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Fusion of finite set distributions: Pointwise

consistency and global cardinality

Murat Üney, Member, IEEE, Jérémie Houssineau, Emmanuel Delande, Simon J. Julier, Member, IEEE,

Daniel Clark, Senior Member, IEEE

Abstract—A recent trend in distributed multi-sensor fusion is
to use random finite set filters at the sensor nodes and fuse the
filtered distributions algorithmically using their exponential mix-
ture densities (EMDs). Fusion algorithms that extend covariance
intersection and consensus based approaches are such examples.
In this article, we analyse the variational principle underlying
EMDs and show that the EMDs of finite set distributions do not
necessarily lead to consistent fusion of cardinality distributions.
Indeed, we demonstrate that these inconsistencies may occur with
overwhelming probability in practice, through examples with
Bernoulli, Poisson and independent identically distributed (IID)
cluster processes. We prove that pointwise consistency of EMDs
does not imply consistency in global cardinality and vice versa.
Then, we redefine the variational problems underlying fusion and
provide iterative solutions thereby establishing a framework that
guarantees cardinality consistent fusion.

Index Terms—random finite sets, multi-sensor fusion, expo-
nential mixture density, covariance intersection, target tracking

I. INTRODUCTION

IN networked sensing, nodes perform local filtering and ex-

change filtered distributions as opposed to communicating

raw measurements [1]. The problem of fusion is to find an

estimate for the a posteriori distribution over some state space

conditioned on two or more (conditionally) independent sensor

data streams, given local posteriors computed by local filtering

of each data stream individually.

A large body of work utilises exponential mixtures of

densities (EMDs) for fusion of local distributions. These

mixtures are found by taking the weighted geometric mean

of their components followed by scaling to ensure integration

to unity. They have been widely used for fusion of single

object (probability) distributions [2]. A well-known algorithm

that utilises EMDs of Gaussian densities is covariance inter-

section [3]. In covariance intersection (CI), the weights of
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the components in the mixture are selected using various

criteria [4]. The underlying variational problem considers

minimising a cost that equals to the weighted sum of Kullback-

Leibler divergences [5] of the fused density that is sought

with respect to the mixture components. The stationary density

and set of weights for this problem specifies an EMD which

is deemed as a middle-ground of the components in a way

analogous to logarithmic opinion pooling of experts [6].

The EMD form has been adopted for finite set densities in

order to address fusion in the case of multiple objects [7].

Following the introduction of tractable recursive filters [8]

such as the probability hypothesis density (PHD) filter [9],

and, explicit filtering algorithms using Gaussian mixture model

(GMM) representations [10] and sequential Monte Carlo

(SMC) techniques [11], numerical algorithms that extend CI

fusion to Bernoulli, PHD, and cardinalised PHD (C-PHD)

were proposed [12]–[14]. These methods have been proved

useful in improving localisation accuracy in multi-sensor prob-

lems including those involving heterogenous sensors [15].

Another utilisation of EMDs for fusion of finite set dis-

tributions has been within the network consensus frame-

work [16]. Briefly, iterative message passing algorithms which

asymptotically compute the equally-weighted mixture, i.e., the

(unweighted) geometric mean of the components, at all nodes

of a sensor network are proposed for C-PHD [17], multi-

Bernoulli [18], generalised MB [19], [20], Bernoulli [21], and,

labelled [22], [23] finite set filters.

In [24], [25], it has been proved that EMDs have a proba-

bility density that at no point in the state space overlooks the

density of their components. This property is proposed as a

working definition of consistency in the context of fusion [25].

Finite set density EMDs also satisfy this consistency condition

pointwise, at every finite collection of points.

Finite set distributions, on the other hand, factorise into

a cardinality distribution on the number of objects and a

localisation density conditioned on the cardinality [26]. In

this article, we show that the cardinality distributions of

EMDs are not endowed with such consistency guarantees,

in general. Such inconsistencies might result with smaller

existence probabilities or estimates on the number of objects

when the fused results are used instead of either of the inputs.

This phenomena which might undermine the benefits of using

diversity in sensing has been empirically observed by other

researchers as well (see, e.g., [27]). Here, we provide explicit

mathematical formulae specifying conditions under which the

cardinality distributions of finite set EMDs are inconsistent.

We demonstrate in examples that these inconsistencies are
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encountered sometimes with overwhelming probability under

typical operating conditions and might lead to large discrep-

ancies in, for example, the estimated number of objects and/or

object existence probabilities.

Based on these results, we argue that the variational problem

needs to be decoupled for the cardinality and the localisation

distributions (i.e., scaled Janossy [26] distributions). Doing so

separates the fusion of cardinality distributions and localisation

terms. This approach results with the same localisation den-

sities as the direct adoption of the variational problem, and,

avoids any inconsistencies in the cardinality distribution. We

show that pointwise consistency does not imply consistency in

cardinality and vice versa. Then, we derive iterative algorithms

for cardinality consistent fusion of finite set distributions.

The outline of the article is as follows: In Section II, we

discuss fusion rules that accommodate EMDs in the light of

the associated variational problems and pointwise consistency

of EMDs. We provide our results regarding the cardinality

inconsistencies of finite set EMDs in Section III, together with

examples. Then, we redefine the variational problem under-

pinning fusion and derive solutions for cardinality consistent

fusion in Section IV. Conclusions and future directions are

provided in Section V.

II. FUSION AS A VARIATIONAL PROBLEM

A. EMDs as weighted KLD centroids

Given two probability density functions (PDFs) fi and fj
on a state space X , let us consider finding another density f in

the space of PDFs P such that f captures the information con-

tained in both of the input distributions. An intuitive approach

which is geometric in flavour would involve finding the cen-

troid of the input distributions based on a distance/divergence

metric. Kullback-Leibler divergence (KLD) is such a diver-

gence metric which is used in information geometry in a way

similar to the squared Euclidean distance [28], and, has an

established relevance to estimation when X is a finite alphabet

(which is often referred to as hypothesis testing) [5].

The KLD of two distributions with densities f and g is

computed as

Dpf ||gq “
ż

X

fpXq log fpXq
gpXqdX, (1)

where D is always nonnegative and vanishes for f “ g.

Let us denote the centroid of fi and fj with respect to a

weighted sum of KLD by fω. This distribution is a solution

to the associated variational problem given by

(P) min
fPP

Jωrf s

Jωrf s fi p1 ´ ωqDpf ||fiq ` ωDpf ||fjq (2)

where ω P r0, 1s is a design parameter selecting the weight

of the divergence of each point fi and fj in the space of

probability distributions P over X , with respect to f .

The solution to problem (P) with the cost (2) is unique and

found as

fωpXq “ 1

Zω

f
p1´ωq
i pXqfω

j pXq (3)

Zω “
ż

X

f
p1´ωq
i pX 1qfω

j pX 1q dX 1, (4)

which can easily be seen after rearranging the cost in (2) as

Jωrf s “ Dpf ||fωq ´ log

ż

X

f
p1´ωq
i pXqfω

j pXq dX, (5)

(see, for example, [29, Eq.(3)]), and, realising that the second

term on the right hand side does not depend on f (see

Appendix A for a direct proof). In fact, this term is the scaled

Rényi divergence [30] of order ω from fj to fi, i.e.,

Jωrf s “ Dpf ||fωq ´ pω ´ 1qRωpfj , fiq, (6)

Rωpfj , fiq fi
1

ω ´ 1
log

ż

X

fω
j pXqf p1´ωq

i pXqdX,

“ 1

ω ´ 1
logZω.

Let us consider the weight parameter ω as a free variable,

and find the stationary point of Jω in (2) with respect to ω for

f “ fω. For the case, the KLD term in (6) vanishes and (2)

reduces to a cost function for finding the Chernoff information

of fi and fj [5] which is concave in ω 1. In [32], it is explained

that there is a unique stationary point ω˚ which satisfies

Dpfω||fiq “ Dpfω ||fjq
∣

∣

∣

∣

ω“ω˚

. (7)

The density fω in (4) is obtained by normalising the

weighted geometric mean of fi and fj , and, thus referred to as

their geometric mean density (GMD), or, exponential mixture

density (EMD). In this article we adopt the latter.

B. Covariance intersection and generalisations

The above discussion outlines a fusion algorithm which

outputs the pair pω˚, fω˚ q using (7) and (3) for fusing fi
and fj . This can be rephrased as a maxmin mathematical

programme:

pP2q pω˚, fω˚q fi arg max
ωPr0,1s

min
fPP

Jωrf s. (8)

The input densities here are a posteriori in nature as they

are propagated by local filters, i.e., they are conditioned on

the data-streams of sensors i and j, respectively. When X
is R

d, i.e., the d-dimensional space of real vectors, and, the

distributions involved are Gaussians, this approach reduces to

a set of linear algebraic operations which are known as the

“covariance intersection” algorithm [3]. In this setting, how

well an approximation the EMD (3) is to the joint posterior2

is studied in terms of bounds over the uncertainty spread

1To be specific, in [31], Chernoff introduces Cpfj , fiq fi ´ logminZω as
a “measure of divergence” between two distributions. This quantity can equiv-
alently be found by max´ logZω in which the argument of maximisation
is nothing but Jωrf “ fωs.

2Here, we refer to the posterior distribution conditioned on the data
streams of both sensors which is infeasible to compute given the limited
communication and computational resources of the networked setting.
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characterised by covariance matrices (see, e.g., [33], [34]).

An information geometric characterisation of fω˚ for mul-

tivariate Gaussians and other exponential family distributions

is provided in [35] where it is proved that fω˚ is the unique

intersection point of the exponential geodesic curve joining

fi and fj (obtained by varying ω from 0 to 1 in (3)) and its

dual hyperplane on the induced statistical manifold.

For general distributions, (3), (4) and (7) are still valid as a

solution to the variational fusion problem in (8). The optimal

weight selected through (7) equates the cost in (2) to the

Chernoff information [5] between fi and fj [32]. Perhaps for

this reason, some authors refer to this fusion rule as Chernoff

fusion (see, for example [36] and the references therein).

C. Other fusion rules utilising EMDs

Other fusion methods that use EMDs include consensus

based approaches as overviewed in Section I. These methods

compute fω by iterative message passings between nodes.

However, instead of finding stationary weights of the varia-

tional problem in (2), this network averaging approach can

compute only an equally weighted EMD, and, when the

number of iterations tends to infinity. Some other methods

differ from the generalised CI approach described above in

their weight selection criteria: Some authors argue that it

might be more beneficial to select the value of ω in (2) that

would maximise the “peakiness” of fω [7], or, to minimise

the uncertainty captured by fω quantified by its Shannon

differential entropy [4].

D. A notion of consistency in Fusion

The uncertainty spread in EMDs of arbitrary distributions

is characterised in terms of pointwise bounds. In [25], the

authors show that the scale factor in (4) is less than or equal

to one, i.e., Zω ď 1, and, consequently EMDs (3) satisfy the

following consistency condition:

fωpXq ě mintfipXq, fjpXqu (9)

for all points X P X and ω P r0, 1s. In other words, the fused

distribution does not overlook the probability mass assigned

by fi and fj onto the vicinity of any point in the state

space. In this sense, this condition corresponds to a notion

of consistency [25], in the context of distributed fusion3.

In this article, our concern is the consistency properties

of EMDs of finite set distributions. These distributions have

been commonly used to represent multi-object scenes [8].

The following discussion is valid for any fusion scheme that

employs EMDs and random finite set (RFS) distributions in

order to quantify uncertainty in, for example, “the number

of objects,” (e.g., Poisson, i.i.d. cluster RFSs [8]), “existence

probabilities” (e.g., Bernoulli, multi-Bernoulli, generalised la-

belled MB RFSs [37] and MB mixtures [38]) irrespective of

their weight selection mechanism. In the next section, we

utilise (9) for analysing finite set EMDs and examine the

fused global cardinality distributions for inconsistencies and

3Note that the use of the term “consistency” here differs from its use in
classical statistics.

their consequences in estimating object existence probabilities

and/or the number of objects.

III. FINITE SET EMDS AND CARDINALITY DISTRIBUTIONS

In the case of finite set valued random variables, X is the

space of finite subsets of Rd and the density f is a set function

characterised by i) a cardinality distribution with probability

mass function (pmf) ppnq over natural numbers n “ 0, 1, . . .,

and, ii) localisation densities ρnpx1, ..., xnq for n “ 1, 2, . . .

which are symmetric in their arguments [26]. The correspond-

ing density has a set valued argument X “ tx1, . . . , xnu and

is given by

fpXq “ p pnq
ÿ

σPΣn

ρnpxσp1q, ..., xσpnqq

“ p pnqn!ρnpxσ1p1q, ..., xσ1pnqq (10)

where n “ |X | and |.| denotes set cardinality. Here, Σn is

the set of all permutations of p1, . . . , nq, and, σ1 P Σn in the

last line is an arbitrary permutation which is selected as the

identity permutation in the rest of this article.

Note that p in (10) sums to one and ρns integrate to unity.

The finite set density f also integrates to one over X , i.e.,
ż

X

fpXqµpdXq “ 1

where µ is an appropriate measure. Let us select µ as

µpdXq “
8
ÿ

n“0

λnpdX X Xnq
n!

where Xn is the space of n-tuple of points in R
d, and, λn is

the Lebesgue (volume) measure on Xn
4. An alternative form

of this integral is referred to as the set integral [8], i.e.,
ż

X

fpXqµpdXq “
ż

Rd

fpXqδX,

where the right hand side is the set integral of f defined as 5

ż

Rd

fpXqδX fi

8
ÿ

n“0

1

n!

ż

Rd

. . .

ż

Rd

fptx1, ..., xnuqdx1 . . .dxn

(11)

“
8
ÿ

n“0

ż

Rd

. . .

ż

Rd

ppnqρnpx1, ..., xnqdx1 . . . dxn.

Let us consider the EMD of finite set distributions fi and fj .

For the case (3) is valid with the scale factor in (4) found using

the set integral in (11), i.e.,

Zω “
ż

Rd

f
p1´ωq
i pX 1qfω

j pX 1qδX 1. (12)

This scale factor is also less than one and consequently the

finite set EMD satisfies the pointwise consistency condition

in (9) for every finite subset X Ă R
d.

4Further details on the topic can be found in Section II.B and Appendix B
in [11], and, the references therein.

5Note that the set integral in (11) is defined for an arbitrary (measurable)
function f , but, when f is a finite point process density, (11) is nothing but
the total probability theorem applied on (10) [39].
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In order to investigate the cardinality distribution of the

EMD, let us substitute fi and fj in the form given in (10)

into (12) and (3), and, obtain the finite set EMD as

fωpXq “ pωpnqn!ρω,npx1, . . . , xnq
where the localisation density for cardinality n is

ρω,npx1, . . . , xnq fi
1

zωpnqρ
p1´ωq
i,n px1, . . . , xnq

ˆ ρωj,npx1, . . . , xnq, (13)

zωpnq “
ż

Rd

¨ ¨ ¨
ż

Rd

ρ
p1´ωq
i,n px1

1, . . . , x
1
nq

ˆρωj,npx1
1, . . . , x

1
nqdx1

1, . . . , dx
1
n, (14)

and, the cardinality pmf is

pωpnq “ 1

Nω

p
p1´ωq
i pnqpωj pnqzωpnq (15)

Nω “
ÿ

n1“0

p
p1´ωq
i pn1qpωj pn1qzωpn1q. (16)

Here, zωp0q “ 1 by convention, and for n ‰ 0, zωpnq ă 1

unless ρi,n and ρj,n are identical. The latter is a direct appli-

cation of Hölder’s inequality (see, e.g., Theorem 188 in [40]).

It can be shown similarly that Nω ă 1.

Let us focus on the fused cardinality pmf in (15). This

distribution is not an EMD of the cardinality distributions

of the components unlike the fused localisation distributions

in (13) that are EMDs of the input localisation densities. In

fact, the fused cardinality pmf is the scaled product of the

cardinality EMD with the localisation density scale factors

zωpnq in (14). As a result, the consistency property of EMDs

does not apply to the fused cardinality distribution. Below, we

first relate the consistency of the fused cardinality pmf to the

sequence of scale factors and give a condition under which the

fused cardinality distribution is inconsistent. Then, in the rest

of this section, we demonstrate that inconsistent cardinality

distributions occur under some typical operating conditions.

Proposition 3.1 (Inconsistency in cardinality distribution):

Consider the fused cardinality pmf pω in (15), (16). Consider

the following inconsistency condition for pωpnq obtained by

negating the consistency condition:

pωpnq ă mint pipnq, pjpnq u. (17)

This condition holds true if

zωpnq ă
ř

n1‰n p
p1´ωq
i pn1qpωj pn1qzωpn1q

p
p1´ωq
i

pnqpω
j

pnq

mint pipnq, pjpnq u ´ p
p1´ωq
i pnqpωj pnq

, (18)

where zωpnq is given in (14).

The proof is given in Appendix B. The above proposition

points out that the fused cardinality distribution opts to dis-

agree with local results on the probability of number of objects

when the nth localisation scale zωpnq is comparably small.

This is in stark contrast with the fused localisation densities

in (13) which always satisfy the consistency condition

ρω,npx1, . . . , xnq ě mintρi,npx1, . . . , xnq, ρj,npx1, . . . , xnqu

for all x1, . . . , xn P R
d and n, as they are EMDs.

The scale factors modulating the cardinality pmf, i.e., zωpnq,

are found by taking the inner products of the input localisation

densities raised to fractional powers. As explained above, these

terms are upper bounded by one with zωpnq equaling unity

only when ρi,n and ρj,n are equal (see [25] for an alternative

proof). In fusion networks, however, one of the main goals is to

benefit from sensing diversity which means ρi,n and ρj,n will

have a comparably small overlap in their confidence regions.

As a result, much smaller zωpnq values should be expected in

typical operating conditions.

Now, let us consider some particular RFS families and

demonstrate the consequences of Proposition 3.1.

A. Bernoulli finite set EMDs and fused existence probabilities

Bernoulli finite set distributions select at most one object

from a population. Collections, and mixtures thereof are used

to represent multi-object models the fusion of which reduces

to EMD fusion of Bernoulli pairs (see, e.g., [19], [20]). For a

Bernoulli finite set, the cardinality pmf in (10) is given by

ppnq “

$

’

&

’

%

1 ´ α, n “ 0,

α, n “ 1,

0, otherwise

(19)

where the parameter α is referred to as the existence proba-

bility of the object modelled.

There is also a single localisation density ρn for n “ 1

which we will denote by ρ. Therefore, given two Bernoullis

fi “ pαi, ρiq and fj “ pαj , ρjq, the sequence zωpnq reduces to

zωpnq “

$

’

&

’

%

1, n “ 0,

zω fi

ş

Rd ρ
p1´ωq
i pxqρωj pxqdx, n “ 1,

0, otherwise.

(20)

Corollary 3.2: The inconsistency condition given by Propo-

sition 3.1 for Bernoulli finite set distributions reduces to that

the existence probability of the EMD given by [14]

αω “
α

p1´ωq
i αω

j zω

p1 ´ αiqp1´ωqp1 ´ αjqω ` α
p1´ωq
i αω

j zω
(21)

is smaller than either of αi or αj if

zω ă p1 ´ αiqp1´ωqp1 ´ αjqω

α
p1´ωq
i αω

j {mintαi , αj u ´ α
p1´ωq
i αω

j

.

The proof follows from substituting the sequence (20)

in Proposition 3.1, and, in particular in (17) and (18). This

condition is very often satisfied in sensing applications as

explained before. For example, if αi and αj are equal, then

this condition reduces to zω ă 1 which always holds for

all practical purposes as ρi and ρj should not be expected

to be identical. For αi ‰ αj , this inconsistency still occurs

with overwhelming probability in Bernoulli fusion which is

demonstrated in the following example.

Example 3.3 (Gauss-Bernoulli EMDs): Let us consider

Bernoulli distributions with Gaussian localisation densities
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Fig. 1. Localisation densities of the Gauss-Bernoulli finite sets, i.e., ρi (solid
line) and ρj (dash-dotted line), in Example 3.3 for increasing sensing diversity
as the covariance condition number is increased as κ “ 1, 10, 20, 30, 40 (left
to right).

given by

ρipxq “ N px;mi,Ciq, ρjpxq “ N px;mj ,Cjq, (22)

where m is the mean vector and C is the covariance matrix.

The fused localisation density ρω for the case is a Gaussian

with mean and covariance given by

mω “ Cω

`

p1 ´ ωqC´1
i mi ` ωC´1

j mj

˘

(23)

Cω “
`

p1 ´ ωqC´1
i ` ωC´1

j

˘´1
. (24)

The scale factor zω is found using integration rules for

Gaussians as

zω “
ˇ

ˇC
´1
i

ˇ

ˇ

p1´ωq{2 ˇ

ˇC
´1
j

ˇ

ˇ

ω{2

|Cω|1{2
exp

"

´1

2

ˆ

p1 ´ ωqmT
i C

´1
i mi

` ωmT
j C

´1
j mj ´ m

T
ωC

´1
ω mω

˙*

. (25)

Let us consider two Bernoullis with existence probabilities

αi “ αj “ 0.8 with localisation densities of mean vectors

mi “ r0.25, 0.25sT and mj “ r´0.75,´0.25sT , respectively,

where p.qT denotes vector transpose. We select the covariance

matrices as rotated versions of a diagonal covariance given by

Ci “ Rpπ{4qΣR
T pπ{4q,

Cj “ Rp´π{4qΣR
T p´π{4q,

Σ “
„

σ2
1 , 0

0, σ2
2



,

Rpφq “
„

cosφ, ´ sinφ

sinφ, cosφ



.

This covariance structure is typical with sensors placed at

different positions and taking their measurements from dif-

ferent aspect angles of the surveillance zone. The condition

number of Σ – equivalently, that of Ci and Cj – is given by

κ “ σ2
1{σ2

2 and has higher values for sensors with range/cross-

range ambiguity such as cameras/radars. We vary this quantity

from κ “ 1 to 40. Fig. 1 depicts the uncertainty ellipses of

sample Gaussians by using three times the standard deviation

along the eigen vector directions. The behaviours of the fused

existence probability in (21) and the scale factor in (25) are our

concern. Fig. 2 presents both the zω and αω values obtained

by varying the condition number κ with small steps from 1

to 40 hence increasing the sensing diversity. The exponential

mixture weights ω take values from a dense grid over r0, 1s. As

pointed out in this section, the scale factor values are always

smaller than unity, and, can often take very small values. The

scale factor monotonically decreases with κ which controls

the sensing diversity. It is convex with respect to the mixture

1
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Fig. 2. The scale factor (left) and the fused existence probabilities in the
Gauss-Bernoulli Example 3.3. These quantities are calculated for varying
sensing diversity κ (equivalently, the covariance condition number of the
Gaussians) and (exponential) mixture weight ω values.

weight ω, as pointed out in Section II. The fused existence

probabilities given in Fig. 2 demonstrate the inconsistency in

cardinality. In this example, this quantity is always smaller

than the input existence probabilities admitting inconsistency

for all selections of κ and ω. Moreover, the fused existence

probability drops below 0.5 for large values of the sensing

diversity parameter κ. This threshold is often used as the

Bayesian decision boundary for detection and despite that the

input sources are fairly confident on the existence of an object

with existence probabilities of αi “ αj “ 0.8, detection

might be missed if based on the fused result instead, thereby

undermining the benefits of sensing diversity. As a result,

the inconsistency in cardinality may lead to inconsistency in

decision making when EMDs of finite set distributions are

used. �

B. EMDs of Poisson finite set distributions

Poisson finite set densities are capable of representing many

objects and underpin popular multi-object filters such as the

PHD filter [9]. Their cardinality pmf in (10) is given by a

Poisson distribution, i.e.,

ppnq “ eλλn

n!
(26)

where λ is the expected number of objects. The localisation

densities factorise over the density for n “ 1 as

ρnpx1, . . . , xnq “
n

ź

i“1

ρ1pxiq, (27)

making it possible to parameterise the entire finite set distri-

bution with a scalar and a single density6.

For two Poissons fi “ pλi, ρiq and fj “ pλj , ρjq, the

sequence zωpnq is a geometric sequence found by subsituting

from (27) for both i and j into (14). This sequence is found as

zωpnq “ znω (28)

zω fi zωp1q “
ż

Rd

ρ
p1´ωq
i px1qρωj px1qdx, (29)

where zω ă 1 unless ρi and ρj are identical, as aforemen-

tioned.

6We drop the subscript in ρ1 for the rest of this subsection and denote it
by ρ.
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The expected number of objects with respect to an EMD

with weight parameter ω is given by [14]

λω “ λ
p1´ωq
i λω

j zω. (30)

Proposition 3.4 (Poisson inconsistency in expectation): Let

us consider an inconsistency condition for Poisson cardinality

distributions in terms of their expectations:

λω ă mintλi, λju. (31)

This condition holds whenever

zω ă mintλi, λju
maxtλi, λju . (32)

The proof follows easily from substituting (32)

in (30) and (31). It is instructive to contrast this result

with Proposition 3.1. The latter holds for any class of finite

set densities and considers their cardinality distributions for

different n. The above result is on the expected value of

n in Poisson finite set densities. The condition in (32) is

satisfied with overwhelming probability in practice leading

to inconsistencies as observed, for example, in [27]. For

example, for λi “ λj “ λ, this reduces to the common

ratio zω being less than one which should –as previously

discussed– always be expected to be the case in practice.

The inconsistency in decision making for the case is related

to the estimation of the number of objects. In Poisson finite

set models, the minimum mean squared error (MMSE) esti-

mation principle is used which leads to the use of λ as the

estimated number of objects7. As a result, the EMD density

always underestimates the number of objects despite that the

source densities might be consistently suggesting otherwise,

in practice. The magnitude of the error stemming from this

bias depends on the value of zω.

C. EMDs of IID cluster finite set densities

IID cluster finite set distributions relax the Poisson cardinal-

ity pmf in (26) and take arbitrary cardinality pmfs underpin-

ning the C-PHD filter [41]. The localisation densities still take

the factorised form in (27) leading to the identical geometric

series zωpnq in (28). For the case, Proposition 3.1 specialises

as follows:

Corollary 3.5 (IID cluster inconsistency): Given two IID

cluster finite set distributions fi “ ppipnq, ρiq and fj “
ppjpnq, ρjq, the fused cardinality distribution pω satisfies the

inconsistency condition in (17) in Proposition 3.1 for the

number of objects n and non-zero pipnq, pjpnq if

zω ă Iω,n

holds, where the term on the right hand side is

Iω,n fi

˜

Nω

mintpipnq, pjpnqu
p

p1´ωq
i pnqpωj pnq

¸1{n

, (33)

7Maximum a posteriori (MAP) estimation is not used with Poisson car-
dinality distributions as (26) is not guaranteed to have a unique maximum.
Notice that, for example, (26) evaluates at the same value for both n “ 0 and
n “ 1 for λ “ 1.

0 2 4 6 8
n

0

0.2

0.4

0.6

0.8

1

p
m

f

(a)

p
ω

0.1

0.9

0.5

0.3

0.7

0 2 4 6 8

1

0.8

0.6

0.4

0.2

0
0 2 4 6 8

1

0.8

0.6

0.4

0.2

0

0 2 4 6 8

1

0.8

0.6

0.4

0.2

0
0 2 4 6 8

1

0.8

0.6

0.4

0.2

0

(b)

0.1

0.9

0.5

0.3

0.7

(c)

0.1

0.9

0.5

0.3

0.7

(d)

(e)

0 10 20 30 40
n

0

0.2

0.4

0.6

0.8

1

p
m

f

(f)

0.1

0.9

0.5

0.3

0.7

1

0.8

0.6

0.4

0.2

0
0 10 20 30 40

1

0.8

0.6

0.4

0.2

0
0 10 20 30 40

1

0.8

0.6

0.4

0.2

0
0 10 20 30 40

1

0.8

0.6

0.4

0.2

0
0 10 20 30 40

(g) (h)

Fig. 3. Illustrations of the results in Example 3.6: (a) Two cardinality
distributions peaking at n “ 5. (b) Fused cardinalities for some intermediate
values of ω and 0.1 ď zω ď 0.9. (c) The inconsistency upper bound in
(33). (d) The inconsistency threshold in (34). (e) MAP estimates using the
fused cardinalities for varying ω and zω . (f) Cardinality distributions peaking
at n “ 35. (g) Fused cardinalities for some intermediate values of ω and
0.1 ď zω ď 0.9. (h) MAP estimates using the fused cardinalities for varying
ω and zω .

zω is given in (29), and, Nω is obtained by substituting (28)

in (16).

The proof follows from substituting (28) in (18) and using (16)

after rearrangement of the terms. The inconsistency condition

in (33) depends both on n and ω, and, it is not straightforward

to relate the inconsistent bins to object number estimation

either in the MMSE or MAP rules. On the other hand, the
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base of the exponent in (33) is smaller than one and hence I
approaches to one as n grows. Therefore, for some threshold

η, the fused object number probabilities will be lower than the

input cardinality reports for all n ą η. Such a threshold can

easily be found from (33) as

η “ log pNωγωq
log zω

, (34)

γω fi min
n1

mintpipn1q, pjpn1qu
p

p1´ωq
i pn1qpωj pn1q

As a result, one should expect estimation biases to become

more severe for higher object numbers. For a small number

of objects, these effects do not necessarily yield biases in

MAP estimations, which also explains the accurate estimates

obtained using EMD fusion of C-PHD filters in simulated

scenarios, e.g., in [14]. Next, we demonstrate this point in

an example involving fusion of two binomial cardinality

distributions.

Example 3.6: Let us consider the EMD fusion of two

finite set distributions with binomial cardinalities given by

pipnq “ Bpn; k “ 5, P “ 0.95q and pjpnq “ Bpn; k “
5, P “ 0.92q where these distributions give the probability that

n objects exist simultaneously among k “ 5 possibilities each

with an existence probability of P (Fig. 3(a)). Of particular

interest is the characteristics of pω as zω and ω vary in

0.1 ď zω ď 0.9 and 0 ď ω ď 1, respectively. Fig. 3(b)

presents fused distributions obtained by varying zω and some

intermediate values of ω. Note that the cardinality n at which

the fused distributions peaks varies with zω as suggested in

Corollary 3.5. In particular, the inconsistency bound in (3c)

is illustrated in Fig. 3(c) which monotonically increases with

n as discussed. The inconsistency threshold for n as given in

(34) is given in Fig. 3(d). Note that for a large ratio of zω
and ω values, this threshold is larger than five and the MAP

estimate for the cardinality given in Fig. 3(e) agrees with the

individual MAP estimates of n̂i “ n̂j “ 5. However, there are

also MAP estimates that indicate less than five objects caused

by the IID inconsistency.

These computations are repeated for cardinality distributions

peaking at a higher n value. Specifically, pipnq “ Bpn; k “
35, P “ 0.98q and pjpnq “ Bpn; k “ 35, P “ 0.975q
are used (see Fig. 3(f)) which have individual map estimates

of n̂i “ n̂j “ 35. The fused cardinalities in Fig. 3(g)

illustrate that for a larger subset of pzω, ωq pairs the IID

inconsistency occurs, now, as discussed above. The resulting

errors in estimating the number of objects is given in Fig. 3(h)

which verifies our expectation: Based on that (33) approaches

to 1 with increasing n, as the peak cardinality increases, the

IID inconsistency detoriates decision making more.

D. Summary of results

As a summary, this section has shown that when EMDs

of finite set densities are used for their fusion, the resulting

cardinality distribution will bear inconsistencies depending on

zωpnq. Proposition 3.1 provides a general condition on the

fused distribution to be inconsistent with the input distributions

at a cardinality value n. This condition is specialised for

Bernoulli finite set densities in Corollary 3.2. Example 3.3

has demonstrated that this condition holds with overwhelm-

ing probability for Bernoulli EMDs. In Poisson cardinality

distributions, there is a single parameter λ that specifies the

distribution for all n. Proposition 3.4 provides a condition of

inconsistency in this parameter, similarly as an upper bound on

zωpnq. It is pointed out that because zωpnq is determined by

the sensing diversity as well as sensor measurement histories

in a sensor network, its value should be expected to be less

than one in these settings8 which in turn shows that Poisson

EMDs are very prone to inconsistencies, as well. IID cluster

processes have more general cardinality distributions. For the

case, Proposition 3.1 specialises to Corollary 3.5 which reveals

that inconsistencies should be expected in MAP estimates of

the cardinality, when the input densities indicate a high number

of objects. These points are demonstrated in Example 3.6.

IV. CARDINALITY CONSISTENT FUSION OF FINITE SET

DISTRIBUTIONS

In this section, we propose a new approach that accommo-

dates EMD fusion while avoiding the cardinality inconsisten-

cies detailed in Section III. These inconsistencies result from

the dependency of the fused cardinality pmf on the scaling

factor series zωpnq. One way to remove this dependency is

to decouple the fusion problem for different cardinalities by

asserting a separate variational problem for each cardinality

as opposed to using P2 in (8) with finite set distributions as a

single entity.

A. Variational problem definitions

Let us first consider finite set distributions as parameterised

in (10) and remind that problem P2 is solved with distributions

in the form given in (13)–(16). Now, let us consider the

following family of variational problems given fi and fj :

(P3) For n “ 1, 2, . . .

pω˚
n, ρω˚

n ,nq fi arg max
ωPr0,1s

min
ρnPPn

Jω,nrρns (35)

Jω,nrρns fi p1 ´ ωqDpρn||ρi,nq ` ωDpρn||ρj,nq.
Here, Pn is the space of localisation densities with n

arguments which are symmetric in their arguments. Note that

P3 is a set of P2 that has the localisation distributions for each

cardinality n as the entries, separately. Equivalently, P3 asserts

the variational problem of fusion be treated as a conditional

problem to be solved given n.

Following our discussion in Section II, solutions of these un-

coupled problems have an EMD form given by (13) and (14)9.

One difference here compared to the solution of problem P2 is

that for each n, a different optimal weight ω˚
n will be output,

in general, as opposed to a single one. In addition –and, more

8The authors at this point would like to conjecture that zωpnq ă 1 with
probability one in a multi-sensor setting in which the finite set densities to be
fused are posteriors obtained from recursive Bayesian filtering of local sensor

data, i.e., fipXq “ fpX|Zi
1:tq and fjpXq “ fpX|Zj

1:tq for realisations Zi
1:t

and Z
j
1:t of (independent) measurement processes associated with sensors i

and j, respectively.
9It is easy to show that because ρi,n and ρj,n are symmetric in their

arguments, ρω,n also exhibits this symmetricity.
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importantly– problem P2 decouples fusion of the cardinality

distributions thus given pω˚
n, ρω˚

n ,nq, the fused cardinality

distribution becomes an additional degree of freedom in the

fused finite set distribution. In other words, the fusion of

cardinality distributions can now be carried out in an isolated

fashion in addition to problem P2 as a solution to

(P4) pω˚
c , p̃ω˚

c
q fi arg max

ωPr0,1s
min
pPPc

Jω,crps (36)

Jω,crps fi p1 ´ ωqDpp||piq ` ωDpp||pjq.

Following the discussion in Section II, the solution to

problem P4 is the EMD of the cardinality pmfs

p̃ωpnq “ 1

Ñω

p
p1´ωq
i pnqpωj pnq (37)

Ñω “
ÿ

n1“0

p
p1´ωq
i pn1qpωj pn1q. (38)

evaluated at ω “ ω˚
c .

This distribution differs from the cardinality of the solution

to P2 (given in (15) and (16)) in that it does not involve zωpnq,

and, is an EMD of the input finite set cardinalities. Therefore,

the consistency condition (see (9))

p̃ωpnq ě mintpipnq, pjpnqu
is satisfied for all n and for all ω regardless of zωpnq.

Thus, p̃ω prevents the decision errors stemming from the

cardinality inconsistencies of the solutions to P2 as detailed

in the previous section.

As a result, P3 and P4 yield a fused finite set density

featuring cardinality consistency given by

f̃˚pXq “ f̃ΩpXq
∣

∣

∣

∣

Ω“pωc“ω˚
c ,ω1“ω˚

1
,ω2“ω˚

2
,...q

(39)

f̃ΩpXq fi pωc
pnqn!ρωn,npx1, ..., xnq (40)

where ω˚
c is found by solving the maximisation in (36) with

a cardinality distribution given by (37) and (38). Here, ω˚
n

solves the maximisation in (35) with a localisation distribution

in (13) and (14). These localisation distributions – similar to

the cardinality distribution– are consistent individually, as they

are EMDs of the inputs.

The pointwise consistency of f̃ over the space of finite sets,

however, is not guaranteed. In order to clarify this point, we

provide the following proposition:

Proposition 4.1 (Pointwise inconsistency): Let us consider

f̃ωpXq fi f̃ΩpXq
∣

∣

∣

∣

Ω“pωc“ω,ω1“ω,ω2“ω,...q

(41)

for some ω. f̃ω is pointwise inconsistent, i.e.,

f̃ωpXq ă mintfipXq, fjpXqu (42)

if
Ep̃ω

tzωpnqu
zωpnq ă mintfipXq, fjpXqu

fωpXq ă“ 1 (43)

where fω is the finite set EMD given in (13)–(16).

Proof. By comparing (13)–(16) and (37)–(40), it can be seen

Algorithm 1 Newton iterations for solving the nth problem

in P3.

1: Input: ρi,n,ρj,n Ź Localisation densities

2: Input: ωp0q P r0, 1s, ǫ Ź Initial value, termination

threshold

3: k Ð 1, ωp1q Ð 8
4: while |ωpkq ´ ωpk´1q| ą ǫ do Ź termination condition

5: zk Ð zωpnq|ω“ωpkq using (14)

6: z1
k Ð z1

ωpnq|ω“ωpkq using (47)

7: z2
k Ð z2

ωpnq|ω“ωpkq using (48)

8: ωpk`1q Ð ωpkq ´ z1
kzk{

´

z2
kzk ´ pz1

kq2
¯

9: k Ð k ` 1

10: end while

11: Return ω˚
n Ð ωpkq

12: Return ρω˚
n ,n using (13)

that the two finite set densities of concern are related by

f̃ωpXq “ Ep̃ω
tzωpnqu
zωpnq fωpXq. (44)

where the expectation is with respect to (37).

Substitution of (44) in (42) yields the first inequality in (43).

Note that, fω satistifies the pointwise consistency condition in

(9), hence, the right hand side of the inequality is smaller than

or equal to one. �

This proposition points out that pointwise consistency of f̃ω
is guaranteed only for those X with cardinality n for which

the scaling factor of the localisation density zωpnq ď 1 equals

to the expectation. If zωpnq is greater than the expectation

to the extent that (43) is satisfied, then f̃ω exhibits pointwise

inconsistency despite being consistent in the global cardinal-

ity and localisation distributions. As a conclusion, pointwise

consistency does not imply consistency in global cardinality

in fusion of finite set densities and vice versa.

B. Solving the cardinality consistent fusion problems

The variational problems P3 and P4 are maxmin optimisa-

tion problems similar to (8). Hence, the minimisations given

ω are solved by the EMDs of their argument distributions (see

the discussion in Section II and Appendix A). The objective

of the outer maximisation in P3 is therefore (see also (6))

Gnpωnq fi Jω,nrρns
∣

∣

∣

∣

ρn“ρω,n

(45)

“ ´pω ´ 1qRωpρn,i, ρn,jq
“ ´ log zωpnq

which is a concave function of its one dimensional argument

that takes values from a bounded interval. Newton iterations

converge to a solution and have an excellent convergence

rate [42]. Starting from an initial value ωp0q P r0, 1s, recursive

increments are made by the ratio of the first and second order
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Algorithm 2 Newton iterations solving P4 for consistent

cardinality fusion.

1: Input: pipnq,pjpnq Ź Cardinality pmfs

2: Input: ωp0q P r0, 1s, ǫ Ź Initial value, termination

threshold

3: k Ð 1, ωp1q Ð 8
4: while |ωpkq ´ ωpk´1q| ą ǫ do Ź termination condition

5: Nk Ð Nω|ω“ωpkq using (16)

6: N 1
k Ð ř

p1´ω
i pnqpωj pnq log

`

pjpnq{pipnq
˘

7: N2
k Ð ř

p1´ω
i pnqpωj pnq

ˆ

log
`

pjpnq{pipnq
˘

˙2

8: ωpk`1q Ð ωpkq ´ N 1
kzk{

´

N2
kNk ´ pN 1

kq2
¯2

9: k Ð k ` 1

10: end while

11: Return ω˚
c Ð ωpkq

12: Return pω˚
c

using (15)

derivatives, i.e.,

G1
npωnq

G2
npωnq

∣

∣

∣

∣

ωn“ωpkq

“ z1
ωpnqzωpnq

z2
ωpnqzωpnq ´ pz1

ωpnqq2
∣

∣

∣

∣

ω“ωpkq

(46)

z1
ωpnq fi

ż

ρ1´ω
i,n pxqρωj,npxq log ρj,npxq

ρi,npxqdx (47)

z2
ωpnq fi

ż

ρ1´ω
i,n pxqρωj,npxq

ˆ

log
ρj,npxq
ρi,npxq

˙2

dx
(48)

where ωpkq is the value found in the kth iteration. Here,

zωpnq is given in (14) and its derivatives in (47) and (48)

are found in Appendix C. Algorithm 1 explicitly specifies

this iterative solution which takes the localisation densities as

inputs together with an initial value and termination condition.

Upon convergence, the optimal value ω˚
n “ ω

pkq
n is found for

which the corresponding EMD ρ
ω

pkq
n ,n

is the fused density.

An analogous iterative algorithm for finding the consistently

fused cardinality distribution as a solution to P4 is given in

Algorithm 2. Note that the computations involved here can

be carried out exactly for distributions with finite support, in

practice. Algorithm 1, on the other hand, should accommodate

adequate computational schemes for exactly or approximately

evaluating the integrals involved. In the latter case, it admits

the interpretation of being a stochastic gradient approach [43].

Specification of such procedures is beyond the scope of this

work.

There are, nevertheless, structural simplifications in both

P3 and P4 for different families of finite set families. For

Poisson and IID cluster finite set distributions, the localisation

densities are parameterised by a single density over a single

state variable –as given in (27)– which is the same for different

cardinalities. In addition, the solution to the inner minimisation

in P3 (equivalently P in (2)) is also a Poisson and IID cluster,

respectively, in the Poisson and IID cluster cases [14]. Thus,

Dpρn||ρn,iq “ nDpρ||ρiq where ρ parameterises ρn, and, the

family of problems in P3 satisfy

Jω,nrρns “ nJω,1rρs. (49)

Consequently, the optimal solution to P3 for cardinality n

is parameterised by the optimal solution to n “ 1 thereby

restricting it to the case for only n “ 1.

Bernoulli finite sets have nonzero cardinality pmf only for

n ď 1 naturally restricting P3 to n “ 1. If the parameterising

densities ρi and ρj are Gaussians, then P3 specifies a covari-

ance intersection procedure [4]. For this case, P4 has a closed

form solution given by [44]

ω˚
c “

log

ˆ

logp1´αiq{p1´αjq
logpαj{αiq

˙

´ log

ˆ

αi

1´αi

˙

log 1´αi

1´αj
` log

αj

αi

(50)

α˚ “
α
1´ω˚

c

i α
ω˚

c

j

α1´ω˚
c

i αω˚
c

j ` p1 ´ αiq1´ω˚
c p1 ´ αjqω˚

c

(51)

For Poisson cardinality pmfs, similarly a closed form solu-

tion exists for P4 which is given by [44]

ω˚
c “ ´ log

`

logpλj{λiq
˘

` logpλj{λi ´ 1q
logpλj{λiq

(52)

λ˚ “ λ
1´ω˚

c

i λ
ω˚

c

j (53)

It is worthwhile to notice that both Bernoulli and Poisson

distributions are exponential family distributions and the above

solutions bear the geometric properties aforementioned in

Section II-B and proved in [35].

C. Demonstration of cardinality consistent fusion

In this section, we revisit the examples in Section III involv-

ing cardinality inconsistencies and demonstrate the efficacy of

the solutions of Problems P3 and P4 in these fusion scenarios.

Example 4.2 (Gauss-Bernoulli case revisited): Let us con-

sider the Gauss-Bernoulli case in Example 3.3 in the light

of the discussion above. Fusion of localisation distributions

in P3 involve the fusion of only a single pair for n “ 1,

for the case. These distributions ρi and ρj given by (22) are

Gaussians, therefore, Algorithm 1 is equivalently an iterative

covariance intersection algorithm that optimises ω to achieve

the KLD equality criteria in (7). The Newton update for the

parameter ω in Step 8 of Algorithm 1 is carried out as follows:

Evaluation of zω in Step 5 at ω “ ωpkq is made using its closed

form expression in (25). Given zω, the derivative in Step 6 is

also found in closed form using the following identity

z1
ω “ zω

`

Dpρω||ρiq ´ Dpρω ||ρjq
˘

, (54)

which can easily be verified by dividing both sides of (47)

to zωpnq. This quantity is computed by evaluating the KLD

of multi-variate Gaussian densities given by (see, for exam-

ple, [45, A.23])

Dpρω||ρiq “ 1{2 log |CiC
´1
ω |

` trtC´1
i

`

pmω ´ miqpmω ´ miqT ` Cω ´ Ci

˘

u, (55)

where trt.u is the trace of its matrix argument. The second

derivative in Step 7 on the other hand, is found approximately

using the Monte Carlo method [46, Chp.3] targeting the

integration in (48) divided by zωpnq. Therefore, L samples

are generated from ρω for this step, i.e., xplq „ ρω for
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Fig. 4. Optimally weighted EMDs of Gaussian localisation distributions
obtained by using Algorithm 1: Here, ρi (solid line) and ρj (dash-dotted
line) are inputs for κ “ 1, 10, 20 (left to right – see Example 3.3 for
details) and ρω˚ (magenta dashed line) are fused outputs with optimal weights
found as ω˚ “ 0.500, 0.397 and 0.387 (left to right).
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Fig. 5. Optimal weight parameters found using Algorithm 1 as a function of
the sensing diversity κ as explained in detail in Example 3.3.

l “ 1, . . . , L. Using these samples, the approximation seeked

is given by

z2
ω « zω ˆ 1

L

L
ÿ

l“1

´

log
ρjpxplqq
ρipxplqq

¯2

(56)

where the approximation error decreases with Op1{
?
Lq.

We input the Gaussian pairs in Example 3.3 that are

obtained by varying the covariance condition number κ –

equivalently the sensing diversity– to Algorithm 1 and use

the computational procedures above. Fig. 4 depicts optimally

weighted EMDs for κ “ 1, 10, 20. The optimal weight ω˚

output by Algorithm 1 as a function of the condition number

κ is given in Fig. 5. Here, the termination threshold is set

to ǫ “ 1e´4 and the number of samples used for the Monte

Carlo estimate in Step 7 is L “ 1000. Convergence is declared

after an average of 3.4 and a maximum of 5 iterations. Note

that ω˚ yields a fused result that bears more influence from

ρi as κ increases.

Cardinality fusion problem P4 has an analytical solution for

the case. Using (50) for αi “ αj “ 0.8 (see Example 3.3), we

find that ω˚
C “ 0.5 and α˚ “ 0.8 regardless of the solution of

Problem P3 above, i.e., the optimal weight parameters ω˚ of

the localisation distributions or the corresponding normalisa-

tion constants zω˚ s.

Let us compare this result with conventional EMD fusion

with weights selected using “Kullback-Leibler averaging” (KL

averaging) as used in, for example, [17]– [23]. In this ap-

proach, the fused finite set density is the Bernoulli EMD

with weight parameter ω “ 1{2. In other words, the fused

result solves Problem P for ω “ 1{2. The coupling of

the fused existence probability with zω and the lack of a

weight selection mechanism results with the fused existence

probabilities given in Fig. 6 which illustrates a monotonically

increasing disagreement with the input beliefs on the existence

of an object as the sensing diversity increases. This trend

results with the fused existence probability falling below

the canonical decision threshold of 0.5 10. The proposed

cardinality consistent fusion, on the other hand, preserves

the confidence of input distributions on the existence of an

object irrespective of the sensing diversity. The KL averaging

fusion outputs a localisation density that is similarly the EMD

of the localisation distributions with weight ω “ 1{2. The

margin between this value and the optimum point found by the

proposed algorithm grows significantly with κ, in this example

(see Fig. 5).

Note that these results are also relevant for the work in

literature on fusion of multi-Bernoulli [20], and, labelled

random finite set families as their fusion is often reduced to

performing Bernoulli-Bernoulli fusion for multiple pairs using,

for example, KL averaging [23].

Example 4.3 (Example 3.6 revisited): Let us demonstrate

Algorithm 2 in solving the cardinality fusion problem P4.

First, we consider the binomial cardinality distribution pair

illustrated in Fig. 3(a). Note that, the algorithm allows for

exact computations in all steps. The termination threshold is

selected as ǫ “ 1.0e ´ 4. In 2 iterations Algorithm 2 declares

convergence to the optimal weight parameter ω˚
C “ 0.5182.

The corresponding fused cardinality pmf is the EMD with this

weight and depicted in Fig. 7(a). We repeat the same procedure

for the cardinality pair in Fig. 3(g). The proposed algorithm

convergences in 2 steps to ω˚
C “ 0.5090. The resulting

cardinality distribution is depicted in Fig. 7(b). Note that the

MAP estimates of the number of objects is in agreement with

the inputs. The consistency here is underpinned by that the

cardinality fusion here is independent of localisation densities

and zω.

In order to contrast this result with that obtained by KL

averaging (see, e.g., [17]), let us consider the fused cardi-

nalities depicted for ω “ 1{2 in the top right panes in

Fig. 3(b) and (g) in which the coupling of cardinality fusion

with zω is demonstrated. Let us remind also that the MAP

object number estimate depends on zω (Figs. 3(e) and (h))

10Note that this graph is nothing but the cross-section of the existence
probability graph in Fig. 2 along ω “ 0.5.
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Fig. 6. Fused existence probabilities: Cardinality consistent fusion via
Problem P4 (green line) in comparison with fused existence probabilities
obtained using KL averaging (blue line–see, e.g., [17]– [23]) depicted as a
function of sensing diversity parameter κ as detailed in Example 3.3. The
red-dashed line is the canonical Bayesian decision threshold for deciding the
existence of an object.
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Fig. 7. Consistent cardinality fusion using Algorithm 2: Inputs (blue and
green dashed lines) are the binomial pairs introduced in Example 3.3. The
optimal weights converged are ω˚

C
“ 0.5182 and 0.5090 in (a) and (b),

respectively.

with an increasing bias towards underestimation as the input

distribution peaks shift towards right indicating higher number

of objects (Figs. 3(h)). The proposed algorithm, on the other

hand, finds a consistent common ground of the input cardinal-

ity distributions which is also optimal with respect to Problem

P4.

V. CONCLUSION

This work considered the recently growing literature on

the use of EMDs –or, weighted geometric means- of finite

set densities in multi-sensor fusion for multi-object tracking.

EMDs of distributions are pointwise consistent, however, we

have proved in this article that they are prone to inconsistency

in their cardinality distributions which can lead to serious

decision errors related to the number of objects sensed. We

have demonstrated that pointwise consistency does not imply

consistency in cardinality and vice versa. We remedy this

problem by redefining the variational optimisation problem

that underlies EMD fusion. Then, we specify iterative solutions

and establish a conceptual framework for cardinality consistent

fusion of finite set densities which also accommodates EMDs.

Following these results, possible future directions include

investigation of numerical computational schemes in order

to use within this variational framework. The extension of

this variational perspective to accommodate N sources is also

anticipated to be a worthwhile direction to pursue.

APPENDIX

A. Solution of the Problem P in (2)

In this appendix, we provide a direct proof for the assertion

that the solution of Problem P in (2) for any ω is the EMD

given in (3),(4) when f is constrained to be a density, i.e.,

to integrate to unity. This constraint on the feasible set of

solutions together with the cost functional of the problem are

captured in the Lagrangian given by [47]

Lrf, λs fi Jωrf s ` λGrf s, (57)

Grf s fi

ˆ

1 ´
ż

fpXqdX
˙

.

Here, λ is a free variable referred to as a Lagrange multiplier

which –at its stationary point– imposes the constraint of

integration to unity on those f which are also stationary. This

point together with the convexity of Jω in f results with the

stationary point of (57) f˚ being the solution to P in (2) [47].

The necessary (and sufficient) conditions of stationarity that

f˚ should satisfy are given by i) the functional derivative of

the Lagrangian, i.e.,

δ pJω ` λGq rf ; δXs
∣

∣

∣

∣

f“f˚

“ 0 (58)

for all X , and, ii) the partial differential with respect to the

multiplier λ, i.e.,

B pJωrf s ` λGrf sq
Bλ

∣

∣

∣

∣

λ“λ˚

“ 0. (59)

The functional derivative in (58) can be expressed in terms

of the partial derivative with respect to fpXq, i.e.,

δ pJω ` λGq rf ; δXs “ B pJωrf s ` λGrf sq
BfpXq

for all X . By using the definition of KLD in (1), and rules of

differentiation, this expression leads to

B pJωrf s ` λGrf sq
BfpXq “ log fpXq ` fpXq

fpXq
´ p1 ´ ωq log fipXq ´ ω log fjpXq ´ λ.

The equation above is zero when the multiplier λ takes the

value

λ “ 1 ` log
fpXq

f
p1´ωq
i pXqfω

j pXq
, (60)

for which the corresponding fpXq is found as

fpXq “ exppλ ´ 1qf p1´ωq
i pXqfω

j pXq. (61)

We substitute from the equality above into the partial

differentiation in (59) and obtain

B pJωrf s ` λGrf sq
Bλ

“ B
Bλ

ˆ

pλ ´ 1q exppλ ´ 1q
ż

f
p1´ωq
i pXqfω

j pXqdX
˙

` B
Bλ

ˆ

λ ´ λ exppλ ´ 1q
ż

f
p1´ωq
i pXqfω

j pXqdX
˙

“ B
Bλ

ˆ

λ ´ exppλ ´ 1q
ż

f
p1´ωq
i pXqfω

j pXqdX
˙

“ 1 ´ exppλ ´ 1q
ż

f
p1´ωq
i pXqfω

j pXqdX. (62)

After (62) is set to zero, λ˚ is found as

λ˚ “ ´ log

ż

f
p1´ωq
i pXqfω

j pXqdX ` 1 (63)

and, the solution f˚ is found by subsituting from (63) into

(61) as

f˚pXq “ exp

ˆ

´log

ż

f
p1´ωq
i pXqfω

j pXqdX
˙

f
p1´ωq
i pXqfω

j pXq.

Following a rearrangement of the terms, the expression above
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takes the form given by

f˚pXq “ 1
ş

f
p1´ωq
i pXqfω

j pXqdX
f

p1´ωq
i pXqfω

j pXq, (64)

which can be identified as the EMD in (3),(4).

B. Proof of Proposition 3.1

The proof follows from decomposing pωpnq in (15) and (16)

as follows

pωpnq “
p

p1´ωq
i pnqpωj pnqzωpnq

p
p1´ωq
i pnqpωj pnqzωpnq `

ř

n1‰n p
p1´ωq
i pn1qpωj pn1qzωpn1q

,

(65)

and substituting on the left hand side of the inequality in (17).

The inequality can easily be solved for zωpnq leading to (18).

C. Derivation of Algorithm 2

We start by finding the first and second order derivatives of

Gn in (45):

G1
npωnq fi

dGnpωq
dω

∣

∣

∣

∣

ω“ωn

“ ´dzωpnq{dω
zωpnq

∣

∣

∣

∣

ω“ωn

, (66)

G2
npωnq fi

d2Gnpωq
dω2

∣

∣

∣

∣

ω“ωn

“ ´d2zωpnq{dω2 ˆ zωpnq ´ pdzωpnq{dωq2

pzωpnqq2
∣

∣

∣

∣

ω“ωn

.(67)

where zωpnq is given by (14). Newton iterations [42] use

recursive increments to the scalar argument of maximisation.

These increments are found by evaluating the ratio of (66)

and (67) which is found as

G1
npωnq

G2
npωnq “ z1

ωpnqzωpnq
z2
ωpnqzωpnq ´ pz1

ωpnqq2
∣

∣

∣

∣

ω“ωn

, (68)

z1
ωpnq fi

dzωpnq
dω

(69)

z2
ωpnq fi

dz1
ωpnq
dω

(70)

in terms of zωpnq and its first and second order derivatives.

Next, let us find the derivatives of zωpnq. The first order

derivative follows after substituting (14) in (69) as

dzωpnq
dω

“
ż

ρi,npxq d

dω

ˆ

ρj,npxq
ρi,npxq

˙ω

dx

“
ż

ρ1´ω
i,n pxqρωj,npxq log ρj,npxq

ρi,npxqdx

which is equivalent to (47). The second order derivative seeked

is found by substituting from the above equality into (70) as

dz1
ωpnq
dω

“
ż

ρi,npxq log ρj,npxq
ρi,npxq

d

dω

ˆ

ρj,npxq
ρi,npxq

˙ω

dx

“
ż

ρ1´ω
i,n pxqρωj,npxq

ˆ

log
ρj,npxq
ρi,npxq

˙2

dx

which is equivalently given in (48).
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