
1

Abstract— Computation ability of an FPGA device is
determined by three factors: clock frequency, number of logic
elements available and efficiency of resource usage, i.e., amount of
useful computing works done by unit number of logic elements
per clock cycle. The increase of resource is primarily the result of
technology progress while the efficient use of the resources is the
responsibility of the users. In this document, a variety of
examples of the FPGA application in the high-energy physics and
accelerator instrumentation will be discussed with emphasis on
resource awareness issues. For the FPGA/reconfigurable
computing, rich experiences can be transplanted from micro-
processor counterpart. While on the other hand FPGA specific
issues should be dealt with differently. Several principles in both
aspects will be summarized. Topics of this document include: (1)
Recognizing FPGA and microcomputer resources, similarities
and differences. (2) Flatten designs vs. sequential designs. (3)
Principle of loop reduction. (4) Inexplicit computing and hidden
resources.

Index Terms— FPGA Firmware, FPGA Computation,
Reconfigurable Computing.

I. INTRODUCTION
N high-energy physics experiment, FPGA devices have been
broadly utilized in the trigger and DAQ systems. Examples

of the FPGA application are seen in the several areas: (1) glue
logic, (2) signal digitization including TDC and ADC, (3) data
organization including zero-suppression, event building etc.
(4) communication and (5) reconfigurable computing. The
total number of useful computations done by a given FPGA
device in unit time is a product of clock frequency, amount of
logic elements and algorithm efficiency. The electronics
technology progress has increased the clock frequency and the
number of transistors in a device nearly continuously. On the
other hand, the improvement of algorithm efficiency is
discouraged under the expectation of continuous technology
progress. In practical design work, a bigger, slower and costly
scheme can become usable after a faster and larger FPGA (or

Manuscript received May 15, 2007. This work was supported in part by

Universities Research Association Inc. under Contract No. DE-AC02-
76CH03000 with the United States Department of Energy.

J. Wu is with Fermi National Accelerator Laboratory, Batavia, IL 60510
USA (phone: 630-840-8911; fax: 630-840-2950; e-mail: jywu168@
fnal.gov).

micro-processor) becomes available in the market. The
accumulation of design examples and “successful experience”
under this climate will become a problem both in technical and
sociological domain.

In this paper, several examples of the FPGA application in
the high-energy physics and accelerator instrumentation will
be discussed with emphasis on resource awareness issues.
Saving resource will not only benefit today’s work, but will
also benefit our future works when a design is reused.

II. RECOGNIZING FPGA AND MICROCOMPUTER RESOURCES
We use a simple example shown in Fig. 1 to illustrate

similarities and differences of micro-processor and FPGA
resources.

Most of today’s micro-processor is based on the arithmetic-

logic unit (ALU). The ALU as well as other process units
change their functionality depending on the control signals
which are generated by decoding the micro-instructions. The
users provide data to be processed and a sequence of micro-
instructions or program to perform the computing tasks.

In FPGA, the computations such as addition, subtraction
and multiplication etc. can be done in several process units,
rather than in one ALU. The program of the computing tasks
is specified not only as a sequence, but also as the
interconnection of the process units.

In terms of information flow, micro-instructions of the
program are fetched typically once every clock cycle in micro-
processor. In FPGA, on the other hand, it is possible to let the
program or the interconnections of process units to be
stationary while let data to be pipelined through.

It is certainly possible to implement a micro-processor in an
FPGA. Sometimes, FPGA is a good prototyping platform for

Resource Awareness FPGA Design Practices for
Reconfigurable Computing: Principles and

Examples
Jinyuan Wu

I

(100+3-4)*5+7 =?

100

3
4

5
7Control:

Data: 100,3,4,5,7

LD (-) (+)(*)(+)

CPU FPGAData
Program

Configuration

Data
Program

(100+3-4)*5+7 =?

100

3
4

5
7Control:

Data: 100,3,4,5,7

LD (-) (+)(*)(+)

CPU FPGAData
Program

Configuration

Data
Program

Fig. 1. Comparison of micro-processor and FPGA

FERMILAB-CONF-07-129-E

2

digital circuits including micro-processors. However, the
flexibility of FPGA is at the cost of high transistor usage.
Using FPGA to simply duplicate micro-processors is not
economical in terms of cost and power consumption. The
most attractive feature of FPGA is that the computing
architectures in FPGA need not to be the same as in micro-
processors. The users are allowed to construct their own
architecture suitable for their own computing tasks.

III. FLATTEN DESIGNS VS. SEQUENTIAL DESIGNS
The micro-processors are fully sequential designs.

Computing works are performed one instruction at a time. In
the FPGA, on the other hand, a fully flatten designs can be
implemented. In the fully flatten designs, different
computation steps are performed by different process blocks.

The advantage of fully flatten design is potentially large
data throughput. However, the drawback is the large logic
element usage. If in a given computing task, the data
throughput is not extremely high, for example, if there are a
few clock cycles between two new input data, it is more
economical to utilize partially flatten and partially sequential
designs as shown in Fig. 2.

Sequencing a process does not reduce number of total

computations. It only reuses the silicon resource in several
clock cycles so that several computations can be performed in
one set of process resource. It is a simple but very useful trick
in the FPGA design works.

It should be pointed out that rarely-used processes need
sufficient optimizations. This is in contrary with the
experiences gained in software programming in which only the
most frequently executed program segment needs to be
optimized. For example, the system initialization process is
only used each time when the system is powering up or is
being reset, but it may need large amount of logic elements if
designed in flatten fashion. In FPGA, the logic elements
dedicated for rarely-used processes cost the same as the ones
for the frequently-used processes. So it is important to review
resource usages of system initialization or similar processes
and consider sequencing the processes if it is necessary.

Sequence control is normally implemented using either
finite state machines (FSM) or embedded micro-processor
cores. When an input data item is to be fed through a fast and
very simple process, typically using a few clock cycles, FSM is
a suitable means of sequence control. FSM also responds to

external conditions promptly and accurately. However, the
sequence or program in the FSM is not easy to change and
debug, especially when irregularities exist in the sequence.
Embedded microprocessor is another option of sequence
control. The drawback of a microprocessor is the large
resource usage. The micro-processor is a better choice only if
a data item is to be processed with a very complicated
program, typically using thousands of clock cycles.

When a data item is to be processed with a medium length
program, e.g., using a few hundred clock cycles, a micro-
sequencer becomes a better option. We have developed a
micro-sequencer called the Enclosed Loop Micro-Sequencer
(ELMS) [1] as shown in Fig. 3.

The primary difference between the ELMS and regular

micro-processor/micro-sequencer is that the ELMS supports
“FOR” loops with predefined iterations at the machine code
level and it is self-sufficient to run multi-layer nested-loop
programs.

The ELMS shares many micro-structures with typical
micro-processors. However, it is not a micro-processor
intrinsically since it does not process data. The data are
processed by external data process blocks that is sequenced by
the ELMS via toggling the user control signals.

IV. THE PRINCIPLE OF LOOP REDUCTION
As mentioned earlier, sequencing a process does not reduce

number of total computations. It only trades off silicon size
with clock cycles. The most fundamental resource saving
approach is to reduce total number of computations. The
places where most computations can be reduced are inside
loops, especially inside the inner-most layer of nested loops, in
which each micro-instruction is repeatedly executed multiple
times in different iterations. We loosely refer this kind of
practices as “loop reduction”.

There are two types of loop reduction: (1) to reduce total
number of iterations and (2) to reduce number of computations
within each pass. There are rich experiences we can borrow
from micro-computing in both type of loop reductions. In the

ROM
128x

36bits

+1

CondJMP

PC

Reset

Loop & Return
Registers

+ Stack (128 words)

Compare

RTNJMPIF

CNT

endA

bckA

Push
Pop

LoopBack

DEC

RTN

LastPass

LoopBack = DEC =
(PC==endA) && (CNT!=0)

LastPass =
(PC==endA) && (CNT==1)

User
Control
Signals

desA

JMP

0x04

RUNat04 cnt EndA BckA

ROM
128x

36bits

+1

CondJMP

PC

Reset

Loop & Return
Registers

+ Stack (128 words)

Compare

RTNJMPIF

CNT

endA

bckA

Push
Pop

LoopBack

DEC

RTN

LastPass

LoopBack = DEC =
(PC==endA) && (CNT!=0)

LastPass =
(PC==endA) && (CNT==1)

User
Control
Signals

desA

JMP

0x04

RUNat04 cnt EndA BckA

Fig. 3. Detailed block diagram of the Enclosed Loop Micro-Sequencer
(ELMS): The Loop & Return Registers + Stack block provides support of
the “FOR” loop with constant iterations.

OP1

Initialization

OP2 OP3 OP4

OP1 OP2 OP3 OP4

OP1 OP2 OP3 OP4

OP1 OP2 OP3 OP4

Initialization 1Initialization 2Initialization 3

OP1OP2OP3OP4

OP1OP2OP3OP4

OP1OP2OP3OP4

OP1OP2OP3OP4

OP1

Initialization

OP2 OP3 OP4

OP1 OP2 OP3 OP4

OP1 OP2 OP3 OP4

OP1 OP2 OP3 OP4

Initialization 1Initialization 2Initialization 3

OP1OP2OP3OP4

OP1OP2OP3OP4

OP1OP2OP3OP4

OP1OP2OP3OP4

Fig. 2. A fully flatten design and a partially sequential design

3

Fast Fourier Transform (FFT), for example, the number of
iterations is reduced from O(n2) in Discrete Fourier Transform
(DFT) to O(n*log(n)), where n is number of data points.
Multiplier-less algorithms, on the other hand, are examples of
reducing computations within the loops.

A few examples will be discussed in the following
subsections.

A. The FPGA Track Fitters
Consider a curved track in a multi-plane detector as shown

in Fig. 4. Hit coordinates yi on the planes are measured.

The curved track is modeled by the following equation:

2
000)()(zzzzhyy −+−+= η (1)

The track fitting or calculating the parameters in the
equation above from the hit coordinates is normally considered
a software task. The formulae of calculating the parameters
can be written as inner products of hit points and a set of
predefined coefficients. It is possible to implement inner
products using FPGA as shown in Fig. 5(a).

An example of choosing coefficients for fitting the curvature

of the tracks with odd numbers of hits is shown in Table I.
The columns of ei in Table I represent coefficients derived
from the least-squares fitting.

The e[i] coefficients are chosen in a spread sheet, guided by
the ei coefficients and they are “two-bit” numbers. This is the
basis of multiplier-less implementation of the FPGA track
fitter [2] shown in Fig. 5(b).

The multiplication in the inner product calculation is
replaced with two shift-add/sub operations. Logarithmic
shifters, instead of multipliers are used in the multiplier-less
implementation.

Since the parameterization of the track in Equation (1) is
chosen with symmetry around z0, the coefficients for the least-
squares fitting are also symmetric. In our work, the coefficient
selection is semi-automatic, partially for purpose of our own

better understanding to the problem. Clearly it is not too
difficult to write a program that chooses the coefficients
automatically.

The relative errors contributed by the parameter η for both

algorithms are calculated. The error here is defined as
transverse reconstruction RMS error after projecting the track
by half-length (L/2) from first or last hit of the track, with unit
of the RMS error for the y[i] measurements. Assume the
errors of y[i] measurements δyi are independent and they have
a same RMS value δy, then the error of calculating parameter
η can be estimated:

4096/])[(2∑=
i

ieyδδη (2)

It can be seen that the measurement errors for the multiplier-
less algorithm are only slightly larger than the one from the
mathematically perfect least square algorithm.

B. The Tiny Triplet Finder
To identify and to confirm a straight-line segment in a plane

with 2 parameters, for example, at least 3 hits that satisfy a
constraint are needed. The 3 hits are grouped together to form
a data item called “triplet”. Straightforward software
implementation of such a function would require O(n3)
execution time, where n is number of hits per plane, in order to
examine all possible combinations of three hits using three
layers of nested loop. In FPGA hardware implementation, this
execution time must be reduced to O(n), to match the time
required to fetch the data. The execution time is reduced by
“unrolling” two layers of loops, which consumes a significant
amount of silicon resources in FPGA devices. The number of
logic elements needed in many typical triplet finding
implementations is O(N2) where N is the number of bins that
each plane is divided into.

An algorithm, the Tiny Triplet Finder (TTF) [3] was
developed for triplet finding. The logic element usage of the
TTF implemented in FPGA devices is O(N log(N)) which is
significantly smaller than O(N2) when N is large.

z=z0(z-z0)=-2 (z-z0)=+2 (z-z0)=+4(z-z0)=-4

4h
y0

-4η

z=z0(z-z0)=-2 (z-z0)=+2 (z-z0)=+4(z-z0)=-4

4h
y0

-4η

Fig. 4. Curved track in a multi-plane detector

y1y2y3y4y5y6y7

∑

∑

∑

=

=

=

i
ii

i
ii

i
ii

ye

ydh

ycy

η

0

c1

c2

c3

c4

c5

c6

c7

d1

d2

d3

d4

d5

d6

d7

e1

e2

e3

e4

e5

e6

e7

X

Σ

X

Σ

X

Σ

y1y2y3y4y5y6y7

∑

∑

∑

=

=

=

i
ii

i
ii

i
ii

ye

ydh

ycy

η

0

c1

c2

c3

c4

c5

c6

c7

d1

d2

d3

d4

d5

d6

d7

e1

e2

e3

e4

e5

e6

e7

X

Σ

X

Σ

X

Σ

(a)

Σ Σ Σ

∑

∑

∑

=

=

=

i
ii

i
ii

i
ii

ye

ydh

ycy

η

0

y1y2y3y4y5y6y7

x1x2x3x4x5x6x7

<<

+/- +/- +/-

<< <<

4
+1

8
-1

128
-16

Σ Σ Σ

∑

∑

∑

=

=

=

i
ii

i
ii

i
ii

ye

ydh

ycy

η

0

y1y2y3y4y5y6y7

x1x2x3x4x5x6x7

<<

+/- +/- +/-

<< <<

4
+1

8
-1

128
-16

(b)
Fig. 5. The FPGA track fitters: (a) regular, (b) multiplier-less approaches.

TABLE I
COEFFICIENTS FOR THE FPGA TRACK FITTER (CURVATURE, ODD HITS)

Half-length of the Track
16 14 12 10 8 6 4

z-z0 ei e[i] ei e[i] ei e[i] ei e[i] ei e[i] ei e[i] ei e[i]
-16 5.3 6
-14 3.3 2 7.5 8
-12 1.6 2 4.3 4 11.3 12
-10 0.1 0 1.6 2 5.6 5 17.9 18

-8 -1.1 0 -0.7 -2 1.0 1 7.2 7 31.0 31
-6 -2.0 -3 -2.4 -2 -2.6 -4 -1.2 -1 7.8 8 61.0 56
-4 -2.6 -3 -3.6 -5 -5.1 -5 -7.2 -8 -8.9 -9 0.0 12 146.3 144
-2 -3.0 -3 -4.4 -4 -6.6 -5 -10.7 -9 -18.8 -20 -36.6 -40 -73.1 -64
0 -3.2 -2 -4.6 -2 -7.2 -8 -11.9 -14 -22.2 -20 -48.8 -56 -146.3 -160
2 -3.0 -3 -4.4 -4 -6.6 -5 -10.7 -9 -18.8 -20 -36.6 -40 -73.1 -64
4 -2.6 -3 -3.6 -5 -5.1 -5 -7.2 -8 -8.9 -9 0.0 12 146.3 144
6 -2.0 -3 -2.4 -2 -2.6 -4 -1.2 -1 7.8 8 61.0 56
8 -1.1 0 -0.7 -2 1.0 1 7.2 7 31.0 31

10 0.1 0 1.6 2 5.6 5 17.9 18
12 1.6 2 4.3 4 11.3 12
14 3.3 2 7.5 8
16 5.3 6

Error 2.91 3.02 3.05 3.15 3.22 3.26 3.41 3.43 3.65 3.65 3.93 3.99 4.28 4.29
Ratio 1.04 1.03 1.01 1.00 1.00 1.02 1.00

4

V. THE INEXPLICIT COMPUTING AND HIDDEN RESOURCES
In FPGA, computing can be inexplicitly performed in logic

circuits not traditionally considered as computing resources.
An example, the time stamp ordering (TSO) module [4]
designed for Fermilab BTeV experiment [5] is shown in Fig.
6.

The time stamp ordering module receives a cable of 12
optical fibers, 2.5Gb/s each. It stores the random hit data
according to the beam cross-over (BCO) number (time stamp)
of the hit in temporary memories. After a sufficiently long
period of time and the hit data from a BCO are believed have
all arrived, the hit data in a BCO are output together to the
pixel pre-processor (PP) stage.

To perform the time stamp ordering function, 4 FPGA
devices (Altera EP1C6Q240) [6] are use in a TSO module.
Data from 3 fibers are handles in one FPGA. Each FPGA is
connected to 2 zero bus turnaround (ZBT) synchronous
random access memories (SRAM) of size 128K x 32 bits
running on a 125 MHz clock. The memories are deep enough
to store up to 128 non-empty BCO buckets, which are more
than an accelerator turn worth of data. Each FPGA outputs
data to 8 differential pairs at a data rate of 375 Mb/s per pair.
Each differential pair is routed via the backplane to a PP
module. Under normal operation, data from 3 fiber channels
in a non-empty BCO are sent to a pre-defined PP module with
rotational order.

The data rate of the differential pairs is chosen to be as low
as possible to simplify the design of the interconnection and
the receivers in the later stages. The reader may note that the
total output bandwidth of the TSO module is smaller than the
input bandwidth. The TSO operation is a natural lossless
compression process since only one BCO number is needed to
be attached to a set of detector hits in the output stream.

The time stamp ordering is a computing task inexplicitly
performed that yields a reduction of output data rate. The
computing is performed essentially by the memory devices. In
this design, it is crucial to use true random access memories
rather than dynamic memories that only allow limited random
access.

VI. CONCLUSION
Resource awareness not only saves direct cost, but also

indirect cost like power consumption, PC board layout,
cooling etc. In a lot of time, unnecessary artificial
complexities of a system confuse people, often including its

own designers.
Necessity of resource saving in FPGA design, or in even

broader range, the necessity of resource saving in general,
should be viewed in long term. It affects the future of
electronics and computing in both technical and sociological
aspects.

Code reusing is an almost certain trend in FPGA computing
just as in its counterpart of micro-processor computing.
Designers should keep in mind that a functional block
designed today might be reused thousands times in the future.
Today’s design could become our library or intellectual
property. If the block is designed slightly too big than it
should be, it will be too big in thousands of occurrences in the
future projects.

What’s even worse is that we may gain wrong experiences
from these too-big-blocks. The fear that the firmware won’t fit
causes the planners to reserve excessive costly FPGA
resources on printed circuit boards. It is also possible that
functions can be mistakenly considered too hard to be
implemented in FPGA and resulting in decisions either to
degrade the system performances or to increase complexities
in system architecture.

REFERENCES
[1] J. Wu et al., “Readout process & noise elimination firmware for the

Fermilab Beam Loss Monitor system”, in Proc. 15th IEEE–NPSS Real
Time Conf., Batavia, IL, 2007.

[2] J. Wu et al., “FPGA curved track fitter with very low resource usage”,
IEEE Nuclear Science Symposium Conference Record, p 1290, 2006.

[3] J. Wu et al., “The application of tiny triplet finder (TTF) in BTeV pixel
trigger”, IEEE Tans. Nuclear Science, vol. 53, p 671, 2006.

[4] J. Wu et al., “Integrated Upstream Parasitic Event Building Architecture
for BTeV Level 1 Pixel Trigger System”, IEEE Tans. Nuclear Science,
vol. 53, p 1039, 2006.

[5] E.E. Gottschalk, BTeV detached vertex trigger, Nucl. Instrum. Meth. A
473 (2001) 167.

[6] Altera Corporation, “Cyclone FPGA Family Data Sheet”, (2003)
available via: {http://www.altera.com/}

Input
Ctrl

De-
serial.

BCO

Hit(s)

D

W/R
WA

RA

16

32

RAM

Input
Ctrl

De-
serial.
De-

serial.

BCOBCO

Hit(s)Hit(s)

D

W/R
WA

RA

16

32

RAM

Fig. 6. The time stamp ordering process

