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Abstract—Serving a plethora of devices in massive machine-
type communications (mMTC) can rely on spatial multiplexing
enabled by massive multiple-input multiple-output (mMIMO)
technology. To release the full potential, accurate channel es-
timation is needed. Due to the large numbers of devices it
necessitates pilot reuse. We propose a pilot allocation algorithm
based on multi-point channel charting (CC) to mitigate inevitable
pilot contamination in a multi-cell multi-sector mMTC network
with spatially correlated mMIMO channels. The generated CC
represents an effective interference map from channel covariance
matrices to capture the degree of pilot contamination caused
by sharing the same pilot sequence among multiple users. The
map is then fed into a greedy algorithm that aims at optimizing
the reuse pattern of orthogonal pilot sequences to minimize
the performance degradation caused by pilot contamination.
The proposed CC-based method is empirically shown to obtain
notable gains over a reuse-factor-aware random pilot allocation,
yet leaving room for further improvements.

I. INTRODUCTION

Massive multiple-input multiple-output (mMIMO) technol-
ogy has shown to provide spatial multiplexing gain enabling
connecting multiple user equipments (UEs) given that accurate
channel state information (CSI) is available at the base stations
(BSs) [1]–[3]. However, the large number of devices in mas-
sive machine-type communication (mMTC) systems prevents
the allocation of unique orthogonal pilot sequences to all UEs
causing pilot contamination, which degrades the accuracy of
channel estimates and makes them statistically dependent [4,
p. 252]. Therefore, an intelligent strategy to allocate the pilot
sequences is needed to avoid or mitigate such a phenomenon.

Lian et al. [5] propose a global pilot reuse strategy to reduce
pilot overhead and increase spectral efficiency. They developed
a greedy algorithm using the UEs’ channel covariance matrices
to minimize the mean square error (MSE) of the channel
estimation by allocating the orthogonal pilot sequences in a
coordinated fashion.

A joint mMIMO and non-orthogonal multiple-access
(NOMA) approach to mitigate the interference caused by
nearby UEs is proposed in [3]. As motivated by Le et al. [3],
the spatial configuration of UEs is intrinsically related to the
interference between them. For finite size antenna arrays, the
BS cannot resolve between UEs that are spatially close to each
other, which increases the potential source of interference in
mMIMO systems. Therefore, they derived a k-means-based
algorithm to group UEs based on the chordal distance of their

covariance matrices. The results showed that for UEs in such
conditions the joint mMIMO-NOMA approach can improve
the spectral efficiency.

In [6], channel charting (CC) is proposed as a method to
capture the slowly varying characteristics of the channels,
i.e., large-scale propagation effects into radio environment
mappings. CC exploits the spatial information existing in the
CSI to create an unsupervised low-dimensional map of UEs, in
which the relative positions of UEs are preserved. Preserving
the neighborhood information in the low dimensional chart is
important as it can be used to identify the spatial orthogonality
of the UEs.

In [7]–[9], we showed that CC can be utilized to mitigate
pilot contamination and improve the channel estimation accu-
racy for single-cell setups. In [9], an interference map created
using CC was used as an input to a low-complexity pilot allo-
cation algorithm that greedily assigns the pilot sequences. This
method showed to increase the channel estimation accuracy as
well as the achievable rate.

In this paper, we propose a multi-cell multi-sector inter-
ference map to facilitate the assignment of orthogonal pilot
sequences in an mMTC network with spatially correlated
mMIMO channels. In order to generate a CC map that repre-
sents the effective interference between the UEs in the system,
we propose a new method to merge the sector’s information at
the BSs, and then process it at a central processing unit (CPU).
The interference map is then utilized by a greedy algorithm
to allocate the orthogonal pilot sequences to minimize the
performance degradation caused by pilot contamination. Sim-
ulation results have shown to improve the accuracy of channel
estimates and the symbol error rate (SER) over a reuse-factor-
aware random pilot allocation.

II. SYSTEM MODEL

We consider a multi-cell mMTC mMIMO system, consist-
ing of B BSs, with each cell area split into S sectors. The
BSs, each equipped with S M -element uniform linear arrays
(ULAs), are connected to a CPU. A set N = {1, . . . , N}
of single-antenna UEs are uniformly distributed across the
network as depicted in Fig. 1. To model sporadic user activity
in the mMTC traffic, only K ≪ N UEs are active at the
same transmission interval. We assume a block fading channel
model, where the channels are time-invariant and flat fading



Fig. 1: The considered multi-cell multi-sector mMTC mMIMO
network. The circles represent N UEs, out of which only a
subset of K UEs are active (green) in a given coherence block.

during one coherence block. A time-division duplex (TDD)
protocol is employed such that at the beginning of each
coherence block, the set of active UEs, K = {1, . . . ,K} ⊆ N ,
transmit known pilot symbols to the BS for channel estimation.
Herein, we assume that the set of active users are known1.

We denote the channel between UE n and ULA s at BS
b as hnbs ∈ CM . Assuming that the number of multipath
components between the UE and ULA tends towards infinity,
the channel vector becomes complex Gaussian distributed
with zero mean and covariance matrix Rnbs ∈ CM×M , i.e.,
hnbs ∼ CN (0,Rnbs). Therefore, hnbs can be modelled as

hnbs = R
1
2

nbsě, (1)

where ě ∼ CN (0, IM ).
The (l,m)th element of the covariance matrix Rnbs can be

numerically evaluated for any distribution as [4]

[Rnbs]l,m = βnbs

π∫
−π

e−j2π∆r(l−m) cos (θnbs)f(θnbs)dθnbs

(2)
where θnbs is the angle between UE n and ULA s at BS
b, f(θnbs) is the probability density function (pdf) of the
scatterers’ distribution around θnbs, ∆r is the normalized
spacing between the antenna elements, and βnbs is average
channel gain, which includes the antenna and large-scale
propagation effects. The average channel gain is modelled
as [4, Eq. 2.3]

βnbs[dB] = 35.3− 37 log10

(
dnbs
1 m

)
+GA(θnbs), (3)

where dnbs is the distance in meters from UE n to the ULA
s at BS b, and GA(θnbs) is the corresponding antenna gain,

given as GA(θnbs) = −min
[
12
(

θnbs

θ3dB

)2
, 30

]
.

According to measurements reported in [14], the pdf of the
impinging waves, f(θnbs), can be modelled as a Gaussian
distribution, with most of the scatterers coming from the
direction θnbs, which fits well to the local scattering channel

1The main focus of this paper is on the channel estimation and developing
intelligent pilot allocation to mitigate pilot contamination; several user activity
detection algorithms for mMTC have been proposed, see e.g., [10]–[13].

model described in [4, Sec. 2.6]. Here, we assume that the
scatterers are uniformly distributed around the nominal angle
of arrival θnbs, ranging from [θnbs − 3σθ, θnbs + 3σθ], where
σθ is the angular standard deviation.

III. CHANNEL ESTIMATION AND DATA TRANSMISSION

A. Uplink Training

We assume that τ orthogonal pilot sequences are assigned to
the set of N UEs. Because the number of available orthogonal
pilot sequences is far smaller than the number of UEs in
mMIMO networks, we consider that τ ≪ N . Global pilot
reuse is employed throughout the network in a centralized
fashion. Let T = {1, . . . , τ} be the set of indices of available
pilot sequences and πn ∈ T be the index of the pilot sequence
assigned to UE n. Then, ϕπn

∈ Cτ is the pilot sequence
assigned to UE n, which is taken from the orthogonal pilot
code book Φ = [ϕ1, . . . ,ϕτ ] ∈ Cτ×τ . We denote the group of
UEs assigned with the same pilot sequence as UE n, including
UE n itself, as Gn = {j | j ∈ N , πj = πn}.

While the pilot allocation is centralized, we consider that
the channel estimation is done locally at each BS by using
(only) sector-level covariance matrices, Rnbs, ∀n ∈ N . To this
end, we assume that the channel covariance matrices of each
sector for all UEs (active and inactive ones) are known2. In line
with this, we will consider local data decoding at each BS, as
elaborated in Section III-B. More complex signal processing
techniques could be employed to estimate the channels and
the received data, such as joint channel estimation among
the BSs and sectors, yet at the cost of increased backhaul
communication between the BSs and the CPU.

At ULA s of BS b, the received signal from pilot transmis-
sion, Ybs ∈ CM×τ , can be written as

Ybs = HbsΨ+Nbs, (4)

where Hbs = [h1bs, . . . ,hKbs] ∈ CM×K is the channel matrix
for the active UEs, Nbs ∈ CM×τ is the noise matrix, with
entries modelled as i.i.d. zero-mean complex Gaussian with
noise power σ2

n, and Ψ = [ψ1, . . . ,ψK ]
T ∈ CK×τ is the pilot

signal matrix, obtained from the transmitted pilot sequences
after power loading by pu, i.e., ψk =

√
puϕπk

.
We assume that the linear minimum mean square error

(LMMSE) receiver is employed at the BSs to estimate the
active UEs’ channel vectors for distinct sectors. Therefore, the
LMMSE estimate of the channel between user k and the ULA
s of BS b, ĥkbs ∼ CN (0,RkbsQ

−1
kbsRkbs), is given as [3]

ĥkbs = RkbsQ
−1
kbsy

p
kbs, (5)

where yp
kbs ∈ CM represents the correlated received signal at

sector s of BS b for the pilot sequence assigned to user k, i.e.,

yp
kbs =

1

puτ
Ybsψ

∗
k, (6)

2An initial training phase can be used to obtain the first estimates for the
covariance matrices (see techniques in, e.g., [2]), which the BS can keep
updating at a lower cost, owing to their relatively slow variation.



and Qkbs = E{ykbsy
H
kbs} ∈ CM×M is the covariance matrix

of the received signal at sector s of BS b, given as

Qkbs =
∑
j∈Gk

Rjbs +
σ2
n

puτ
IM . (7)

Accordingly, the channel estimation error is indepen-
dent of ĥkbs and given by h̃kbs ∼ CN (0,Rh̃kbs

), where
Rh̃kbs

= Rkbs −RkbsQ
−1
kbsRkbs is the covariance matrix of

the channel estimation error.

B. Uplink Data Transmission
The received signal for UE k at sector s and BS b,

ykbs ∈ CM , at a given time instant is given by

ykbs = hkbsxk + nbs, (8)

where xk is the transmitted symbol by the kth UE.
The simplest signal detection strategy considering the pro-

posed local signal processing is to assume that each BS selects
the signal for UE k from the sector with the largest channel
gain and ignores the rest S − 1 received signals. An analogous
strategy to determine the BS serving UE k can be implemented
at the CPU to decide on the received symbol for that UE.
Thereby, the received symbol for user k can be retrieved as

x̂k =
(
vkb⋆ks

⋆
k

)H
ykb⋆ks

⋆
k
, (9)

where vkb⋆ks
⋆
k
∈ CM denotes the receive combiner vector for

UE k at sector s⋆k and BS b⋆k with the largest received
power for that UE, i.e., [b⋆k, s

⋆
k] = argmax

b∈B, s∈S
(βkbs), where

B = {1, . . . , B} and S = {1, . . . , S}.
The instantaneous uplink signal-to-interference-and-noise

ratio (SINR) for UE k is given as [15]

γk =
|vH

kb⋆
k
s⋆
k
ĥkb⋆

k
s⋆
k
|2

vH
kb⋆

k
s⋆
k

 ∑
j∈Gk
j ̸=k

ĥjb⋆
k
s⋆
k
ĥH
jb⋆

k
s⋆
k
+

K∑
j′=1

Rh̃j′b⋆
k
s⋆
k

+
σ2
n

pu
IM

vkb⋆
k
s⋆
k

.

(10)

As presented in [4, Lemma B.10], the combiner vector
vkb⋆ks

⋆
k

which maximizes (10), the instantaneous SINR for UE
k, is the LMMSE combiner vector wk ∈ CM , given by

wk =

(
Ĥb⋆ks

⋆
k
ĤH

b⋆ks
⋆
k
+

K∑
k=1

Rh̃kb⋆
k
s⋆
k

+
σ2
n

pu
IMS

)−1

ĥkb⋆ks
⋆
k
.

(11)

IV. CC MAPPING AND PILOT REUSE

Pilot contamination can be very harmful for mMTC sys-
tems. As the number of UEs reusing the same pilot sequence
increases, the channel estimates become poorer and statisti-
cally dependent, which increases the channel estimation error,
thereby affecting directly the data transmission phase, as seen
in (10). Therefore, a careful assignment of the pilot sequences,
when reusing them, is needed to mitigate pilot contamination.

The main target of pilot assignment is to allocate orthogonal
pilot sequences to UEs with strong mutual interference. It is

known that the interference in such systems is strongly related
to the spatial configuration of the UEs and that this relationship
is captured by the covariance matrices Rnbs,∀n ∈ N [2].
Therefore, in line with [9], we aim at building a UE-
interference map to allocate the pilot sequences to mitigate
pilot contamination. In Section IV-A, we explain how to obtain
the interference map for a multi-cell multi-sector scenario
through multi-point CC, whereas Section IV-B describes the
pilot allocation strategy using the generated CC map.

A. Multi-cell Multi-sector Channel Charting

To build an interference map of the network, similarly to [9],
the covariance matrix distance (CMD) metric [16] is applied
to create a dissimilarity matrix D = [d1, . . . ,dN ] ∈ RN×N ,
where the nth column of D, dn ∈ RN , represents the feature
vector that contains the CMD values of UE n with respect to
all N UEs, including n itself. The difference here is that we
need to adopt the generation of D into a multi-cell setting;
this will be elaborated next.

Since the sector covariance matrices, Rnbs, are assumed to
be known at the BSs, they can be used to get the features to
generate CC. Hence, the CMD associated with a UE pair n
and j seen by ULA s of BS b is given as [16]

[Dbs]n,j = 1−
tr
(
RH

nbsRjbs

)
∥Rnbs∥F∥Rjbs∥F

, (12)

where Dbs is the matrix of features or dissimilarities obtained
for sector s of BS b.

To characterize the UEs’ geometry in the full extent at the
azimuth’s domain, each BS has to combine the information
from all its sectors. In other words, the set Dbs, ∀s ∈ S,
must be combined into a single per-BS dissimilarity matrix
Db ∈ RN×N . Because of the normalizing factor in (12), the
CMD mainly acts as a measure of the UEs’ angular distance.
Thus, when merging the sector features, one must take into
account the effect of mirror angles for ULAs [4, p. 258].
This phenomenon has the effect of underestimating the angular
distance measured using CMD when UEs are not in the same
sector. That would cause UEs to be incorrectly mapped to
close positions in the CC interference map, as if they had
strong mutual interference. Therefore, our solution adopted
herein to avoid misplacing UEs in the CC when the UEs reside
in different sectors is to trust the per-sector CMD with the
largest value. Therefore, each element of the combined per-
BS feature matrix, Db, is given by

[Db]n,j =

 [Dbs⋆n
]n,j , if s⋆n = s⋆j ;

max
s∈S

([Dbs]n,j) , otherwise.
(13)

In [17], a method to merge the local features computed by
distinct BSs into a single feature matrix and generate a multi-
point CC was proposed. The proposed weighting strategy in
[17] takes into account the received power at each BS, where
the weight for the measurement between a pair of UEs at a
particular BS is proportional to their SNR. Here, we adopt a
similar weighting strategy, but instead of using SNR, we use



the large-scale fading coefficients, βnbs, to merge the local
feature matrices into one global feature matrix at the CPU.
Hence, the global dissimilarity matrix used to generate the
UE-interference map is given as

[D]n,j =
1∑B

b=1 wb(n, j)

B∑
b=1

[Db]n,j , (14)

where wb(n, j) = min(βnbs⋆n
, βjbs⋆j

)2.
After merging the local feature matrices to get D ∈ RN×N ,

a dimensionality reduction (DR) technique is applied to map
the UEs’ features to a lower dimensional chart and obtain
the desired UE-interference map. As highlighted in [9] and
the references therein, several unsupervised DR techniques
can be used to generate CC. Thus, we employ t-SNE [18]
to get a 3-dimensional UE-interference map: dn 7→ zn, where
zn ∈ R3 is the coordinate of UE n on that map.

B. Pilot Reuse Strategy

Having generated the interference map through multi-point
CC, as presented in Section IV-A, we now employ a pilot reuse
strategy that utilizes the map to mitigate pilot contamination.
The goal is to assign orthogonal pilot sequences to UEs with
potentially strong mutual interference, i.e., UEs that are close
in the CC mapping. The proposed CC-based method is an
extension of the single-cell pilot reuse method developed in [9]
into a multi-cell environment. Thereby, we adopt the Nearest
Neighbor Pilot Assignment Algorithm, presented in [9], to
allocate the pilot sequences using the proposed multi-cell
UE-interference map. The goal is to maximize the distance
between UEs sharing the same pilot sequence in the CC.

V. SIMULATION RESULTS

We consider B = 9 BSs and N = 450 UEs uniformly
distributed within a 1 km2 area, where K = 63 UEs are simul-
taneously active, i.e., on average 7 UEs per cell are active at
each transmission interval. The BSs are equipped with S = 3
ULAs, each with M = 32 critically spaced (∆r = 0.5) antenna
elements. The propagation channel between each UE and the
ULA of a BS is modelled according the local scattering model
with angular standard deviation σθ = 10◦. The half-power
beamwidth is θ3dB = 65◦ [19]. t-SNE with the perplexity
parameter fixed to 30 is used as the DR technique. Binary
phase shift keying (BPSK) is used for the pilots and quadrature
phase shift keying (QPSK) for the data transmission.

Channel estimation accuracy is evaluated in terms of the
normalized MSE (NMSE CE), defined as

NMSE CE =
E
[∑K

k=1 ∥ĥkb⋆ks
⋆
k
− hkb⋆ks

⋆
k
∥2
]

E
[∑K

k=1 ∥hkb⋆ks
⋆
k
∥2
] , (15)

where the expectation is evaluated through Monte Carlo simu-
lations. For data decoding, we use the LMMSE receiver in (11)
and evaluate the resulting symbol error rate (SER).

The following baselines are considered.
• “Orthogonal”: Orthogonal pilot allocation that allocates

unique orthogonal pilot sequences of length N to the

UEs. To have a fair comparison, we compensate for
the longer sequence by normalizing the powers of the
orthogonal sequences to match the pilot sequence power
used by the other methods, puτ .

• “Random”: A reuse-factor-aware random allocation that
assigns the orthogonal pilot sequences uniformly at ran-
dom, while ensuring that the same pilot sequence is
reused the minimum required times in the network.

• “CMD”: The CMD-aided pilot assignment method pro-
posed in [8], which employs the proposed greedy pilot
allocation algorithm directly for the feature matrix, D
in (14), without using any DR technique.

• “CPR”: Coordinated pilot reuse (CPR) proposed in [5]
that aims at minimizing the MSE CE. Similar to our
method, it uses second-order statistics to allocate the pilot
sequences. To adapt the method into our multi-sector
setup, we block-diagonalized the sector-level covariance
matrices before feeding it to the algorithm.

Fig. 2 shows the impact of SNR on the performance of the
different pilot reuse algorithms in terms of (a) NMSE CE and
(b) SER. Fig. 2(a) highlights that the benefits of an intelligent
pilot allocation are more evident at high SNR regimes, where
the interference is more detrimental than noise. For τ = 16,
the proposed method and CMD-based pilot allocation show
improvement in channel estimation accuracy, about 2.5 and
2 dB lower NMSE CE over random pilot allocation, respec-
tively, whereas the CPR method showed almost 6 dB gain for
the same setup. As a SER benchmark for all methods, we
also depict “Lower bound”, achieved by considering perfect
CSI knowledge in the LMMSE receiver combining. Using
the instantaneous-SINR-optimal receive combiner in (11), we
observe that SER for the CC-based method gets very close
to that of CPR. However, one should expect seeing lower
SER with better channel estimation accuracy. Thus, suggesting
that one could employ a more efficient combiner structure for
the SER. We further notice that SER for the orthogonal pilot
allocation performs almost as good as the perfect CSI lower
bound, approaching it as SNR increases.

Fig. 3 shows the impact of pilot sequence length τ on the
NMSE CE performance for different pilot reuse algorithms at
20 dB SNR. We can see that for small pilot sequence length,
around τ = 8, the performance for all methods gets closer
to random pilot allocation, whereas for smaller pilot reuse
factors, the proposed method improves about 2.5 dB over the
random assignment. However, as τ increases, the proposed
method improves the channel estimate accuracy at a similar
rate of random pilot allocation, whereas CPR method shows
larger gains over random strategy.

VI. CONCLUSIONS

We proposed a multi-point CC approach for pilot reuse
to mitigate pilot contamination in a multi-cell multi-sector
mMTC network with spatially correlated mMIMO channels.
The proposed method creates a network-wide UE-interference
map that facilitates the pilot assignment, which is infeasible to
obtain optimally for a large number of UEs, such as in mMTC



(a)

(b)

Fig. 2: Performance of the proposed CC-based pilot reuse
algorithm in comparison to the baselines as a function of SNR
in (dB) using: (a) NMSE CE (b) SER.

systems. Numerical results showed that the proposed CC-
based method considerably suppresses the pilot contamination
compared to a reuse-factor-aware random pilot allocation, yet
revealing that the CC approach could be further optimized. Fu-
ture studies on more sophisticated pilot allocation algorithms
that rely on the UE-interference map could be a path to follow
to improve the performance of the proposed method.
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