
Please do not remove this page

Tool support for agent development using the
Prometheus methodology
Padgham, Lin; Thangarajah, John; Winikoff, Michael
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Tool-support-for-agent-development-using/9921859127901341/filesAn
dLinks?index=0

Padgham, L., Thangarajah, J., & Winikoff, M. (2005). Tool support for agent development using the
Prometheus methodology. Proceedings of the Fifth International Conference On Quality Software (QSIC
2005), 383–388. https://doi.org/10.1109/QSIC.2005.66

Published Version: https://doi.org/10.1109/QSIC.2005.66

Document Version: Accepted Manuscript

Downloaded On 2024/03/29 06:58:19 +1100
© 2005 IEEE
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Tool-support-for-agent-development-using/9921859127901341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/conferenceProceeding/Tool-support-for-agent-development-using/9921859127901341
http://doi.org/doi:https://doi.org/10.1109/QSIC.2005.66
https://researchrepository.rmit.edu.au


Tool Support for Agent Development using the Prometheus Methodology

Lin Padgham∗

RMIT University,
Melbourne, Australia

John Thangarajah
RMIT University,

Melbourne, Australia

Michael Winikoff
RMIT University,

Melbourne, Australia

Abstract

We believe that tool support is very important for any
methodology. In this paper we describe PDT (Prometheus
Design Tool) which supports the design of an intelligent
agent system using the Prometheus methodology. We de-
scribe how PDT supports the various stages of Prometheus
through various means such as consistency checking, sup-
port for entity propagation, and hierarchical views. We will
also describe work that is currently in progress which in-
volves the development of a plug-in for Eclipse with the
aim of creating a single integrated development environ-
ment which will support the complete development cycle of
an agent system from design to deployment.

1. Introduction

Prometheus [6] is an intelligent agent develop-
ment methodology. A key feature of this methodology
is that it covers all phases of development - specifi-
cation, design, implementation and testing/debugging.
Like most modern software engineering methodolo-
gies, Prometheus is intended to be applied in an itera-
tive manner. One consequence of this is that when changes
are made to the design other parts of the design are of-
ten affected, and need to be updated. However, it is virtu-
ally impossible to manually ensure that the design remains
consistent. Therefore some form of tool support for consis-
tency checking is highly desirable. This need for tool sup-
port was also confirmed by feedback from students and
others who used Prometheus prior to tool support be-
ing available.

The Prometheus Design Tool (PDT) is developed to sup-
port the Prometheus methodology. In its current state, the
tool provides the system developer with a graphical user in-
terface that supports the development of the various arte-
facts within the Prometheus methodology and assists in

∗ Authors listed alphabetically

maintaining a consistent design by providing cross check-
ing between the various diagrams, automatic propagation of
design elements when possible and appropriate, and name
lookup assistance. The file produced by the tool can be
transformed into an agent programming language (work has
been reported that transforms this output file into a Jadex
agent definition file [10]). The current version of PDT is
Java based and hence is platform independent. The tool is
freely available at http://www.cs.rmit.edu.au/agents/pdt.

We have used PDT to develop some of our research ap-
plications and it has also been used by both undergraduate
and postgraduate students to develop agent applications for
assignments in a class covering agent design and program-
ming. It has been very clear that the quality of student de-
veloped agent systems has improved substantially since the
introduction of a well defined agent development method-
ology. Use of the methodology is far less tedious, and de-
sign documentation has been noticeably improved since the
Prometheus Design Tool has been available.

PDT only supports the system specification and design
stages. One of our ambitions is to develop an IDE that sup-
ports the complete development of an agent system, from
specification and design, to implementation, testing and de-
bugging. To this end, we have started developing a plug-in
for Eclipse1, which is a popular open source workbench for
developing integrated tools, that uses PDT to support the
design of an agent oriented system and is able to automati-
cally generate, from the design, skeleton code of an agent
programming language such as JACK [2]. The code can
then be edited, compiled, tested, debugged and packaged
for deployment from within Eclipse. Creating this plug-in
within Eclipse allows the inheritance of the well developed
features of Eclipse such as CVS integration, ANT Integra-
tion, refactoring capabilities, and many other project man-
agement features. We call this plug-in ADTP (Agent Devel-
opment Tool Plug-in).

In section 2 we will provide a brief overview of the
Prometheus methodology and then in section 3 describe
some detail of the support that PDT provides to the method-

1 http://www.eclipse.org

E79927
Typewritten Text
Citation: Padgham, L, Thangarajah, J and Winikoff, M 2005, 'Tool support for agent development using the Prometheus methodology', in Proceedings of the Fifth International Conference On Quality Software (QSIC 2005), Melbourne, Australia, 19-20 September 2005.

E79927
Typewritten Text

E79927
Typewritten Text

E79927
Typewritten Text



ology. We then discuss our vision of ADTP in section 4 and
finally discuss the current work on both PDT and ADTP and
some other related tools developed by others.

2. Overview of the Prometheus Methodology

The Prometheus methodology contains three main
phases: (i) System Specification, (ii) Architectural De-
sign, and (iii) Detailed Design. Each of these contains
a number of structured processes and results in speci-
fied design artefacts. We describe them briefly, indicat-
ing in particular the artefacts that are produced at each
stage.

2.1. System Specification

The system specification process consists of the follow-
ing steps, which are interleaved and iterated until the speci-
fication is considered sufficiently complete2:

• Identification of actors and their interactions with the
system, in the form of percepts and actions;

• Developing scenarios illustrating the system’s opera-
tion;

• Identification of the system goals and sub-goals;

• Identifying any external data;

• Grouping goals and other items into the basic roles3 of
the system.

Actors are any persons or roles which will interact with
the system, as well as any other stakeholders whose goals
should be considered. Actors may be other software sys-
tems, as well as humans. Interaction scenarios are then iden-
tified for each actor that will interact with the system, sim-
ilarly to the identification of use-cases in object oriented
analysis. Inputs from actor to agent system are then iden-
tified as percepts, while outputs from the system to actors
are identified as actions. In some agent systems, particu-
larly those involving interaction with a physical environ-
ment, management of percepts and actions is quite complex
and requires substantial work.

Each scenario identified also generates a goal of the same
name. This is similar to the Goal-Scenario coupling frame-
work of Rolland et al. [9] which is based around the notion
of a Requirement Chunk (a pair of 〈Goal, Scenario〉). How-
ever Prometheus uses a a unidirectional coupling, rather
than the bidirectional coupling of Rolland et al. Each sce-
nario necessarily has a goal which is linked to it (with the
same name), but the more specific goals may not require a
scenario.

2 Note that this description corresponds to subsequent work [8], not to
what is described in the book [6].

3 In previous publications the term “functionalities” was used.

Each identified scenario is developed with a number of
detailed steps, where each step is a goal, scenario, action
or percept.4 With the coupling identified above, any nested
scenario identified, automatically introduces a goal. Goals
introduced as steps may warrant development of a scenario,
in which case the goal step is automatically modified to be
a scenario step.

Initial goals are identified via the initial scenarios as de-
scribed above, and also by examining the initial system de-
scription. Further goals are then identified by a process of
abstraction and refinement [11]. For each goal, we ask the
question how? and why?, thus identifying new goals, and
forming a goal hierarchy.

Goal refinement (according to van Lamsweerde [11], and
also in Prometheus) can be of two kinds: AND-refinement
and OR-refinement, If a goal is AND-refined, we mean that
subgoals (or answers to the question how?) are steps in
achieving the overall goal, and each step must be done.
If it is OR-refined, then subgoals are alternative ways of
achieving the goal, and doing any one of them is suffi-
cient. Agent systems typically have both these kinds of re-
finements. OR-refinements allow for choice in the way of
achieving goals, while AND-refinements allow for breaking
down into smaller pieces. The use of AND and OR refine-
ments also supports calculations for scoping as described in
[8].

Finally, after goals and scenarios are sufficiently devel-
oped, goals are grouped into roles, where similar goals are
grouped together. Actions and percepts are also allocated to
roles. Scenarios are then annotated with information about
which role each step belongs to, and data requirements are
identified.

2.2. Architectural Design

The Architectural Design phase uses artefacts produced
in the System Specification Phase to determine what agent
types will be included in the system and the interaction be-
tween these agents. The steps in this phase are:

• Determine the agent types

• Develop the interaction protocols

• Develop the system overview diagram

Various mechanisms can be used to analyse potential group-
ings of roles for forming agents. These include data cou-
pling diagrams and agent acquaintance diagrams, which
assist the user in identifying agent types which are not
too tightly coupled. Scenarios from the system specifica-
tion can be used as a guideline to develop interaction di-
agrams which in turn can be used to develop interaction

4 A step other is also allowed within Prometheus, if needed.



protocols which fully define the allowable agent interac-
tions. The overall system structure is captured using a sys-
tem overview diagram, which shows agent types, protocols
specifying interactions between the agent types, the inter-
face to the environment in terms of percepts, actions, and
any external data. Data stores which are shared between
agents are also shown.

2.3. Detailed Design

The Detailed Design phase uses artefacts produced in the
Architectural Design Phase to define the internals of every
agent in the system and to specify how agents accomplish
their overall tasks. Each agent is refined in terms of its capa-
bilities, internal events, plans, and data structures. Each ca-
pability has a capability overview diagram that captures the
structure of the plans within this capability and the events
that are associated with these plans. The dynamic behaviour
is described by process diagrams based on the interaction
protocols identified in the previous phase.

3. Prometheus Design Tool (PDT)

Figure 1, shows a sample screen-shot of PDT. As can be
seen in the figure, the Diagram view of the left hand column
in PDT provides a range of diagrams organised by the three
main phases of the methodology: system specification, ar-
chitectural design and detailed design.

Below the design diagrams on the left hand column is a
scrollable list of all the individual entities of the system or-
ganised by entity type. This list can be filtered by entity
type, for example, to only display the goals of the system.
When an individual entity is selected from this list, or from
any of the diagrams described above, its descriptor form is
displayed on the bottom right hand column of PDT. The de-
scriptor form describes the attributes of a given entity. For
example if it is a role then the descriptor will have the fol-
lowing attributes: name of the role, a brief description, the
percepts that it responds to, the actions that is produced, the
information used, the information produced, and the goals
associated with it.

The following subsections describe some of the features
of PDT and how they support the Prometheus methodology.

3.1. Design Diagram Support

PDT provides the developer with a graphical user inter-
face to enter and edit design diagrams along with appropri-
ate descriptors for each entity.

In the system specification stage the stakeholders dia-
gram allows adding actors, scenarios, percepts, actions, and
their relative associations. This forms the top level view of
the system. The developer can then develop the scenarios in

the scenarios diagram. The goal overview diagram shows
the system goals and their sub-goals. The roles diagram al-
lows the grouping of goals, percepts and actions into roles.

The main support for the architectural design stage is
in the system overview diagram. PDT maintains the consis-
tency of this diagram and the protocol specifications with
respect to interactions between agents. Interaction Protocols
are not yet supported, but there is a separate prototype tool5

which allows AUML interaction protocols to be drawn, and
we are working on adding protocol support to PDT.

The detailed design builds the internals of each agent in
terms of their capabilities, plans, events, and so on, which,
when complete, can be mapped into an agent programming
language such as JACK [2].

3.2. Consistency Checking

The Prometheus design is an iterative process and the
various design stages are linked to each other. Therefore
when changes are made to one aspect of the design the
change may affect other aspects. It is often difficult to know
all the aspects where the changes need to be propagated to,
and therefore an automated process that checks for consis-
tency between the design stages is required. Consistency
checking within PDT has two aspects. One aspect that is
continuously active is the user interface preventing certain
errors from occurring. Some of prevented errors are:

• Definition: it is not possible to have references to non-
existent entities. This is because in PDT if a reference
to an entity is created then the entity is also created if
it does not exist, and when an entity is deleted all ref-
erences to it are deleted as well.

• Naming: it is not possible for two entities to have the
same name, for example a goal and a plan both called
Determine Stocks To Buy, nor can you have two goals
with same name (duplicate entries of the same type).

• Simple type errors: when links are created between en-
tities, only valid links are allowed. For example, it is
not possible in PDT to connect an action to an action.

• Inconsistency between different levels of detail: for ex-
ample, it is not possible to create an incoming percept
to a plan within an agent, without that percept also be-
ing shown on the system overview diagram, as incom-
ing to the agent whose plan it is. Similarly if an agent
is specified only as reading a belief set, it cannot con-
tain a plan which writes to that belief set.

The other aspect is a consistency check that is performed
on demand, using the Tools menu (see Figure 1) with the
Crosscheck option. This generates a list of errors and warn-
ings that can be checked by the developer. Examples of

5 Available from http://www.cs.rmit.edu.au/∼winikoff/auml



Figure 1. Screen-shot of PDT.

a warning are writing of internal data that is never read,
while an example of an error is a mismatch between the
interaction protocol specified between two agents and the
messages actually sent and received by processes within
those agents. Further details on consistency checking can
be found in previous work [5]. The consistency checking
is based on the relationships between design artefacts doc-
umented in the Prometheus methodology, not on a meta-
model.

3.3. Scoping

PDT also provides support for three different levels of
scoping, essential, conditional and optional. This allows a
large project to be managed in such a way that the most im-
portant aspects of the system can be fully developed, in a
consistent manner, prior to starting work on less highly pri-
oritised aspects. This aspect is described in detail in a paper
also at this workshop [8].

Scoping is done based on scenarios, ranked by the devel-
oper on a five point scale, and is then propagated to other
entities. The developer can also specify the relative sizes of
the three partitions (levels) of the system in terms of the al-
lowable percentage of scenarios in each partition.

When the developer requests scoping to be ap-
plied (available from the tool menu in PDT) the scenarios

are partitioned in a way that is as close to the specified par-
tition sizes as possible. All other entities are then assigned
to the appropriate partition in order to maintain over-
all consistency. A button in the diagram window allows
selection of the three different scoping partitions. En-
tities that are at a lower scoping level are shown faded
out. This guides the developer to design prioritised enti-
ties first. Scoping can be applied or re-applied at any time
during system development.

3.4. Entity Propagation

Whenever possible and when appropriate, information is
propagated from one part of the design to another. For ex-
ample, if a goal is associated with a role, and the role is as-
sociated with an agent, then the goal is automatically asso-
ciated with the agent. Graphical representations of entities
are also propagated. For example, if a new goal is created
in the role diagram, then a graphical icon for this goal is au-
tomatically added to the goal overview diagram along with
any sub goal associations that were created.

3.5. Hierarchical views

The tool allows for each agent to be developed with as
many layers of abstraction as needed to keep each layer



manageable in size. This is achieved using capabilities and
capability overview diagrams. However better support for
abstraction is needed at the system level, where an improve-
ment would be to allow a diagram which captures subsys-
tem interaction rather than simply agent interaction.

3.6. Naming Lookup Assist

Entities can be added into the various diagrams by either
creating new entities or by selecting ones that already ex-
ist. When selecting ones that already exist, a scrollable list
of existing entities of the appropriate type is made available
to the user from which to select. This ensures that no nam-
ing errors occur and is also convenient rather than having to
refer back to various other diagrams. This is extremely use-
ful when developing large systems as such trivial errors are
easy to occur but difficult to debug at later stages.

3.7. Report Generation and Diagram Printouts

One of the useful features of PDT is its ability to gen-
erate a design document in HTML format. This document
contains both figures and textual information. The textual
information is obtained from the descriptors of each entity.
The document also contains an index (“Dictionary”) over
all the design entities. PDT also allows each design diagram
to be saved as an image in PNG format which can then be
printed, or included into documents.

4. ADTP - Agent Development Tool Plug-in
for Eclipse

In order to more fully support all aspects of agent soft-
ware development, we have decided to integrate PDT into
Eclipse6.

Eclipse is an extremely popular, well developed, open
source platform, suitable for developing commercial qual-
ity software. It provides a workbench that is fully customis-
able and extensible as it is built on a plug-in architecture. It
provides a rich set of features for support of program devel-
opment, such as: CVS integration, ANT integration, refac-
toring, testing and debugging (including incremental com-
piles and hot swapping of code), ability to incorporate plug-
ins, fully integrated Java IDE, and fully customisable views
and perspectives.

In order to support the ongoing improvement of our
agent development workbench, we have started to build the
ADTP plug-in for Eclipse. This plug in contains extension
points so that it can be extended in a variety of ways. Cur-
rently PDT is incorporated into ADTP as the editor for the
system design files. We7 are in the process of building a new

6 http://www.eclipse.org

plug in for ADTP which will produce skeleton JACK code
for the implementation of the system according to the de-
sign file produced by PDT. It will also be possible to attach
alternative code production plug-ins to produce code for a
variety of different agent systems.

We have taken an approach of incorporating PDT into
ADTP as an external editor for the design files. We chose
this approach because it allows for PDT (and other tools
developed for ADTP) to also be run in a stand alone man-
ner, without Eclipse. This can be advantageous for environ-
ments where Eclipse is not supported, or where it requires
too much of the available resource capacity. However, when
it is available, the extra support provided by Eclipse is in-
valuable in program development. Our approach also allows
for PDT to be developed separately to ADTP.

Currently ADTP contains only PDT, embedded into
Eclipse. However our vision for ADTP is:

• A single environment which supports all phases of
software development from specification and design,
through code generation, version management, testing
and debugging and maintenance.

• The ability to choose different target platforms for
code generation, within the same basic environment.
Different design tools could also potentially be incor-
porated.

• An environment which maintains consistency between
the design and the code. In addition to initial gener-
ation of skeleton code, this involves propagating any
changes in design, through to the code base and vice
versa (or at least identifying where inconsistencies
have arisen).

• Provision of basic support for JACK code editing such
as syntax highlighting and automatic linking to the
JACK API. This is similar to, but not as rich as, the
support that Eclipse provides for Java code. Since
JACK is a superset of Java, the support provided by
Eclipse for Java could be reused.

• Inclusion of specialised debugging tools, some of
which can be based on design artefacts. We have al-
ready done work in this area [7] and are planning to
incorporate this.

• Ability to compile JACK code into Java code using the
JACK compiler.

• Inclusion of support tools for design of non-agent com-
ponents of a system, for example a UML editor, or a
database schema design tool. There is an open source
UML editor plug-in available for Eclipse that could
possibly be a first step in this direction.

7 Actually a student group from the University of Melbourne are doing
this under our guidance.



• Ability to build the project and package up binaries
for deployment. This requires the building of both the
agent and non-agent components, packaging up the
appropriate binaries and resources (libraries and data
files) in a manner that can be installed and run on a
client system.

The general purpose features of Eclipse as already men-
tioned will also contribute substantially to the value of
ADTP as an agent development workbench.

5. Discussion

There are a number of agent development toolkits, but
as far as we are aware, there are relatively few which incor-
porate well-developed design tools such as PDT. One ex-
ception is agentTool8, which supports the MaSE methodol-
ogy [3]. However, the MaSE methodology views agents as
“black boxes” and thus does not support the design of plan-
based agents. The Tropos agent development methodology
[1] does have some tool support9, but this consists of a num-
ber of separate tools that cover different aspects of the soft-
ware engineering process. The closest tool to PDT is TAOM
which also supports a complete agent-oriented software en-
gineering methodology (tropos [1]) that targets BDI-like
agent systems. TAOM also uses Eclipse, but it does not ap-
pear to support cross checking or hierarchical views. The
JACK Design Environment (JDE)10 is also related to our
work, since it provides design diagrams. However, the JDE
does not support system specification activities or high level
design.

An area of work that is crucial for the industrial
acceptance of AOSE methodologies is the unifica-
tion of methodologies leading to a smaller number of
more widely-accepted AOSE methodologies, analo-
gous to the emergence of the UML during the 90’s.
We have begun work on unifying a number of method-
ologies, such as Prometheus [6], ROADMAP [4], Tro-
pos [1] and MaSE [3]. This can be expected to lead to some
changes in PDT, but can also lead to incorporation of dif-
ferent kinds of tools within ADTP.

Acknowledgments

This work is being supported by the Australian Re-
search Council under grant LP0453486, in collaboration
with Agent Oriented Software.

8 http://www.cis.ksu.edu/∼sdeloach/ai/projects/agentTool/
agentool.htm, visited 12th April 2005

9 http://trinity.dit.unitn.it/∼tropos/tools.php, visited 12th April 2005
10 JDE comes as part of JACK Intelligent Agents from Agent Oriented

Software. Trial and/or academic licenses are available. http://www.
agent-software.com.au

References

[1] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. My-
lopoulos. Tropos: An agent-oriented software development
methodology. Autonomous Agents and Multi Agent Systems,
8(3):203–236, May 2004.

[2] P. Busetta, R. Rönnquist, A. Hodgson, and A. Lucas.
JACK Intelligent Agents - Components for Intelligent
Agents in Java. Technical report, Agent Oriented Soft-
ware Pty. Ltd, Melbourne, Australia, 1998. Available from
http://www.agent-software.com.

[3] S. A. DeLoach. Analysis and design using MaSE and agent-
Tool. In Proceedings of the 12th Midwest Artificial Intelli-
gence and Cognitive Science Conference (MAICS), 2001.

[4] T. Juan, A. Pearce, and L. Sterling. Roadmap: extending the
gaia methodology for complex open systems. In Proceed-
ings of the first international joint conference on Autonomous
agents and multiagent systems, pages 3–10, 2002.

[5] L. Padgham and M. Winikoff. Prometheus: A pragmatic
methodology for engineering intelligent agents. In Pro-
ceedings of the OOPSLA 2002 Workshop on Agent-Oriented
Methodologies, pages 97–108, Seattle, 2002.

[6] L. Padgham and M. Winikoff. Developing Intelligent Agent
Systems: A Practical Guide. John Wiley and Sons, 2004.
ISBN 0-470-86120-7.

[7] L. Padgham, M. Winikoff, and D. Poutakidis. Adding debug-
ging support to the Prometheus methodology. Engineering
Applications of Artificial Intelligence, 18(2):173–190, 2005.
Special issue on Agent-oriented Software Development.

[8] M. Perepletchikov and L. Padgham. Systematic incremen-
tal development of agent systems, using prometheus. In
Proceedings of the First international workshop on Integra-
tion of Software Engineering and Agent Technology (ISEAT
2005), Melbourne, Australia, September 2005.

[9] C. Rolland, C. Souveyet, and B. Achour. Guiding goal
modelling using scenarios. IEEE Transactions on Soft-
ware Engineering, Special Issue on Scenario Management,
24(12):1055–1071, 1998.

[10] J. Sudeikat, L. Braubach, A. Pokahr, and W. Lamersdorf.
Evaluation of agent-oriented software methodologies: Ex-
amination of the gap between modeling and platform. In
P. Giorgini, J. Müller, and J. Odell, editors, Agent Oriented
Software Engineering (AOSE), 2004.

[11] A. van Lamsweerde. Goal-oriented requirements engineer-
ing: A guided tour. In Proceedings of the 5th IEEE Interna-
tional Symposium on Requirements Engineering, pages 249–
263, Toronto, Canada, 2001.




