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Abstract—Real-time holographic video communications enable
immersive experiences for next-generation video services in the
future metaverse era. However, high-fidelity holographic videos
require large bandwidth and significant computation resources,
which exceed the transmission and computing capacity of 5G
networks. This article reviews state-of-the-art holographic video
communications techniques and highlights the critical challenges
of delivering such immersive services. We further implement
a preliminary prototype of an AI-driven holographic video
communication system and present some critical experimental
results to evaluate its performance. Finally, we discuss some
potential use cases and identify future research directions for
provisioning real-time and high-quality holographic experiences.

I. INTRODUCTION

Holographic media (e.g., 3D mesh and point cloud) evokes
human beings to expect and aspire for an immersive service
that profoundly integrates the virtual and real worlds [1]. In
particular, the point cloud describes the objects only using a set
of unstructured 3D points with coordinates and color without
topological information, which is more flexible and straight-
forward than the 3D mesh. When compared to conventional
immersive content delivery, the massive volume of point cloud
video streamings (e.g., capturing one-second of raw point
cloud video with one depth camera at 30 FPS (Frames Per Sec-
ond) produces 2.06 Gb of data) poses the following challenges
to existing network service infrastructures including: (1) the
challenge of network transmission capacity, i.e., holographic
point cloud video transmission requires a bandwidth capacity
that is more than Gbps level, which is far beyond the current
transmission capacity of 5G networks, and even future 6G
networks with both breadth and depth of multi-layer coverage
still cannot fulfill the requirements in some scenarios; and
(2) the challenge of adaptive video streaming techniques.
Traditional technologies such as ABR (Adaptive Bit Rate) [2]
have limited effects on optimizing the transmission of vast
amounts of holographic video.

We investigate the existing point cloud video transmission
for holographic media in Table I, including point cloud
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compression and video streaming optimization. Traditional
compression methods include Kdtree-based and Octree-based
solutions, such as popular PCL (Point Cloud Library) [3] and
Draco [4]. Some deep learning-based compression methods
provide lower accuracy loss and higher compression ratios [5],
[6]. Unfortunately, these methods are only applicable for
offline holographic video pre-processing and compression due
to the required high memory and computational overhead.
Besides, most video streaming optimization methods expand
solutions used in VR (Virtual Reality) and 360-degree video
streaming for encoding, tiling, and view angle prediction. For
encoding, although ISO/IEC MPEG (Moving Picture Experts
Group) provides two international standards of V-PCC (Video-
based Point Cloud Compression) and G-PCC (Geometry based
Point Cloud Compression) for point cloud video encoding,
both methods require higher computational resources and costs
than conventional encoding methods. Compared to 3-DoF 360-
degree/VR videos, point cloud video adds 3-DoF location
information, requiring the adaptive adjustment of the quality
of the point cloud video stream with the dynamic change in
physical distance between the user and the scene. This also
leads to more complex and challenging user motion trajectory
and perspective prediction.

TABLE I: Techniques for point cloud video transmission.

Methods Advantages Disadvantages

Point
Cloud

Compression

Kdtree-based/
Octree-based

Easy-to-use
High comput-

ing time
PointNet++/

PU-GAN
High compr-
ession ratio

High compu-
ting resources

Video
Streaming

Optimization

V-PCC/
G-PCC

Extension
of MPEG

High cost & low
performance

Tiling/
View angle
prediction

Extension of
VR/360-degree

Poor
adaptability

Some research investigates the combination of point cloud
compression and transmission optimization [7], [8]. For in-
stance, PCC-DASH [9] explores the dynamic adaptive point
cloud streaming with several bitrate adaptation heuristics.
However, these solutions cannot be run in real-time on contem-
porary hardware due to the massive cost of video compression.
This article introduces the landscape and characteristics of
holographic point cloud video communication and analyses the
technical challenges associated with supporting holographic
services in 5G networks. We start with presenting the architec-
ture and workflow of an immersive media service for typical
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Fig. 1. The workflow of typical holographic video communications and comparisons with other video services.

holographic video communications. Afterwards, we propose
an AI-driven holographic transmission solution as a prototype
for preliminary exploration and verify its performance through
experimental simulations. Finally, we discuss the proposed AI-
driven communication technique and identify future directions
for high-quality holographic video communication services.

II. HOLOGRAPHIC COMMUNICATION: CHARACTERISTICS,
CHALLENGES

A. Characteristics

Fig. 1 presents a typical holographic video communication
system consisting of data capturing, raw data fusing and
encoding, data transmission, data decoding, and video render-
ing [10]. We compare the holographic point cloud video and
alternative types of video services in terms of computation and
transmission overheads at different stages to better understand
the characteristics of holographic video communication. We
observe that holographic video services clearly require higher
network bandwidth and computing resources than traditional
videos, especially requiring at least 1 Gbps and reaching
1 Tbps with thousands of concurrent streams.

Holographic video production requires capturing as many
natural scenes as possible from different angles and merging
these raw video streamings in real-time with a high perfor-
mance edge server. Thus, the capturing requires abundant
computation resources, including GPUs, to accelerate the real-
time generations of holographic video streams. For fusing and
encoding, we observe that the fusion of various views and ex-
tended MPEG encoding methods is highly time- and resource-
consuming to provide efficient processing. For real-time trans-
mission, in addition to provide basic network communication
services with large bandwidth and low transmission delay,
adaptive point cloud streaming technology is crucial to ef-
fectively guarantee the QoE (Quality of Experience). The
primary method is the expansion of VR and 360-degree video
streaming. Holographic terminals execute video decoding,
rending, interaction commands, etc. In particular, decoding

is a computationally intensive and time-consuming step, an
essential factor affecting rendering, interaction experience, and
energy consumption.

Undoubtedly, holographic video far exceeds the require-
ments of traditional video streaming services in terms of
network bandwidth, transmission latency, and computational
complexity. Although the interactive terminal for holographic
video is theoretically compatible for usage on conventional
PC, smartphones, and HMDs (Head-Mounted Displays), users
have to compromise on the point cloud resolution to mitigate
the resource consumption required for network bandwidth and
decoding computation.

B. Challenges

Holographic communication poses significant demands on
network transmission infrastructure, such as requiring band-
width, ultra-low delay, ultra-complex computation, and mo-
bility and ubiquity of devices.

1) Ultra-high bandwidth. Volumetric video streaming
leads to skyrocketing network bandwidth demands at the Gbps
level. Take the example of using a depth camera such as the
Microsoft Azure Kinect to capture holographic contents and
for interacting with AR/VR terminals. The camera outputs
an RGB 1080PP image (1920×1080) and a depth image
(512×424). The color data and depth data per pixel are
represented by 4 bytes and 2 bytes, respectively [11]. Thus,
streaming one-second raw point cloud video with one depth
camera at 30 FPS requires at least 2.06 Gbps of transmis-
sion bandwidth. Besides, compared with 360-degree and VR
video, holographic video provides 6-DoF (degree of freedom)
experiences, including 3-DoF of translational movement (X,
Y, Z) and 3-DoF of rotational movement (yaw, pitch, roll).
This requires numerous depth cameras to capture data and
incurs more data volume than other types of videos. It is
still unavailable to high-fidelity holographic videos captured
with dozens of depth cameras that exceed the 5G network’s



bandwidth using the enhanced Mobile Broadband (eMBB) at
a 10 Gb/s rate.

2) Ultra-low delay. Holographic video communications
present more stringent delay requirements than other delay-
tolerant services. One of the most crucial factors that im-
pairs the experience is the MTP (Motion-To-Photon) latency.
MTP should be below the human perceptible limit and allow
users to interact with holograms directly and seamlessly.
High latency may result in virtual objects lagging behind the
intended position, causing dizziness, especially using HMDs.
When comparing 6-DoF point cloud video with 360-degree
or VR videos, 6-DoF movement and orientations make the
holographic video more sensitive to latency than the 3-DoF
services. In particular, the ideal delay recommended for the
streaming of a holographic point cloud video is less than 5 ms,
which is more stringent than the latency requirement for 360-
degree or VR videos (i.e., <20 ms) [12]. Therefore, more
efficient transport protocols or physical deployment solutions
need to be proposed to alleviate dizziness caused by high
transmission delay.

3) Ultra-complex computation. Capturing a complete holo-
graphic video stream, then transmitting, and finally rendering
in high quality on mobile terminals requires multiple steps
in the pipeline. First, the raw point cloud streams from
different multi-view cameras should be synchronized, spliced,
and aligned into a complete video stream. Compared to the
360-degree and VR videos that deal with 2D pixels, the point
cloud video uses 3D voxels or unstructured points, incurring
extra computational overhead. Second, the huge amount of raw
holographic video streams introduces high computing costs to
compress and encode the streams at the sender along with
decoding and rendering at the receiver. For example, encoding
a one-second video from the longdress dataset with lossy
compression requires 11 to 42 minutes with MPEG V-PCC
on a generic desktop computer [13].

4) Mobility and ubiquity of devices Device mobility
and ubiquity also introduce challenges for holographic video
communication. Current holographic communication scenarios
force users to stand or sit in a fixed position. Around them,
there is an array of multi-view cameras capturing the central
object (e.g., Google Relightables). Although the price of
such devices for acquisition has gradually become cheaper,
guaranteeing a complete hologram usually requires at least
nine cameras which far outnumbers that of 360-degree and
VR video. To the best of our knowledge, there are only a few
outdoor mobile scenarios using holographic communication,
such as recording a user’s movement when running, skiing,
and performing other sports activities.

Besides, dedicated devices (e.g., HMDs and AR glasses) for
rendering and interacting with holographic services are far less
prevalent than smartphones. Meanwhile, the user requirement
of portability is also hard to meet. Although the HMDs or AR
glasses (e.g., Nreal, HoloLens) avoid occupying one user’s
hands and tracks the direction of the user’s FoV (Field of
View), the limited FoV available on HMDs is far smaller
than the human vision, negatively influencing user experiences.

Moreover, bulky HMDs occlude the user’s peripheral vision,
making them unaware of incoming dangers from their phys-
ical surroundings. Thus, we conjecture that overcoming this
weakness will become the critical turning point of popularizing
holograms in the real world.

III. PROGRESSIVE REAL-TIME DELIVERY: A NOVEL
AI-DRIVEN SOLUTION

Intuitively, compression requires high computing cost and
introduces high processing latency even with enhanced 2D
projection-based and 3D tree-based methods. We propose
a novel AI-driven solution that defines point cloud video
streaming as an end-to-end neural network training problem
entirely different from existing work. Our general idea is that
each point in an arbitrary point cloud set contributes its feature
to the whole content, but not all point features are key features.
Then, we can reconstruct the original point cloud content with
key features by an AI generating technique. Fig. 2 presents
the overall AI-driven transmission system for point cloud
video service, consisting of a generating module, extraction
module, device-side feature reconstruction, and online adapter.
Afterwards, we describe each module of AI-based holographic
point cloud video transmission separately to better help under-
standing.

For generating point cloud video, we deploy multiple depth
cameras at different angles to capture video streams containing
RGB and depth maps, and then convert them to the point cloud
format. Then, we align and fuse various point cloud frames to
obtain a complete 6-DoF point cloud video frame according to
the camera’s pose and other parameters. The key technologies
involved in generating point cloud video are computer vision
and 3D reconstruction. This article focuses on how to provide
efficient and adaptive transmission services for generated point
cloud videos. For transmission, the proposed AI-based method
extracts key features of the point cloud video to significantly
reduce redundant data transmission, thus enabling real-time
transmission. The feature extraction module takes each frame
as input and outputs critical features at the intermediate layer
for real-time transmission. Specifically, we use the hierarchical
extraction structure of the PointNet++ [5] and employ an
ensemble abstraction layer to capture the local structure from
the original point cloud. The raw input frame is represented
by fewer points and features when outputting a point-by-point
feature matrix. Thus, we can use an AI-based deep extracting
technique to transfer key features instead of the raw point
cloud frames.

For the reconstruction module, since the end device receives
the key features, directly decoding and recovering from these
feature points for rendering is impossible. Besides, these
feature points lose much detailed information compared with
the original point cloud frames. We propose a lightweight
GAN-based point cloud reconstruction network based on an
AI-based generative technique. We design an upsampling-
downsampling-upsampling layer [6] to generate more diverse
point distributions and enhance the feature variations rather
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Fig. 2. Proposed AI-driven end-to-end network architecture.

than a simple duplication strategy. Therefore, feature extrac-
tion, and feature reconstruction can be regarded as the encod-
ing and decoding processes, respectively. More importantly,
unlike traditional video encoding and decoding, which are
relatively independent processes, AI-based processing requires
offline joint pre-training to obtain the best-fitting feature
extraction and reconstruction modules. We use EMD (Earth
mover’s distance) as the loss function, to produce generated
points located on the target surface similar to the original input.

The online adapter adaptively chooses different extraction-
reconstruction models for dynamic contexts rather than con-
trolling bit rate in traditional streaming. We train various
encoding-decoding model pairs with different compression
ratios to match various networks. In other words, we fuse
the encoding and decoding processes into the adaptive stream
controlling of point cloud video. To this end, we define a
hyper-parameter to adjust the size of transmission features,
representing the compression ratio to match dynamic net-
works. Then, we also train multiple AI models with different
hyper-parameters for various networks. Thus, satisfying the
maximum QoE in dynamic networks requires a special trans-
mission control algorithm different from conventional adaptive
methods for such an AI-driven neural network transmission
mechanism. To address this challenge, we propose an online
self-learning neural network adapter based on DRL (Deep
Reinforcement Learning), providing optimal feature extrac-
tion and recovery model for different networks. Specifically,
we construct the self-learning adapter by taking the current

network condition and the demands of the state, defining
the reward, and selecting the matching codec neural network
model as the action for DRL policy network training. We
show the state, the action, and the reward defined in the
DRL-based online adapter in Fig. 2. The reward plays an
essential role in achieving fast convergence and obtaining
the optimal global solution. Based on the experience, we
define the QoE as the reward considering the transmission
latency and reconstruction accuracy, which can be calculated
as QoE = [2 · (1/d) · (1/t)]/[(1/d) + (1/t)] = 2/(d + t).
a and t are the reconstruction accuracy and transmission
latency, respectively. We use the Chamfer Distance d between
the original point cloud and the reconstructed point cloud to
measure the reconstruction accuracy. Here, we normalize the
values of these two objectives between 0 and 1.

IV. EXPERIMENTAL ANALYSIS

The deep neural network described in Section III is a high-
level framework. We design feature extraction and feature
expansion modules to form an end-to-end network structure.
This section provides an experimental analysis of our designed
architecture that addresses the challenge of the ability to
progressively deliver point coordinates (x, y, z) with a high
compression ratio to reduce the overall data volume. Our
specific architecture adopts the hierarchical extraction module
based on the backbone of PointNet++ [5] as the feature
extraction, and adopts the feature expansion component and
point set generation component in the generator of PU-GAN



[6] as the feature expansion. More details and parameter
settings can be found in [14].

Raw Point 
Cloud Input

Draco

Compression 
& Rendering

Reconstruction 
& Rendering

Key Features for 
Transimission

AI-driven Method

R
econstruction

R
econstruction

Input

Fig. 3. Qualitative comparisons on the reconstruction results.

To improve the generalization of the AI-driven model, we
train our end-to-end neural network with utilizing 147 3D
point cloud objects [6]. The dataset includes a rich variety
of objects, from simple objects (e.g., Icosahedron) to high-
detailed objects (e.g., Statue). In addition, we use four real-
world point cloud video sequences for testing [15], each of
which is a human body captured by 42 RGB cameras at 30
FPS over a 10 s period. Due to space constraints, we select
the two typical longdress and redandblack datasets to show the
reconstruction performance in Fig. 3. Due to the unity of the
input dimension of the deep neural network, we decompose
each point cloud frame into multiple patches of the same
size in advance. For example, we group each patch with 256
points and normalize them in a unit sphere. Then, we compress
the patch (256,3) (i.e., 256 points with 3D coordinates) into
a (5,5) feature vector matrix. We compare our method with
Draco [4], where the compression level parameter (cl) is set
to 10, and the quantization parameter (qp) is set to 8 for a
significant compression. As shown in Fig. 3, Draco performs
a nonuniform and “blocky” phenomenon under 11.55x and
13.99x compression ratios. The quantization bits are not pre-
cise enough to represent the coordinate information. Moreover,
our AI-driven solution can achieve a 30.72x compression
ratio to the original video while ensuring a visually similar
reconstruction result.

Fig. 4 presents quantitative experimental results for evaluat-
ing the transmission latency and QoE. We conduct experiments
under four downlink bandwidth conditions at 1.5 Mbps (3G),
12 Mbps (4G), 30 Mbps (WiFi), and 100 Mbps (5G), respec-
tively. Due to the instability of the 5G networks, achieving a
consistent bandwidth is sometimes challenging. We observe
that transferring one point cloud frame using the proposed
AI-driven framework significantly reduces latency compared
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Fig. 4. Quantitative comparisons of the AI-driven method with
Draco. The bars denote the transmission latency, and the lines
denote the QoE performance.

with Draco. Meanwhile, our method achieves higher QoE
than Draco on both typical datasets. The results illustrate
the superiority and robustness of the AI-driven framework.
Besides, to verify whether the online adapter can provide adap-
tive transmission under a dynamic network environment, we
have trained more inference models, whose transmitted feature
vector matrix sizes are represented as (06, 06) to (20, 20). To
test the performance of the online adapter, we have trained
the A3C network and used the trained actor-network to infer
the transmission model for new point cloud video streaming.
The accumulative discount rewards reach convergence at about
700 episodes in the training phase. We also show the model
selection results in the testing phase in Fig. 5, illustrating the
effectiveness of a DRL-based online adapter. It can be seen that
the A3C network of the online adapter achieves convergence
before the 1000th episode demonstrating the advantage of
the A3C framework. In addition, the red curve represents the
bandwidth change over time and the blue bars represent the
inference models over time outputted by the online adapter.
The adaptive adjustment of the inference models has the same
trend as the dynamic changes of network conditions, this then
demonstrates the effectiveness of the online adapter.
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V. USE CASES AND FUTURE DIRECTIONS

A. Use Case: Holographic services for future metaverse

Combining 5G with holographic communications and dis-
play technologies brings images, body movements, and ex-
pressions of people from thousands of miles away in space
and time to different social situations. The virtual holographic
host or holographic image of the speaker can break through
the limitations of space and time, and allow the speaker to
communicate with users in real-time in an immersive manner.
For example, affected by the COVID-19 epidemic, physical
meetings have turned to participation in real-time remote and
virtual meetings on smartphones or computers. However, there
is a gap between the effectiveness of teleconferencing and live
meetings, and many remote offices currently lack a sense of
presence and immersion. In this context, the demand for “vir-
tual holographic office” comes into being, and the holographic
office is coming closer to reality. For example, when a person
speaks, not only the delivery of voice, more body language,
micro-expressions can be delivered in 3D elements. So the
participants can coexist in the virtual holographic world in
three-dimensional forms.

B. Future Directions

AI-driven point cloud streaming provides a foundation for
efficient holographic transmission in 5G networks. However,
higher resolution and more complex holographic content and
interaction introduce challenges for future network services
and open up some potential future research directions from
data-capturing, adaptive streaming, and interaction involved in
future truly holographic video communication.

1) Efficient generation of point cloud videos. Existing
point cloud videos leverage multiple depth cameras to simul-
taneously obtain raw data from various angles and fuse them
in real-time to form a 6-DoF video stream. This requires more
depth cameras to acquire holographic video with higher resolu-
tion and more details. However, the traditional point cloud reg-
istration methods for multi-view cameras are only helpful for
offline video generation, posing a massive challenge to real-
time holographic video capture. Recently, AI-based research
on multi-view fusion has provided a new way of thinking for
real-time holographic video generation. Therefore, exploring
efficient point cloud video generation based on AI is crucial for
realizing future real-time holographic video communication
and interaction.

2) Holographic point cloud encoding and decoding.
Existing compression and encoding schemes and proposed AI-
driven solutions require computation resources (e.g., expensive
GPUs). A possible solution is to explore light point cloud
feature extraction and fused neural networks for efficient com-
pression and encoding. Naturally, exploring novel coding and
decoding schemes is promising to improve efficiency, aiming
at 6-DoF point cloud video characteristics. More importantly,
possible solutions include exploring tiling and angle view pre-
diction schemes, which reduce the transmission data volume
and relieve the computing pressure of decoding and rendering

at the terminals. For our proposed AI-driven point cloud
transmission scheme, designing feature extraction models with
a more robust generalization capability and smaller network
model parameters and reconstruction models with efficient
inference are interesting research directions.

3) Adaptive point cloud streaming. Although we can
extend existing adaptive streaming techniques to 6-DoF point
cloud videos, there are still barriers during adaptation, such as
addressing the extra 3-DoF location information of point cloud
videos. For the proposed AI-based point cloud transmission,
this adaptive transmission is not only with the network envi-
ronment and the transmission data volume, but also requires
the fusion of multidimensional network resources, such as
the computing resources and storage for the inference of
AI models. Also, this implies that future adaptive streaming
optimizations must be explored for AI-powered point cloud
delivery mechanisms. Besides, point cloud video streaming is
extremely sensitive to network delay. Therefore, it is crucial to
provide transmission error-tolerant and smooth services in un-
stable network environments. Examples of possible solutions
can be studied from encoding, transmission error correction,
and reconstruction error recovery.

4) High concurrency processing capability. 5G and Be-
yond 5G networks support holographic video services closely
related to application scenarios and interaction requirements.
For instance, a user consuming a pre-registered holographic
video service (e.g., visiting an art gallery and museum collec-
tion) requires high bandwidth to obtain a satisfying resolution
holographic experience. While in multi-user holographic in-
teraction, such as in virtual holographic conference scenarios,
users have higher requirements for interaction latency than a
better holographic resolution. In the primary stage of holo-
graphic video communication, different holographic scenarios
and applications currently focus on ultra-bandwidth or ultra-
low latency service provision, appropriately sacrificing part
of the service performance provision to obtain a holographic
video experience. For high concurrency processing, it is help-
ful to optimize the network transmission and lightweight point
cloud codec or use fiber links to enhance the transmission
capability of holographic video. Exploring the distributed mul-
tiplayer interaction framework is more important to reduce the
ultra-high demand for various types of network resources from
large numbers of concurrent users. Besides, how to improve
the response latency and user experience under the distributed
multiplayer interaction framework is the key element to solve
the high concurrency processing.

5) Advanced network services for performance boosting.
Edge computing, SDN, NFV, 5G slicing, and other network
services provided by 5G and future 6G networks can re-
duce the latency and enhance the computing capability for
dense video streaming. However, point cloud video stream-
ing requires networks and computation far greater than the
processing capacity of existing service architectures. To this
end, exploring more advanced network infrastructures (e.g.,
network service technologies with more robust communication
capabilities and more stable service capabilities) to provide



caching and computing resource allocation in line with dense
point cloud video streaming is also an important future re-
search direction.

VI. CONCLUSION

In this article, we reviewed the landscape of hologram
video in the form of point clouds, clarified the differences
between point cloud video with conventional videos, and
revealed that existing technologies are still far from supporting
real-time holographic video streaming. Then, we discussed
the critical challenges of enabling holographic communication
and providing immersive services in transmission technology,
computing, mobility, and ubiquity. We further proposed a
novel point cloud streaming method that is entirely different
from existing delivery mechanisms from an AI perspective, ex-
tracting key semantic features for delivery and reconstructing
for rendering at terminals. Nevertheless, the generalizability
and inference overhead are two main limitations of applying
such an AI-driven approach to a broader range of scenarios.
Finally, we point out some future directions to help facilitate
research in point cloud streaming and immersive services.
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