulse signal, such as heart rate variability and
fractal analysis, which have been shown to have a
significant impact on the monitoring and diagnosis
of mental health disorders such as depression, stress,
or anxiety.

From the comparative results, it can be seen that visual
information seems to offer better cues for the assessment
of depression than audio information. In particular, deep
features that combine both spatial and temporal information
offer the best overall performance, while other modalities
such as geometrical features, behavioural signals and re-
mote physiological signals (HRV) could offer complemen-
tary information, further improving the performance. For
audio, deep models also outperform those created using
handcrafted features. Overall, the multimodal combination
of both audio and video shows the best individual perfor-
mance.

3.6 Comparison with previous work

For modalities based only on visual information, we com-
pare the results of our proposed method against state-of-
the-art methods on AVEC2013 and AVEC2014 datasets and
show them in Table 0]and Table 10l We can observe that we
can divide the previous works into two big groups, those
based on hand-engineered representations and deep learn-
ing methods. In general, deep learning methods outper-
form methods that use handcrafted features. However, their
black-box nature could result in decreased interpretability,
missing cues that show where and when manifestations of
depression are seen, something that could make them more
useful as tools for medical practitioners.

Tables [9 and [10] show, respectively, the performance of
several of these methods on AVEC2013 and AVEC2014,
both for (data) monomodal and multimodal approaches.
The results of these methods seem to improve when using a
multimodal approach with different feature modalities [[62]
where geometric and texture features are combined. Our
proposed method builds on similar ideas, but combines
novel physiological features with typical dynamic texture
features to exploit mostly the complementary visual and
physiological temporal information provided by each sub-
ject. The learning based methods mostly rely on exploiting
also the temporal information using different different deep
learning architectures that search for temporal cues in the
stream of frames, potentially exploiting spatio-temporal re-
lationships in the videos that could be indicative of depres-
sion.

For AVEC2013, the proposed modality in this study out-
performs the hand-engineering “traditional” methods, even

10
TABLE 9
Comparison of methods for predicting the level of depression on the
AVEC2013 dataset.

Methods MAE RMSE
AVEC2013 Video Baseline [47] 10.88  13.61
MHH + LBP (Meng et al. [61]) 9.14 11.19
LPQ + SVR (Kéchele et al. [63]) 8.97 10.82
LPQ-TOP + MFA (Wen et al. [64]) 8.22 10.27
LPQ + Geo (Kaya et al. [62]) 7.86 9.72
Two DCNN (Zhu ef al. [65]) 758  9.82
C3D (Jazaery et al. [66]) 7.37 9.28
ResNet-50 (Melo et al. [60]) 6.30 8.25
Four DCNN (Zhou et al. [67]) 620 828
3DCNN + SVR (Niu et al. [13]) 6.19 8.02
Two-stream 2DCNN (Melo et al. [12])  5.96 7.97
Ours (HRV) 754 975
Ours (HRV + LGBP-TOP) 6.43 8.01

as a (data) monomodal approach, resulting on a 7.54 MAE.
In addition, it has similar performance than one of the first
learning-based method proposed to compute the depression
level based in two DCNNS5s [65]. To show that our proposed
modality and method extracts complementary information
with other approaches based on visual information, we
combined our results with other types of features. When our
modality is fused with other textural or deep modalities,
our results show results comparable (e.g.) to the state-of-
the-art methods evaluated in AVEC2013, demonstrating the
complementary of the information of both modalities.

TABLE 10
Comparison of methods for predicting the level of depression on the
AVEC2014 dataset.
Methods MAE RMSE
AVEC 2014 Video Baseline [48] 8.86 10.86
MHH + PLS (Jan et al. [68]) 8.44 10.50
LGBP-TOP + LPQ (Kaya et al. [69]) 8.20 10.27
Two DCNN (Zhu et al. [65]) 7.47 9.55
C3D (Jazaery et al. [66]) 7.22 9.20
VGG + FDHH (Jan et al. [70]) 6.68 8.04
Four DCNN (Zhou et al. [67]) 6.21 8.39
ResNet-50 (Melo et al. [60]) 6.15 8.23
3DCNN + SVR (Niu et al. [13]) 6.14 7.98
Two-stream 2DCNN (Melo et al. [12]) 6.20 7.94
Ours (HRV) 7.44 9.55
Ours (HRV + LGBP-TOP) 6.81 8.63
Ours (HRV + LGBP-TOP + Deep) 6.57 8.49
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For AVEC2014, our method, using exclusively the HRV
features as the data modality, also outperforms traditional
methods using handcrafted features from the RGB videos,
and is very close to some deep learning-based methods such
as Zhu et al. [65]. When we combine the features derived
from the rPPG signal with deep or visual texture-based fea-
tures, we achieve results comparable to the state-of-the-art
methods in the detection of depression. The improvement of
modality fusion at the score level is worse than when testing
in AVEC2013, probably due to a smaller amount of data.

4 CONCLUSION

This paper introduced the extraction of remote biosignals
from RGB videos to be used in automatic screening of
depression levels from facial videos, a novel visual data
modality explored here for the first time. In this context,
we have proposed a novel scheme that directly extracts
physiological signals in an unsupervised manner, just based
on visual information, removing the need for any contact-
based device or reference signal. We have directly used these
signals to compute physiological features such as blood
volume pulse features or heart rate variability parameters,
training different machine learning regression models. We
evaluated our approach using the AVEC2013 and 2014
benchmark databases. Our results show that our method
provides information that can help in the assessment of
depression, proving that it can be combined with other
visual data modalities to improve the performance further.
In our analysis, we have shown graphical examples that
suggest that the inference of the models trained with this
type of feature modality is slightly more stable than those
of other models, such as those that exploit textural or deep
features. Extensive experiments indicated the usefulness of
such modality, when compared to different methods present
in the literature. Future work should explore the extraction
of all kinds of visual information including textural, spa-
tiotemporal, and rPPGs in a unified framework.
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