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Abstract—We propose a novel message passing de-quantization
(MPDQ) algorithm for low-complexity uplink signal detection
in mmWave large multi-user multi-input multi-output (MU-
MIMO) systems with low-resolution analog-to-digital converters
(ADCs) suffering from severe quantization errors. The proposed
method consists of a de-quantization (DQ) step based on the
Bussgang theorem and a Bayesian multi-user detection (MUD)
via Gaussian belief propagation (GaBP), which detects the uplink
signal while compensating for the quantized signal distortion.
The efficacy is demonstrated by simulation results, which are
shown to significantly outperform the current state-of-the-art
(SotA) detection designed by Bussgang minimum mean square
error (BMMSE) and generalized approximate message passing
(GAMP) frameworks in 1-bit quantization, and approach the
matched filter bound (MFB) performance.

Index Terms—mmWave Large MIMO detection, belief propa-
gation, low-resolution ADCs, Bussgang’s theorem

I. INTRODUCTION

Millimeter-wave (mmWave) large multi-user multi-input
multi-output (MU-MIMO), which exploits a wide range of
frequency bands to boost the data rates, has been intensively
developed with the aim of commercializing fifth generation
(5G) advanced and sixth generation (6G) networks.The short
wavelength at mmWave frequency allows us to pack many
antenna elements into a small area, and the resulting significant
amount of spatial degrees of freedom (DoF) serves high
spectral efficiency and massive connectivity.

However, fully digital and high-resolution large MIMO
arrays will become increasingly distant to reality [1], owing
to excessive power consumption and hardware cost. In uplink
scenarios, every antenna element of a base station (BS) is
equipped with a dedicated radio frequency (RF) chain that
includes two analog-to-digital converters (ADCs), where the
power consumption increases exponentially with the (effective)
number of quantization bits [2]. For this reason, employing
low-resolution ADCs with 1–2 bits of quantization instead of
typical 6+ bits in each I/Q axis allows us to implement large
MIMO arrays consisting of massive antenna elements required
to operate in the mmWave frequency band [3]–[5].

In light of the above, this study focuses on a low-complexity
and high-accuracy large multi-user detection (MUD) scheme
based on the output of low-resolution ADCs with perfect
channel state information (CSI) (please refer to, e.g., [3], [4],
[6]–[8] for actual channel estimation based on the quantized
measurements). In mmWave MIMO channels, MUD suffers
from high spatial fading correlations due to the small angular
spread at the BS; however, it is computationally infeasible
to use an optimal maximum likelihood (ML) detector [9]

or its variants, e.g., [10], in large MIMO setting. Spatial
filtering based on Bussgang’s theorem [11] is well known as
a low-complexity estimation strategy [3]–[5], [12]. However,
excessive reduction of the number of quantization bits, i.e.,
the use of 1-bit quantization ADCs, induces a high-level error
floor in bit error rate (BER) performance.

A promising approach to tackle this issue is Bayesian mes-
sage passing de-quantization (MPDQ) on the basis of belief
propagation (BP) [13]–[16], whose underlying unified infer-
ence framework is summarized in [17]. For high-dimensional
MIMO channels, generalized approximate message passing
(GAMP) approach [14], [15] consisting of only tensor products
is preferable in terms of computational cost. However, the
derivation heavily relies on the large-system approximation
based on independent and identically distributed (i.i.d.) random
measurements with zero mean, which makes it extremely vul-
nerable to the spatial fading correlation. To elaborate further,
errors in Onsager term [14] for decoupling the self-feedback
of message across iterations make the iterative convergence
behavior unstable, resulting in performance degradation.

In order to resolve the lack of an appropriate MUD scheme
for mmWave large MU-MIMO systems with low-resolution
ADCs, this paper proposes a novel MPDQ algorithm via
Gaussian belief propagation (GaBP) [18] employing Bussgang
theorem. The GaBP approach can be interpreted as the origin
of the aforementioned GAMP rules, and it possesses robust-
ness to deviations from the ideal measurement condition by
relaxing the dependence on the large-system limit approxima-
tion [19], in exchange for a slight increase in the number of
tensor product operations. The efficacy of the proposed MPDQ
algorithm is confirmed by numerical simulations, which shows
that the proposed method not only outperforms the state-of-
the-art (SotA), such as Bussgang minimum mean square error
(BMMSE) and GAMP-based MPDQ, but also approaches a
matched filter bound (MFB) in terms of BER.

Throughout this paper, vectors and matrices are denoted
by lower- and upper-case bold-face letters, respectively. R0×1

and C0×1 denote real and complex fields of size 0 × 1. ·∗, ·T,
and ·H are the conjugate, transpose, and conjugate transpose
operators, respectively. ?a |b (0 |1) represents the probability
density function (PDF) of a realization 0 of random variable a
given the occurrence of a realization 1 of random variable b.
Ea{·} is the expected value of random variable a. N(0, 1) and
CN(0, 1) indicate real-valued and complex-valued Gaussian
processes with mean 0 and variance 1. The PDF and the
cumulative distribution function (CDF) of the standard normal
distribution are denoted by q(G) , 1√

2c
exp

[

−G2/2
]

and



Q(G) ,
∫ G

−∞ q(h)3h, respectively.

II. SYSTEM MODEL

A. Signal model

Consider an uplink large MU-MIMO system composed
of a BS having # ′ receive (RX) antennas and serving
" ′ (≤ # ′) synchronized user equipment (UE) devices with
single-antenna. We employ quadrature amplitude modulation
(QAM), with the <′-th UE conveying a modulated symbol
G ′<′ that represents one of & ′ constellation points X′

,
{

j′
1
, . . . , j′@′ , . . . , j

′
&′

}

, where the average power density is

denoted by �s. Accordingly, the RX vector is given by

y′ , N′x′ + z′, (1)

where x′ ∈ Xc "′×1 denotes a transmit (TX) vector, N′ ∈
C
# ′×"′

denotes a # ′ × " ′ MIMO channel matrix, and z′ ∈
C
# ′×1 is a circularly symmetric zero-mean i.i.d. additive white

Gaussian noise (AWGN), where Ez′
{

z′z′H
}

= #0O# ′ .
Without loss of generality, N′ in (1) can be represented by a

geometric channel model with ! scatters in mmWave channels
[20], where each scatter contributes to a single propagation
path between the BS and the UEs. Accordingly, the <′-th
column vector of N′ can be expressed as

h′
<′ =

1√
!

!∑

;=1

U<′,;a<′,; (l<′,;), (2)

where U<′,; is the channel gain along the ;-th path of the
<′-th UE. This is obtained from the antenna steering vector

a(l<′,;) ,
[

1, 4jl<′,; , . . . , 4j(# ′−1)l<′,;
]T

, where l<′,; ,

c sin Z<′,; with Z<′,; denoting the azimuth angle of arrival
(AoA) of the ;-th path of the <′-th UE. The antenna element
space is fixed to half the wavelength.

For ease of algebraic manipulations, the complex-valued
signal model of (1) can be transformed into a double-sized
real-valued signal model on the basis of pulse amplitude
modulation (PAM) symbols [21] as follows

y = Nx + z, (3)

where

y ,

[

ℜ{y′}
ℑ {y′}

]

∈ C#×1, N ,

[

ℜ{N′} −ℑ {N′}
ℑ {N′} ℜ {N′}

]

∈ C#×" ,

x ,

[

ℜ{x′}
ℑ {x′}

]

∈ X"×1, z ,

[

ℜ{z′}
ℑ {z′}

]

∈ C#×1, (4)

with " , 2" ′ and # , 2# ′. The <-th PAM symbol G<
in x represents one of & (,

√
& ′) PAM constellation points

X ,
{

j1, . . . , j@ , . . . , j&
}

whose entries are amplitudes of
the real and imaginary components of X′. Let us define a

coefficient 2 ,
√

3�s/(2(& ′ − 1)) for normalizing the average
power density of j@ to �s/2. For example, in the 4QAM case

(& ′
= 4, & = 2), we have X = {±2} and 2 =

√

�s/2.

B. Quantization with low-resolution ADCs

The in-phase and quadrature components of the signal re-
ceived by each antenna are individually quantized by an ADC
with 1-bit resolution. The ADC can be characterized by a set of
21 +1 quantization thresholds T1 , {g0, g1, . . . , g21 }, such that
−∞ = g0 < g1 < · · · < g21 = ∞, and a set of 21 representative
values L1 , {;0, ;1, . . . , ;21−1} where ;8 ∈ (g8 , g8+1]. The
operation of the # 1-bit ADCs at the BS can be represented

by the quantization function &#
1
(·) : R# → L#

1
that maps

the RX vector y to the quantized output r as

r , [A1, . . . , A# ]T
= &#1 (y) = &#1 (Nx + z) , (5)

where the =-th output is given by

A= = &
1
1 (H=) = ;8 if H= ∈ (g8 , g8+1] . (6)

C. Linearization based on Bussgang theorem

Using finite-resolution ADCs induces a signal distortion
that is correlated with the input to the quantizer, which is
intractable for subsequent stochastic signal processing. To
circumvent this issue, when the quantizer input follows a
Gaussian distribution, we can exploit the Bussgang theorem
[11] to transform the quantized output r of (5) into

r = My + d, (7)

where M and d are the linear operator and the equivalent
quantizer noise, respectively. M is chosen to make d un-
correlated with y. Regarding the y ∼ CN(0#×1, Ĩyy), i.e.,

Ĩyy , Ey

{

yyT
}

, it follows from (7) that [4]

M =

21−1∑

8=0

;8
√

2cky

(

e
− g8

2

2ky − e
g8+1

2

2ky

)

O# , 6O# , (8)

where diag
(

Ĩyy

)

= kyO# .

D. Linear MMSE based on Bussgang theorem

From (5), the BMMSE detector is given by solving the
following optimization problem: [3], [5]

] = arg min
]

Ex,z

{

‖]Tr − x‖2
}

︸                   ︷︷                   ︸

� (] )

. (9)

The resulting detector can be found from the solution of

derivative:
m� (] )
m] T = 0 as

] = I−1
rr Ex,z

{

rxT
}

=
6�s

2
I−1

rr N, (10)

where Irr , Ex,z

{

rrT
}

can be computed in two ways. One is
based on the arcsine law, which is available only for the 1-bit
quantization case. It has been shown in [22] that

Irr =
2ky

c

(

arcsin
[

diag
(

Iyy

)− 1
2 Iyydiag

(

Iyy

)− 1
2

] )

, (11)

where Iyy , Ex,z

{

yyT
}

=
1
2

[

�sNNT + #0O#
]

. The other is
based on the averaging and diagonal approximation of Idd ,

Ex,z

{

ddT
}

≈ diag
(

Ey

{

ddT
})

[4]; thus, we simply ignore the
temporal correlation of the quantizer, leading to [8]

Irr ≈ 62 · Iyy +
(

1 − 62
)

kyO# , (12)

which can be used for multi-bit quantization.

III. MPDQ VIA GABP BASED ON BUSSGANG’S THEOREM

In this section, we describe the algorithmic structure of
MPDQ via GaBP based on the Bussgang theorem. It consists
of two estimation procedures, namely, the de-quantization
(DQ) step and the MUD step. The DQ step recovers the RX
vector y based on r and soft replicas (i.e., tentative estimates)
of the TX vector generated in the previous iteration, and then
estimates d. The MUD step estimates the TX vector x based
on r and soft replicas of x and d via three modules: soft
interference canceler (soft IC), belief generator (BG), and soft



replica generator (soft RG). The soft IC performs for each
RX symbol by subtracting inter-user interference (IUI) and
quantization distortion with the soft replicas generated in the
previous iteration. The BG approximates the effective noise
in beliefs (i.e., information propagated across iterations) as
i.i.d. Gaussian noise based on the central limit theorem (CLT);
this behavior is referred to as scalar Gaussian approximation
(SGA). Finally, under the SGA condition, the soft RG approx-
imately calculates the soft replica based on the conditional
expectation of the TX symbol.

The soft replicas of G< and H= are respectively defined
as

{

Ǧ=,<,∀=
}

and
{

Ȟ=,<,∀<
}

, and their mean square errors
(MSEs) are respectively denoted by

ǩx
=,< , Ex̃=,<

{

G̃2
=,<

}

, ∵ G< = Ǧ=,< + G̃=,<, (13)

ǩ
y
=,< , Eỹ=,<

{

H̃2
=,<

}

, ∵ H= = Ȟ=,< + H̃=,<. (14)

where
{

G̃=,<,∀=
}

and
{

H̃=,<,∀<
}

are estimation errors. From
(7) and (14), the distortion can be expressed as

3= = A= − 6H= = A= − 6Ȟ=,<
︸       ︷︷       ︸

3̌=,<

−6H̃=,<
︸  ︷︷  ︸

3̃=,<

= 3̌=,< + 3̃=,<, (15)

where the MSE of 3̌=,< is given by

kd
=,< , Eỹ=,<

{

3̃2
=,<

}

= 62ǩ
y
=,<. (16)

A. DQ step

At the first iteration (: = 1), i.e., the soft replica is not
available as prior information, the soft replica

{

Ȟ=,<,∀<
}

are
given by the conditional expectation as

Ȟ=,< =

∫

H=?y= |r= (H= |A=) 3H=, ∀<. (17)

Owing to the CLT in the large-system condition, the PDF of
H= can be expressed as

?y= (H=) =
1

√

2ck
y
=

exp

[

− H2
=

2k
y
=

]

. (18)

In this case, the conditional PDF in (17) can be expressed with
the truncated Gaussian distribution as

?y= |r= (H= |A= = ;8)=
?y= (H=)

∫ g8+1

g8
?y= (H=) 3H=

, (19)

where H= ∈ (g8 , g8+1]. From the mean and variance of (19), the
estimate and MSE are respectively given by

Ȟ=,< = [

(

H=; 0,

√

k
y
=, g8 , g8+1

)

, ∀<, (20a)

ǩ
y
=,< = Z

(

H=; 0,

√

k
y
=, g8 , g8+1

)

, ∀<, (20b)

where [ (·) and Z (·) are functions that calculate the mean and
variance of a truncated Gaussian distribution, respectively, as

[ (D; `, f, 0, 1) = ` + f q(U) − q(V)
Q(V) −Q(U) , (21a)

Z (D; `, f, 0, 1) = f2

[

1+ Uq(U)−Vq(V)
Q(V)−Q(U) −

(

q(U)−q(V)
Q(V)−Q(U)

)2
]

,

(21b)

with U =
0−`
f

and V =
1−`
f

.

At the second and later iterations (: ≠ 1), the soft replica
is available as prior information; therefore, instead of (17), we
should consider the following conditional expectation:

Ȟ=,< =

∫

H=?y= |x̌=,< ,r=

(

H= |x̌=,<, A=
)

3H=, (22)

where x̌=,< =

[

Ǧ=,1, . . . , Ǧ=,<−1, 0, Ǧ=,<+1, . . . , Ǧ=,"
]T

. As-

suming that x̌=,< and A= are independent of each other, the
conditional PDF in (22) can be rewritten as

?
y= |x̌=,< ,r=

(

H= |x̌=,<, A=
)

=
1

?y= (H=)
?

y= |x̌=,<

(

H= |x̌=,<
)

?y= |r= (H= |A=) . (23)

Substituting (19) into (23),

?
y= |x̌=,< ,r=

(

H= |x̌=,<, A= = ;8
)

= �
(8)
=,< ·

?
y= |x̌=,<

(

H= |x̌=,<
)

∫ g8+1

g8
?

y= |x̌=,<

(

H= |x̌=,<
)

3H=

, (24)

with �
(8)
=,< =

∫ g8+1
g8

?
y= |x̌=,<

(

H= | x̌=,<
)

3H=
∫ g8+1
g8

?y= (H=)3H=
is a proportionality

constant; thus, (24) is the truncated Gaussian distribution. To
find the truncated distribution in (24), with the use of the soft
replicas, the RX symbol can be rewritten as

H= =

∑

8≠<

ℎ=,8 Ǧ=,8 + ℎ=,<G< +
∑

8≠<

ℎ=,8 G̃=,8 + I=
︸                            ︷︷                            ︸

,as
=,<: SGA of the effective noise

≈
∑

8≠<

ℎ=,8 Ǧ=,8 + as
=,< , B̃=,<. (25)

Accordingly, the conditional PDF given x̌=,< is given by

?
y= |x̌=,<

(

H= |x̌=,<
)

∝ exp

[

−
(

B̃=,<−
∑

8≠< ℎ=,8 Ǧ=,8
)2

2ks
=,<

]

, (26)

with the variance of as
=,<:

ks
=,< =

∑

8≠<

ℎ2
=,8ǩ

x
=,8 +

1

2

(

�sℎ
2
=,< + #0

)

. (27)

From (22), (24), (25), and (27), we have

Ȟ=,< = [

(

H=;
∑

8≠<

ℎ=,8 Ǧ=,8 ,

√

ks
=,<, g8 , g8+1

)

, (28a)

ǩ
y
=,< = Z

(

H=;
∑

8≠<

ℎ=,8 Ǧ=,8 ,

√

ks
=,<, g8 , g8+1

)

. (28b)

B. MUD step

1) Soft IC: Focusing on the soft IC for the =-th RX symbol
H=, with the soft replicas

{

Ǧ=,<, 3̌=,<,∀<, =
}

generated in
the previous iteration. Note that Ǧ=,< = 0,∀<, = at the first
iteration. In the detection of an arbitrary TX symbol G<, the
cancellation process is performed with the aid of (7) as

Ã=,< = A= − 6
∑

8≠<

ℎ=,8 Ǧ=,8 − 3̌=,<

= 6ℎ=,<G< + 6
∑

8≠<

ℎ=,8 G̃=,8 + 6I= + 3̃=,<
︸                            ︷︷                            ︸

,ar
=,<: SGA of the effective noise

. (29)



Accordingly, the conditional PDF of Ã=,< is given by

? r̃=,< |x<
(

Ã=,< |G<
)

∝ exp

[

−
(

Ã=,< − 6ℎ=,<G<
)2

2kr
=,<

]

, (30)

where from (14) and (15) we have the variance of ar
=,< as

kr
=,< = 62

(
∑

8≠<

ℎ2
=,8ǩ

x
=,< + #0

2

)

+ kd
=,<. (31)

2) BG: Assuming that the effective noise in
{

Ã=,<,∀<, =
}

are not correlated to each other owing to the high-precision
SGA, the extrinsic belief ;=.< for G< is simply obtained by

?l=,< |x<
(

;=,< |G<
)

=

∏

8≠=

? r̃8,< |x<
(

Ã8,< |G<
)

∝ exp

[

−
∑

8≠=

(

Ã8,< − 6ℎ8,<G<
)2

2kr
8,<

]

. (32)

3) Soft RG: Similarly, assuming that the effective noise in
{

;=,<,∀<, =
}

are not correlated to each other under the SGA,
from Bayes’ rule, the soft replica can be in general obtained
from the symbol-wise conditional expectation as [18]

Ǧ=,< =

∑

j@

j@
?l=,< |x<

(

;=,< |j@
)

∑

j
@
?l=,< |j

@

(

;=,< |j
@

) , (33a)

kx
=,< =

∑

j@

j2
@

?l=,< |-<

(

;=,< |j@
)

∑

j
@
?l=,< |j

@

(

;=,< |j
@

) − Ǧ2
=,<. (33b)

When the number of iterations reaches the predetermined
value  , G< is hard-detected as

Ĝ< = arg min
j@

{
#∑

==1

(

Ã=,< − 6ℎ=,<j@
)2

2kr
=,<

}

. (34)

C. Belief scaling

Although the large-system approximation is relaxed com-
pared to the GAMP-based MPDQ, the operation principle of
the proposed method still relies on the high-precision SGA
brought by large-system conditions. Therefore, an adaptively
scaled belief (ASB), which was proposed in [18] to stabilize
the GaBP iterative behavior, is introduced.

The extrinsic likelihood function in (32) can be rewritten as

?l=,< |x<
(

;=,< |j@
)

∝ exp
[

_=,<(j@)
]

, (35)

where we define

_=,< (j@) , j@
(

>=,< − 1

2
l=,<j@

)

. (36)

with

>=,< =

#∑

8≠=

6ℎ8,<Ã8,<

kr
8,<

, l=,< =

#∑

8≠=

62ℎ2
8,<

kr
8,<

. (37)

The ASB is given by scaling the belief _=,< after normalizing
the belief with its effective gain as

_′=,<
(

j@
)

=
n

22l=,<
_=,<

(

j@
)

= j@

(

W=,< − 1

2
j@

)

n

22
, ∵ W=,< =

>=,<

l=,<
, (38)

where n is a scaling parameter whose dynamics is given by

the following simple function as n (:) = ^1 ·
(

:
 

) ^2

[18], where
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Fig. 1. BER performances of every detector for 1 = 1 and 2 in the MU-
MIMO system with (# ′, "′) = (128, 16) configuration.

^1 and ^2 are the predetermined parameters. The resulting soft
RG is given by

Ǧ=,< =

∑

j@

j@

exp
[

n
22 · j@

(

W=,< − 1
2
j@

)]

∑

j
@

exp
[

n
22 · j

@

(

W=,< − 1
2
j
@

)] . (39)

The proposed algorithm consists of only scalar-by-scalar
operation, which is of order O(#") per iteration, which is
the same as those of the GAMP-based MPDQ [14]–[16].

IV. NUMERICAL RESULTS

In this section, computer simulations are conducted for
evaluations of the proposed GaBP-based MPDQ algorithm
in large mmWave MU-MIMO systems with low-resolution
ADCs, comparing it to the SotA alternatives, i.e., the BMMSE
[3]–[5] detector and the GAMP-based MPDQ detector [14].

In (2), the number of paths is set to ! = 4 and each gain
is set to U<′,; ∼ CN(0, 1) on the basis of slow TX power
control. In order to focus on the MUD performance, N′ is
assumed to be perfectly known on the BS side. The modulation
scheme is Gray-coded quadrature phase-shift keying (QPSK),
and channel coding is not utilized. The MSE-optimal quantizer
using the Lloyd-Max algorithm is used. The number of MPDQ
iterations is set to  = 16. Several simulations were conducted
to find sub-optimal (^1, ^2) for minimizing the required �s/#0

at BER = 10−5, and then we set (^1, ^2) = (10, 2).
A. BER performance

Fig. 1 shows BER performance of every detector for 1 = 1
and 2 in the MU-MIMO system with (# ′, " ′) = (128, 16)
configuration. As a reference, the performances of typical
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Fig. 2. Required �s/#0 for achieving a BER of less than 10−4 according to
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linear MMSE detector and GaBP detector [18] with the
double-precision ADCs (i.e., unquantization), “MMSE” and
“GaBP”, are respectively presented. In addition, “MFB” shows
an idealized (genie-aided) performance which is achieved only
when the knowledge of x is perfectly known as the prior
information in the proposed method [23].

The BMMSE detector, “BMMSE”, and the GAMP-based
MPDQ method [14], “GAMP”, suffer from high-level error
floors in the 1 = 1 case in Fig. 1(a) due to severe quantization
distortion, although reducing the number of quantization bits
is the very aim of the methods themselves. Even in the
1 = 2 case in Fig. 1(b), “GAMP” still suffers an error floor
due to spatial fading correlation, and even “BMMSE” cannot
completely suppress an error floor because of the lack of a
DQ mechanism. In contrast, the proposed MPDQ method,
“Bussgang GaBP (BGaBP)”, achieves BER = 10−4 without
an error floor even in the 1 = 1 case in Fig. 1(a), approaching
the performance of “MFB.” Furthermore, Fig. 1(b) shows that
the degradation from “GaBP” is reduced to only about 2
dB at BER = 10−4. These results suggest that our proposed
method can maintain reliable signal detection with quite few
quantization bits (1 ≤ 2) even in the correlated mmWave MU-
MIMO systems, owing to the robust signal recovery capability
resulting from the GaBP approach with belief scaling.

Let us shift our focus to other MU-MIMO configurations.
Fig. 2 shows the �s/#0 required to guarantee a BER of less
than 10−4 as a function of the number of UEs " ′, while fixing
the number of RX antennas at # ′

= 128. The other settings
are the same as in Fig. 1. Obviously, “GAMP” cannot support
a high number of UEs due to errors in Onsager correction
under correlated mmWave channel conditions. Owing to the
high-level error floor, it can achieve a BER of 10−4 only when
" ≤ 8 for 1 = 1 and " ≤ 12 for 1 = 2. In contrast,
“BMMSE” can support a larger number of UEs thanks to the
whitening mechanism as 1 increases. However, the required
�s/#0 increases more rapidly than in “BGaBP.” The gain
of the proposed method for “BMMSE” increases with higher
spatial-loading configurations; this is due to the iterative gain
of MPDQ, which is robust against spatial fading correlation.

V. CONCLUSION

In this paper, we propose a novel MPDQ algorithm via
GaBP based on the Bussgang theorem for uplink signal detec-
tion in mmWave large MU-MIMO systems with low-resolution
ADCs. The proposed scheme consists of the DQ step es-
timating the quantization distortions based on the truncated

Gaussian distribution and the MUD step estimating the data
symbols based on the GaBP approach, and the extrinsic beliefs
and soft replicas are exchanged between them to achieve robust
signal recovery. The advantages of the proposed scheme over
SotA alternatives in terms of BER performance are confirmed
via software simulation.

ACKNOWLEDGEMENT

A part of this work was supported by JSPS KAKENHI
Grant Number JP20K14734 and JP21H01332, Japan.

REFERENCES

[1] M. Xiao et al., “Millimeter wave communications for future mobile
networks,” IEEE J-SAC, vol. 35, no. 9, pp. 1909–1935, 2017.

[2] C. Studer and G. Durisi, “Quantized massive MU-MIMO-OFDM up-
link,” IEEE Trans. Commun., vol. 64, no. 6, pp. 2387–2399, 2016.

[3] Y. Li et al., “Channel estimation and performance analysis of one-bit
massive MIMO systems,” IEEE Trans. Signal Processing, vol. 65, no. 15,
pp. 4075–4089, 2017.

[4] S. Jacobsson, G. Durisi, M. Coldrey, et al., “Throughput analysis of
massive MIMO uplink with low-resolution ADCs,” IEEE Trans. Wireless
Commun., vol. 16, no. 6, pp. 4038–4051, 2017.

[5] L. V. Nguyen, A. L. Swindlehurst, and D. H. N. Nguyen, “Linear and
deep neural network-based receivers for massive MIMO systems with
one-bit ADCs,” IEEE Trans. Wireless Commun., vol. 20, no. 11, pp.
7333–7345, 2021.

[6] J. Mo, P. Schniter, and R. W. Heath, “Channel estimation in broadband
millimeter wave MIMO systems with few-bit ADCs,” IEEE Trans.
Signal Processing, vol. 66, no. 5, pp. 1141–1154, 2018.

[7] S. Rao, A. Mezghani, and A. L. Swindlehurst, “Channel estimation in
one-bit massive MIMO systems: Angular versus unstructured models,”
IEEE J-STSP, vol. 13, no. 5, pp. 1017–1031, 2019.
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