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Abstract—Background. Several recent software engineering
studies use data mined from the version control systems adopted
by the different software projects. However, inspecting the data
and statistical methods used in those studies reveals several
problems with the current approach, mainly related to the
dependent nature of the data.

Objective. We analyzed time-dependent data in software engineer-
ing at commit level, and propose an alternative approach based
on time series analysis.

Method. We identified statistical tests designed for time series
analysis and propose a technique to model time dependent data,
similarly to what is done in finance and weather forecasting. We
applied our approach to a small set of projects of different sizes,
investigating the behaviour of the SQALE INDEX, in order to
highlight the time and interdependency of the different commits.
Results. Using these techniques, we analysed and model the data,
showing that it is possible to investigate this type of commit data
using methods from time series analysis.

Conclusion. Based on the promising results, we plan to validate
the robustness of the approach by replicating previous works.

Index Terms—Data Analysis, Time Series Analysis, Time De-
pendent Variables, Empirical Methods, Mining Software Repos-
itory

I. INTRODUCTION

In Software Engineering (SE), and especially in Mining
Software Repository (MSR), researchers often investigate the
relationships among different variables collected from the
history of software projects. As an example, researchers have
investigated correlations between two variables such as code
smells, design smells, and architectural smells [1]-[3], their
trend over time [4], and the impact of different software
qualities [S5]-[7].

However, a large number of these studies have overlooked
the limitations of the temporal dependency of the variables,
and the possible threats related to the usage of statistical
techniques not designed for analyzing temporally dependent
data. As an example, the introduction of a code smell in
a commit heavily depends on the code that was present in
the repository before the commit. Still, most of the studies
have not considered this aspect, mainly due to a lack of clear
statistical techniques that can be used in this context.

From previously published MSR papers, we can highlight
three main issues: 1) discarding the temporal nature of the
commits, 2) assumption of independent data, and 3) the
proportional size of projects, where big projects overwhelm
small ones. To overcome these issues, we propose identifying

a robust approach to analyze dependent data in software
engineering considering the dependency and the time effect.

We conceptualize our approach based on time-series anal-
ysis techniques [8] adopted in finance [9], [10] and weather
forecasting analysis [11] to predict the behavior of a variable
based on its previous observations.

We define a roadmap aimed at defining a new data analysis
approach for dependent data. In this paper, we provide a small
example demonstrating the problems and showing that even a
simple time series model is able to fit well to commit data.
Paper Structure. Section II introduces the motivation behind
this work. Section III describes the techniques for a new
approach, while Section IV presents the achieved preliminary
results and Section V highlights the future benefits of a new
approach. Section VI depicts our roadmap. Finally, conclusion
are presented in Section VIIL.

II. ISSUES WITH THE CURRENT APPROACH

Several recent papers utilize the possibility to mine data
from the projects’ version control systems. Specially MSR
studies use the individual commits and releases from projects
to investigate the different qualities of the source code; see,
e.g. [4]1-[7], [12], [13].

These studies frequently use the structure presented in
Figure 1 for data collection and analysis. The dataset is
constructed by selecting a group of projects and extracting
a set of commits from their version control systems. In some
papers the analyzed dataset is constructed by pooling all of
the selected commits together.

However, when inspecting the approach more closely, three
main issues emerge caused by the nature of the data and the
prerequisites of the commonly used statistical methods.
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Fig. 1: A frequent structure for data collection and analysis
in an MSR paper



1) Discarding the temporal nature of commits. Commits
within a project are ordered and the newer ones are built
on the previous ones. Therefore, they depend on each
other, forming a time series. This temporal information is
completely lost when the commits are grouped together.

2) The assumption of independent data. Several commonly
applied statistical methods such as Mann-Whitney and
one way ANOVA assume that the compared groups
are independent of each other. When the comparison
groups are sampled from the pooled dataset, both groups
are likely to contain commits from the same projects.
Therefore, the data in different groups most likely is
not completely independent and the results of the data
analysis phase could be inaccurate.

3) Big projects overwhelm small ones. To assure repre-
sentativity, the used data sets commonly contain both
big and small projects, a practice also instructed by
the guideline for selecting a diverse set of projects for
an MSR study [14]. A big project can contain tens of
thousands of commits while a small one only hundreds.
As stated before, in a project the commits build on each
other and thus large parts of the code can be the same in
several commits. As a consequence, issues and metrics
are easily very similar between commits of a project.
Therefore, if a dataset contains several big projects, the
commits of the smaller ones might not have an impact
on the results.

Looking at the methodologies adopted in the MSR, we found
that only a limited number of papers adopt some temporal
dependent data analysis techniques [15], [16], such as Markov
chains [17] or time series analysis [18], [19]. Time series anal-
ysis was adopted to forecast future releases in correspondence
with which refactoring activities should be performed [18],
[19]. These two works are based on the same idea as ours, but
the analysis is limited to univariate or bivariate approaches.
Markov chains were applied to understand the evolution
of one variable (such as anti-patterns or code smells) [17].
However, while taking into account the temporal evolution of
a variable, Markov chains make strong assumptions of the
irrelevance of the other measures to the analysis [20].

ITI. A ROBUST APPROACH
A. Steps for a Robust Approach

As we have seen, limiting to static analysis of variables
neglecting the influence of time disregards some important
intra- and inter-variable dependencies which only become
obvious over time. Simply put, today’s bad coding practices
translate into tomorrow’s bugs. We thus believe that fime—or
at least synchronization points—should be considered for the
analysis of dependent variables.

In the following, we provide a step-wise description of the
process to construct the approach.

Step 1: Identification of timed-data analysis techniques.
Several different techniques exist and they depend on the
specific properties of the data at hand. In this paper, we

describe time series analysis methods. However, these are not
the only potentially suitable methods.

Step 2: Applicability of the identified techniques to SE.
Several methods exist for analyzing the evolution of different
number of variables over time. For example, with one variable
it is possible to use an auto regressive (AR) or moving
average (MA) model or more advanced model which combine
these, like an autoregressive moving average (ARMA) model.
In comparison to the current approaches used in SE, time
series analysis solves the issues we have described before;
namely, it considers the knowledge at each time point, the
time sequence, and the local dependencies between variables.

Step 3: Approach validation. Our aim is to evaluate the pro-
posed methodology by selecting a set of published SE studies.
We will replicate these studies by applying our methodology
and comparing the achieved results. The outcome of the
analysis will be discussed with experts in SE to evaluate the
validity of the methodology.

B. Techniques for a Robust Approach

We propose using time series analysis methods that utilize
the time dependency of the data and fit the SE context.

A time series assumes that the current state of a system
depends on the states of the last n time points (this n is often
called the lag), and tries to understand this dependency [8].
This is also true in SE; specifically, if we talk about data
from version control systems (e.g., commit information). Each
commit, in fact, depends atr least on the previous status
of the system, and therefore on the previous commits. It
might also be the case in which a commit depends on other
external factors, which therefore need to be analysed further
(multivariate analysis).

The analysis of this dependency from timed data has
important applications in different domains; most notably in
finance [9], [10] and weather analysis [21], where the goal
is to forecast [11] the future behavior of a variable based on
its previous performance (and that of other relevant variables).
The fundamental technique used in these domains is statistical
time series analysis: robust statistical methods designed for
describing time dependencies accurately, considering also the
presence of noise and natural variations.

One of the most important concepts in time series analysis
methods is the stationarity of the data. Stationarity indicates
that the statistical properties of the time series, like its mean
and variance, are the same regardless of the time of obser-
vation. This makes the series more predictable. For example,
series which constantly grow or have a seasonal behaviour
are not stationary. When the data is non-stationary, it is often
possible to remove trends (and regain stationarity) by differ-
encing [22]. Data stationarity can usually be verified using
statistical tests like Augmented Dickey-Fuller (ADF) [23],
[24], or Phillips-Perron test [25].

Another useful concept is the one of autocorrelation, which
presents the correlation between a variable at time ¢, i.e. Y (¢),
and its previous (lagged) value Y (¢t — k). As with normal



correlation, the value of autocorrelation varies from -1 to 1.
In an autocorrelation plot the values are visualized for several
lag values. Similarly, the partial autocorrelation also measures
the correlation between Y (¢) and Y (¢ — k) but the effect of
the values between Y(¢) and Y (¢ — k) are removed. Both
autocorrelation and partial autocorrelation are used in this
study to analyze the data and understand its key characteristics.

IV. PRELIMINARY VALIDATION

This section illustrates in practice the problems highlighted
in Section II and demonstrates how a simple time series model
is able to model SE data.

To allow the replicability of the presented results, we
published the complete raw data together with the instructions
for running the analysis in the replication package.'

A. Data

A preliminary analysis was conducted using the Techni-
cal Debt Dataset [26] (version 2.0). The dataset contains
31 projects from Apache Software Foundation. We present
results only for three projects; the smallest project (Zookeeper,
222 commits), the median-size project (HTTP Core, 1,901
commits), and the largest project (Cocoon, 10,206 commits)
in terms of number of commits. The time series are formed by
the commits not the actual times of the commits. The results
for all projects are provided in the replication package.

The analysis is done using only one variable, SQALE INDEX,
to highlight the time and inter dependency of the commits. The
SQALE INDEX is a metric measured by SonarQube and their
documentation defines it as the “effort to fix all Code Smells
in minutes.?” Figure 2 depicts the development of the SQALE
INDEX for the selected projects over their evolution.

B. Analysis

In order to check the fitness of the data with the time
series modelling, we first considered the stationarity of the data
through a Philips-Perron test. The result of the test suggested
non-stationarity, and therefore data had to be differenced in
order to make it stationary. For this reason, we chose a model
able to differenciate the original time series throughout the
analysis to handle non-stationarity (see Section IV-C).

After this step, to determine whether the values of SQALE
INDEX correlate between the commits, we calculated the au-
tocorrelation and partial autocorrelation. The plots in Figure 3
show the correlation and autocorrelation up to lag 30 for the
selected projects. For all three projects, the autocorrelation is
high: especially for Cocoon and HTTP Core it is almost 1
for all calculated lag values. This suggests that the values of
SQALE INDEX in consequent commits strongly depend on each
other. To corroborate this, the partial autocorrelation suggests
that the commits are not autocorrelated if the information
between the commits is not considered. Therefore, significant
amount of information is lost if the time dependency of the
data is not utilized in the data analysis.

Thttps://figshare.com/s/2ddb18e02700c20637¢e5
Zhttps://docs.sonarqube.org/latest/user-guide/metric-definitions/

C. Modelling

Given the type of data with which we are dealing, and its
non-stationarity, we decided to fit the data using an Autore-
gressive Integrated Moving Average (ARIMA) model. We use
this for the selected project to show its ability to predict the
development of the SQALE INDEX. The ARIMA model, as the
name states, is composed of three different parts: the autore-
gressive (AR) part, which is used to regress the target variable
(SQALE INDEX) based on its past values; the integrated (I)
part, which is used to apply a differencing step on the data to
make it stationary; and the moving average (MA) part, which
calculates the moving average of the past regression errors,
and helps to adjust the model accordingly.

Figure 4 depicts the actual values of the SQALE INDEX
and the predictions obtained with the ARIMA model. The
performance of the model was measured using Mean Absolute
Percentage Error (MAPE). The MAPE values for all three
projects are less than 1.5% which suggests a good fitting of the
original data. This test was performed using a basic model, and
no hyperparameter tuning nor other model selection was done:
it does serve though to further corroborate our hypotheses on
the need to utilise time series specific tools to analyse data
from version control systems.

V. A POSSIBLE FUTURE

The example analysis presented in this paper should give
further proof of the existence of the issues in the current
frequently used data analysis approach. Even if the analysis
conducted in this paper does not suggest a new approach,
robust time series analysis show potential for understanding
the dependencies of different project parameters and their
evolution over time. An initial proposal for a revised data
analysis procedure is visualized in Figure 5.

The proposal is to analyze each project separately using
a time series method which deals with the issues with data
dependency and temporal nature and combine the results from
the separate analysis which addresses the issues of large
projects overwhelming the small ones.

The use of time series analysis allows us to foresee possible
improvements and extensions to our framework, based on
existing statistical services. First and foremost, we can forecast
the evolution of some variables, and evaluate the influence of
small changes on the dependent variables over time; that is,
their sensitivity to other variables. We are planning to study
the life-cycles of software projects, which is noticeable distinct
from other temporal phenomena, and formalize its phases
(growth, stagnation, decay, acceleration, etc.) according to this
evolution. This information will help us to compare different
projects (among the same developers, and between groups),
and more importantly, identify general behaviors which might
teach us something new about the development process.

Among the multiple approaches available to the problem,
we plan to further investigate the use of time series analysis
tools, including but not limited to the ARIMA model already
showed in this study, filters used in signal processing, and
stochastic processes. The two latter in particular might be
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Fig. 2: The development of SQALE INDEX for Zookeeper (left), HTTP Core, and Cocoon (right) over evolution of the projects.
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Fig. 3: Autocorrelation and partial autocorrelation for Zookeeper (top), HTTP Core (middle), and Cocoon (bottom).
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Fig. 5: The proposed data analysis approach.

useful for analyzing the commit data as time series: they
have been already proven useful in addressing similar issues
in the financial field, as they can take into account multiple
components (including a random and noisy component) which
might be found also in this data.

We note that, as stated in Section II, none of these tasks can
be performed through the existing techniques which disregard
the temporal component of the data points. Moreover, our
approach provides more fine-grained results, allowing for
subtle dependencies. We thus expect our approach to outper-
form existing methods after additional development, which is
already ongoing.

VI. THE ROADMAP

To adopt this new approach for the data analysis methodol-
ogy protocol, it is necessary to further develop the foundations
established in Section III. Our proposed roadmap includes the
following steps:

1) Establish an approach to analyze dependent data in SE.

2) Compare the approach with the traditional ones adopted
by SE studies.

3) Improve the proposed approach by applying it to previous
SE studies and comparing the obtained results.

4) Elaborate a protocol on how to apply this approach.

VII. CONCLUSIONS

In this paper, we conceptualize the problems and a new
approach to analyze dependent data in software engineering
taking into consideration the time effect. We applied time-
series analysis techniques successfully adopted in other do-
mains (e.g. finance) to predict the behavior of a variable based
on previous observations of a set of variables.

In order to validate our approach, we define a roadmap that
includes four steps. We already started to apply our approach
to a small set of projects investigating the relationship between
two variables calculated at the commit level applying two
different models.

As future work, we are planning to validate the robustness
of the approach by replicating previous works.
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