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Abstract— Computation ability of an FPGA device is 
determined by three factors: clock frequency, number of logic 
elements available and efficiency of resource usage, i.e., amount of 
useful computing works done by unit number of logic elements 
per clock cycle.  The increase of resource is primarily the result of 
technology progress while the efficient use of the resources is the 
responsibility of the users.  In this document, a variety of 
examples of the FPGA application in the high-energy physics and 
accelerator instrumentation will be discussed with emphasis on 
resource awareness issues.  For the FPGA/reconfigurable 
computing, rich experiences can be transplanted from micro-
processor counterpart.  While on the other hand FPGA specific 
issues should be dealt with differently.  Several principles in both 
aspects will be summarized.  Topics of this document include: (1) 
Recognizing FPGA and microcomputer resources, similarities 
and differences.  (2) Flatten designs vs. sequential designs.  (3) 
Principle of loop reduction.  (4) Inexplicit computing and hidden 
resources. 
 

Index Terms— FPGA Firmware, FPGA Computation, 
Reconfigurable Computing. 
 

I. INTRODUCTION 
N high-energy physics experiment, FPGA devices have been 
broadly utilized in the trigger and DAQ systems.  Examples 

of the FPGA application are seen in the several areas: (1) glue 
logic, (2) signal digitization including TDC and ADC, (3) data 
organization including zero-suppression, event building etc. 
(4) communication and (5) reconfigurable computing.  The 
total number of useful computations done by a given FPGA 
device in unit time is a product of clock frequency, amount of 
logic elements and algorithm efficiency.  The electronics 
technology progress has increased the clock frequency and the 
number of transistors in a device nearly continuously.  On the 
other hand, the improvement of algorithm efficiency is 
discouraged under the expectation of continuous technology 
progress.  In practical design work, a bigger, slower and costly 
scheme can become usable after a faster and larger FPGA (or 
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micro-processor) becomes available in the market.  The 
accumulation of design examples and “successful experience” 
under this climate will become a problem both in technical and 
sociological domain. 

In this paper, several examples of the FPGA application in 
the high-energy physics and accelerator instrumentation will 
be discussed with emphasis on resource awareness issues.  
Saving resource will not only benefit today’s work, but will 
also benefit our future works when a design is reused. 

II. RECOGNIZING FPGA AND MICROCOMPUTER RESOURCES 
We use a simple example shown in Fig. 1 to illustrate 

similarities and differences of micro-processor and FPGA 
resources. 

 
Most of today’s micro-processor is based on the arithmetic-

logic unit (ALU).  The ALU as well as other process units 
change their functionality depending on the control signals 
which are generated by decoding the micro-instructions.  The 
users provide data to be processed and a sequence of micro-
instructions or program to perform the computing tasks. 

In FPGA, the computations such as addition, subtraction 
and multiplication etc. can be done in several process units, 
rather than in one ALU.  The program of the computing tasks 
is specified not only as a sequence, but also as the 
interconnection of the process units. 

In terms of information flow, micro-instructions of the 
program are fetched typically once every clock cycle in micro-
processor.  In FPGA, on the other hand, it is possible to let the 
program or the interconnections of process units to be 
stationary while let data to be pipelined through. 

It is certainly possible to implement a micro-processor in an 
FPGA.  Sometimes, FPGA is a good prototyping platform for 
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digital circuits including micro-processors.  However, the 
flexibility of FPGA is at the cost of high transistor usage.  
Using FPGA to simply duplicate micro-processors is not 
economical in terms of cost and power consumption.  The 
most attractive feature of FPGA is that the computing 
architectures in FPGA need not to be the same as in micro-
processors.  The users are allowed to construct their own 
architecture suitable for their own computing tasks. 

III. FLATTEN DESIGNS VS. SEQUENTIAL DESIGNS 
The micro-processors are fully sequential designs.  

Computing works are performed one instruction at a time.  In 
the FPGA, on the other hand, a fully flatten designs can be 
implemented.  In the fully flatten designs, different 
computation steps are performed by different process blocks. 

The advantage of fully flatten design is potentially large 
data throughput.  However, the drawback is the large logic 
element usage.  If in a given computing task, the data 
throughput is not extremely high, for example, if there are a 
few clock cycles between two new input data, it is more 
economical to utilize partially flatten and partially sequential 
designs as shown in Fig. 2.   

 
Sequencing a process does not reduce number of total 

computations.  It only reuses the silicon resource in several 
clock cycles so that several computations can be performed in 
one set of process resource.  It is a simple but very useful trick 
in the FPGA design works. 

It should be pointed out that rarely-used processes need 
sufficient optimizations.  This is in contrary with the 
experiences gained in software programming in which only the 
most frequently executed program segment needs to be 
optimized.  For example, the system initialization process is 
only used each time when the system is powering up or is 
being reset, but it may need large amount of logic elements if 
designed in flatten fashion.  In FPGA, the logic elements 
dedicated for rarely-used processes cost the same as the ones 
for the frequently-used processes.  So it is important to review 
resource usages of system initialization or similar processes 
and consider sequencing the processes if it is necessary. 

Sequence control is normally implemented using either 
finite state machines (FSM) or embedded micro-processor 
cores.  When an input data item is to be fed through a fast and 
very simple process, typically using a few clock cycles, FSM is 
a suitable means of sequence control.  FSM also responds to 

external conditions promptly and accurately.  However, the 
sequence or program in the FSM is not easy to change and 
debug, especially when irregularities exist in the sequence.  
Embedded microprocessor is another option of sequence 
control.  The drawback of a microprocessor is the large 
resource usage.  The micro-processor is a better choice only if 
a data item is to be processed with a very complicated 
program, typically using thousands of clock cycles. 

When a data item is to be processed with a medium length 
program, e.g., using a few hundred clock cycles, a micro-
sequencer becomes a better option.  We have developed a 
micro-sequencer called the Enclosed Loop Micro-Sequencer 
(ELMS) [1] as shown in Fig. 3. 

 
The primary difference between the ELMS and regular 

micro-processor/micro-sequencer is that the ELMS supports 
“FOR” loops with predefined iterations at the machine code 
level and it is self-sufficient to run multi-layer nested-loop 
programs. 

The ELMS shares many micro-structures with typical 
micro-processors.  However, it is not a micro-processor 
intrinsically since it does not process data.  The data are 
processed by external data process blocks that is sequenced by 
the ELMS via toggling the user control signals. 

IV. THE PRINCIPLE OF LOOP REDUCTION 
As mentioned earlier, sequencing a process does not reduce 

number of total computations.  It only trades off silicon size 
with clock cycles.  The most fundamental resource saving 
approach is to reduce total number of computations.  The 
places where most computations can be reduced are inside 
loops, especially inside the inner-most layer of nested loops, in 
which each micro-instruction is repeatedly executed multiple 
times in different iterations.  We loosely refer this kind of 
practices as “loop reduction”. 

There are two types of loop reduction: (1) to reduce total 
number of iterations and (2) to reduce number of computations 
within each pass.  There are rich experiences we can borrow 
from micro-computing in both type of loop reductions.  In the 
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Fig. 3.  Detailed block diagram of the Enclosed Loop Micro-Sequencer 
(ELMS):  The Loop & Return Registers + Stack block provides support of 
the “FOR” loop with constant iterations.  
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Fig. 2.  A fully flatten design and a partially sequential design 
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Fast Fourier Transform (FFT), for example, the number of 
iterations is reduced from O(n2) in Discrete Fourier Transform 
(DFT) to O(n*log(n)), where n is number of data points.  
Multiplier-less algorithms, on the other hand, are examples of 
reducing computations within the loops. 

A few examples will be discussed in the following 
subsections. 

A. The FPGA Track Fitters 
Consider a curved track in a multi-plane detector as shown 

in Fig. 4.  Hit coordinates yi on the planes are measured. 

 
The curved track is modeled by the following equation:  

2
000 )()( zzzzhyy −+−+= η (1) 

The track fitting or calculating the parameters in the 
equation above from the hit coordinates is normally considered 
a software task.  The formulae of calculating the parameters 
can be written as inner products of hit points and a set of 
predefined coefficients.  It is possible to implement inner 
products using FPGA as shown in Fig. 5(a). 

 
An example of choosing coefficients for fitting the curvature 

of the tracks with odd numbers of hits is shown in Table I.  
The columns of ei in Table I represent coefficients derived 
from the least-squares fitting.   

The e[i] coefficients are chosen in a spread sheet, guided by 
the ei coefficients and they are “two-bit” numbers.  This is the 
basis of multiplier-less implementation of the FPGA track 
fitter [2] shown in Fig. 5(b). 

The multiplication in the inner product calculation is 
replaced with two shift-add/sub operations.  Logarithmic 
shifters, instead of multipliers are used in the multiplier-less 
implementation. 

Since the parameterization of the track in Equation (1) is 
chosen with symmetry around z0, the coefficients for the least-
squares fitting are also symmetric.  In our work, the coefficient 
selection is semi-automatic, partially for purpose of our own 

better understanding to the problem.  Clearly it is not too 
difficult to write a program that chooses the coefficients 
automatically. 

 
The relative errors contributed by the parameter η for both 

algorithms are calculated.  The error here is defined as 
transverse reconstruction RMS error after projecting the track 
by half-length (L/2) from first or last hit of the track, with unit 
of the RMS error for the y[i] measurements.  Assume the 
errors of y[i] measurements δyi are independent and they have 
a same RMS value δy, then the error of calculating parameter 
η can be estimated: 

4096/])[( 2∑=
i

ieyδδη (2) 

It can be seen that the measurement errors for the multiplier-
less algorithm are only slightly larger than the one from the 
mathematically perfect least square algorithm.  

B. The Tiny Triplet Finder 
To identify and to confirm a straight-line segment in a plane 

with 2 parameters, for example, at least 3 hits that satisfy a 
constraint are needed.  The 3 hits are grouped together to form 
a data item called “triplet”.  Straightforward software 
implementation of such a function would require O(n3)
execution time, where n is number of hits per plane, in order to 
examine all possible combinations of three hits using three 
layers of nested loop.  In FPGA hardware implementation, this 
execution time must be reduced to O(n), to match the time 
required to fetch the data.  The execution time is reduced by 
“unrolling” two layers of loops, which consumes a significant 
amount of silicon resources in FPGA devices.  The number of 
logic elements needed in many typical triplet finding 
implementations is O(N2) where N is the number of bins that 
each plane is divided into.   

An algorithm, the Tiny Triplet Finder (TTF) [3] was 
developed for triplet finding.  The logic element usage of the 
TTF implemented in FPGA devices is O(N log(N)) which is 
significantly smaller than O(N2) when N is large. 
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Fig. 4.  Curved track in a multi-plane detector 
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Fig. 5.  The FPGA track fitters: (a) regular, (b) multiplier-less approaches.  

TABLE I
COEFFICIENTS FOR THE FPGA TRACK FITTER (CURVATURE, ODD HITS)

Half-length of the Track 
16 14 12 10 8 6 4 

z-z0 ei e[i] ei e[i] ei e[i] ei e[i] ei e[i] ei e[i] ei e[i]
-16 5.3 6
-14 3.3 2 7.5 8
-12 1.6 2 4.3 4 11.3 12
-10 0.1 0 1.6 2 5.6 5 17.9 18

-8 -1.1 0 -0.7 -2 1.0 1 7.2 7 31.0 31
-6 -2.0 -3 -2.4 -2 -2.6 -4 -1.2 -1 7.8 8 61.0 56
-4 -2.6 -3 -3.6 -5 -5.1 -5 -7.2 -8 -8.9 -9 0.0 12 146.3 144
-2 -3.0 -3 -4.4 -4 -6.6 -5 -10.7 -9 -18.8 -20 -36.6 -40 -73.1 -64
0 -3.2 -2 -4.6 -2 -7.2 -8 -11.9 -14 -22.2 -20 -48.8 -56 -146.3 -160
2 -3.0 -3 -4.4 -4 -6.6 -5 -10.7 -9 -18.8 -20 -36.6 -40 -73.1 -64
4 -2.6 -3 -3.6 -5 -5.1 -5 -7.2 -8 -8.9 -9 0.0 12 146.3 144
6 -2.0 -3 -2.4 -2 -2.6 -4 -1.2 -1 7.8 8 61.0 56
8 -1.1 0 -0.7 -2 1.0 1 7.2 7 31.0 31

10 0.1 0 1.6 2 5.6 5 17.9 18
12 1.6 2 4.3 4 11.3 12
14 3.3 2 7.5 8
16 5.3 6

Error 2.91 3.02 3.05 3.15 3.22 3.26 3.41 3.43 3.65 3.65 3.93 3.99 4.28 4.29
Ratio 1.04 1.03 1.01 1.00 1.00 1.02 1.00
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V. THE INEXPLICIT COMPUTING AND HIDDEN RESOURCES 
In FPGA, computing can be inexplicitly performed in logic 

circuits not traditionally considered as computing resources.  
An example, the time stamp ordering (TSO) module [4] 
designed for Fermilab BTeV experiment [5] is shown in Fig. 
6.

The time stamp ordering module receives a cable of 12 
optical fibers, 2.5Gb/s each.  It stores the random hit data 
according to the beam cross-over (BCO) number (time stamp) 
of the hit in temporary memories.  After a sufficiently long 
period of time and the hit data from a BCO are believed have 
all arrived, the hit data in a BCO are output together to the 
pixel pre-processor (PP) stage. 

To perform the time stamp ordering function, 4 FPGA 
devices (Altera EP1C6Q240) [6] are use in a TSO module.  
Data from 3 fibers are handles in one FPGA.  Each FPGA is 
connected to 2 zero bus turnaround (ZBT) synchronous 
random access memories (SRAM) of size 128K x 32 bits 
running on a 125 MHz clock.  The memories are deep enough 
to store up to 128 non-empty BCO buckets, which are more 
than an accelerator turn worth of data.  Each FPGA outputs 
data to 8 differential pairs at a data rate of 375 Mb/s per pair.  
Each differential pair is routed via the backplane to a PP 
module.  Under normal operation, data from 3 fiber channels 
in a non-empty BCO are sent to a pre-defined PP module with 
rotational order. 

The data rate of the differential pairs is chosen to be as low 
as possible to simplify the design of the interconnection and 
the receivers in the later stages.  The reader may note that the 
total output bandwidth of the TSO module is smaller than the 
input bandwidth.  The TSO operation is a natural lossless 
compression process since only one BCO number is needed to 
be attached to a set of detector hits in the output stream. 

The time stamp ordering is a computing task inexplicitly 
performed that yields a reduction of output data rate.  The 
computing is performed essentially by the memory devices.  In 
this design, it is crucial to use true random access memories 
rather than dynamic memories that only allow limited random 
access. 

VI. CONCLUSION 
Resource awareness not only saves direct cost, but also 

indirect cost like power consumption, PC board layout, 
cooling etc.  In a lot of time, unnecessary artificial 
complexities of a system confuse people, often including its 

own designers. 
Necessity of resource saving in FPGA design, or in even 

broader range, the necessity of resource saving in general, 
should be viewed in long term.  It affects the future of 
electronics and computing in both technical and sociological 
aspects. 

Code reusing is an almost certain trend in FPGA computing 
just as in its counterpart of micro-processor computing.  
Designers should keep in mind that a functional block 
designed today might be reused thousands times in the future.  
Today’s design could become our library or intellectual 
property.  If the block is designed slightly too big than it 
should be, it will be too big in thousands of occurrences in the 
future projects.   

What’s even worse is that we may gain wrong experiences 
from these too-big-blocks.  The fear that the firmware won’t fit 
causes the planners to reserve excessive costly FPGA 
resources on printed circuit boards.  It is also possible that 
functions can be mistakenly considered too hard to be 
implemented in FPGA and resulting in decisions either to 
degrade the system performances or to increase complexities 
in system architecture. 
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Fig. 6.  The time stamp ordering process  


