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Road Extraction Methods in High-Resolution Remote
Sensing Images: A Comprehensive Review

Renbao Lian , Weixing Wang, Nadir Mustafa, and Liqin Huang

Abstract—Road extraction from high-resolution remote sens-
ing images is a challenging but hot research topic in the past
decades. A large number of methods are invented to deal with this
problem. This article provides a comprehensive review of these
existing approaches. We classified the methods into heuristic and
data-driven. The heuristic methods are the mainstream in the
early years, and the data-driven methods based on deep learning
have been quickly developed recently. With regard to the heuristic
methods, the road feature model is first introduced, then, the classic
extraction methods are reviewed in two subcategories: semiau-
tomatic and automatic. The principles, inspirations, advantages,
and disadvantages of these methods are described. In terms of the
data-driven methods, the road extraction methods based on deep
neural network, particularly those based on patched convolutional
neural network, fully convolutional network, and generative ad-
versarial network are reviewed. We perform subjective compar-
isons between the methods inner each type. Furthermore, the
quantity performances achieved on the same dataset are com-
pared between the heuristic and data-driven methods to show the
strengthening of the data-driven methods. Finally, the conclusion
and prospects are summarized.

Index Terms—Data-driven, heuristic, high resolution, remote
sensing image, road extraction.

I. BACKGROUND

R EMOTE sensing images acquired by airborne or space-
borne sensors are the main resource for the earth surface

observation, environment monitoring, objects identification, etc.
[1]. In particular, the high-resolution remote sensing images
(HRSI) become very important for geographic information sys-
tem (GIS) application, ecological research, land management,
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and disaster monitoring [2]. The key issue is how to recognize the
objects of interest in HRSI quickly and accurately [3], [4]. The
basic processing of HRSI is to extract information for objects
classification and recognition according to not only the spectral
features but also the shape characters and spatial relations [5].
The bottleneck of these problems is the recognition of the small
terrestrial objects like roads, junctions, buildings, etc. [6].

Man-made objects are most important elements in spatial
geographic information databases, including buildings, bridges,
roads, farmlands, etc. Buildings and roads are unquestionably
the two most important object classes. A large number of articles
have been published discussing the detection of buildings and
roads during the last decades [7]. For example, we will get more
than 2.6 million related papers if we search Google Scholar
with the keyword “road extraction,” and more than 129 000
articles remain if the publish date is restricted to post 2016. Faced
with such a large number of works of literature, a systematic
review of road extraction algorithms is valuable for beginners.
Although we have reviewed the traditional methods before
[8], we stick to present a more comprehensive review from a
new perspective given the rapid development of deep learning
and the numerous articles discussing automatic road extraction
employing deep learning models [9]. We divide the existing
methods into two categories, namely, heuristic and data-driven.
The heuristic methods extract road features using the prior of
road regions, whereas the data-driven methods depend on big
data. For heuristic methods, we supplemented some methods
missing in the previous version and made a more concrete
description of the basic principles of each method, which will
be more friendly to beginners. In order to review the heuris-
tic and data-driven methods systematically, we collected and
sieved more 200 papers discussing road extraction from HRSI
published in the past two decades. We only kept the pieces of
literature that extract roads directly from optical images captured
by satellites or aircraft instead of from the data generated by light
detection and ranging or synthetic aperture radar. We restricted
the articles to peer-reviewed ones and preferred those with high
citations. To the best of our knowledge, this article is the first
comprehensive review that surveys the road extraction methods
based on traditional algorithms and deep learning technology.

II. INTRODUCTION

In 1972, the first Earth Resources Observation Technol-
ogy Satellite, later renamed Landsat, was launched by the
United States. The interpretation technologies of remote
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sensing imagery have been developed rapidly, including image
compression, transmission, segmentation, fusion, understand-
ing, etc. With the use of modern sensors (e.g., IKONOS, Quick-
Bird, and GeoEye), the spatial, spectral, and time resolutions
of the RS images have gradually increased. HRSI provides
a new way to obtain detailed geographic information, which
consequently motivates further development of the processing
technology of HRSI [10].

At present, Image recognition technologies have been suc-
cessfully applied to many specific fields, such as fingerprint
identification [11], face recognition [12], scene description [13],
etc. However, there still have many problems with understanding
RS (including aerial) images [8]. As man-made objects, roads
are the important information processed in the GIS. Road infor-
mation can be used in many aspects of social life, such as vehicle
navigation, traffic management, map updating, and geological
disaster emergency [14]. With the further application of GIS,
the manual extraction methods cannot fulfill the quick updating
requirements. Therefore, extracting road information from RS
images by (or aided by) machine is in demand.

We can easily collect a large number of articles about road ex-
traction method from Web of Science or Google Scholar, but the
classification of them is very difficult due to the various applied
technologies. In accordance with distinct classification criteria,
road extraction methods can be classified into various types. For
example, based on the different algorithms, these methods can be
categorized into clustering, classification, morphology, dynamic
programming, active contour models, etc. [8]. According to the
objects to be handled in the algorithms, these methods can be
pixel based, region based, and knowledge based [5]. On the
basis of the different outputs of these methods, they can be
divided into road segmentation and road centerline extraction
[15]. In this work, we divide the road extraction methods into
two types: the heuristic methods and the data-driven methods.
The heuristic methods are further divided into semiautomatic
methods and automatic methods according to the degree of the
manual intervention. The data-driven methods are subdivided
into several types based on the architecture of neural network
(see Fig. 1).

The rest of this article is organized as follows. Section III intro-
duces the road features and road model. Section IV describes the
classic algorithms that belong to the heuristic strategy. Section V
shows the data-driven methods according to different DCNN
model. In Section VI, we list the metrics used to evaluate road
segmentation or road network extraction. Comprehensive com-
parisons are listed in Section VII. The conclusion and prospects
are summarized in Section VIII.

III. ROAD FEATURES AND MODEL

According to the theories of human visual systems [16], there
are three computation levels starting from the primal sketch ex-
traction to the 3-D model construction. Similarly, road extraction
also undergoes three processing levels, which are, extracting
edges, lines, and texture in the low level, filtering and grouping
low-level features according to the road models in the middle
level and construct road network using road prior in the high

Fig. 1. Classification of road extraction methods.

level. The definition of road features and model is important to
road extraction.

A. Road Features

The road network is difficult to extraction from HRSI because
the road features can be affected by different sensor type, distinct
spectral and spatial resolution, volatile weather conditions, di-
verse road material, complex backgrounds, etc. It is important to
analyze the road features and road model in the normal situation
without considering noise interference. Overall, roads in HRSI
present ribbons with slow intensity change [17]. We summarize
road features as follows.

1) Geometric Features: Roads are stripe-shaped objects
whose width does not change dramatically. Its length is much
longer than its width. The intersections of roads can be visually
described as the shape of “+,” “Y,” or “T.” Besides, when the
spatial resolution of RS images reduced, road ribbons may be
degraded as linear geometric objects.

2) Spectral Features: Roads are characterized by the evident
parallel edges. Gradient magnitudes are high on road edges
but low inside roads. Strong intensity contrast exists between
roads and the surroundings, but the contrast may be completely
opposite due to the different road materials [18]. For example,
cement roads generally present brighter than bitumen roads in
panchromatic satellite images.

3) Topological Features: Road networks typically have in-
tersections, and roads are not suddenly interrupted. In images,
roads generally span across the entire scenes, unless the roads are
dead ends. The road network can be viewed as a graph composed
by vertices and edges.



LIAN et al.: ROAD EXTRACTION METHODS IN HIGH-RESOLUTION REMOTE SENSING IMAGES: A COMPREHENSIVE REVIEW 5491

4) Texture Features: The texture of images is a strong local
characteristic, which is local homogeneity reflected in the vision.
It is not related to color and intensity. Generally, the texture is
smoother on the road surface than on the background.

In practice, many road extraction methods used multiple
road features rather than only one feature. However, subject
to the influence of illumination, shadow, and occlusion, roads
in images do not have all the above-mentioned features, which
complicates the extraction of roads from RS images [19].

B. Road Model

Establishing a road model can help us extract road more
effectively. Baumgartner et al. [20] proposed a classic road
model based on the composition of roads. The road model
is divided into three layers, i.e., realistic road network layer,
geographic geometric feature layer, and image feature layer. The
model shows how the different of road materials and geometric
shapes in the real world presented in the images. The model
also demonstrates the road features from the perspective of high
and low resolutions. More precise information can be extracted
from RS image with higher resolution, such as road lanes and
zebra crossings. However, higher resolution may introduce more
interferences, which will disturb the extraction of global road
networks. In the coarse scale, most interferences on road surfaces
are eliminated, and prominent road edges are preserved to iden-
tify road networks. However, the extracted roads are typically
broken and imprecise given the lack of resolution. On this basis,
the road extraction methods based on multiscale segmentation
are extensively researched [21].

IV. HEURISTIC ROAD EXTRACTION METHODS

We subdivide the heuristic road extraction methods into two
types according to the degree of interaction: semiautomatic and
automatic. In semiautomatic methods, some seeds need to be
placed in advance or during the extraction, or request users
to decide whether the extracted results are correct or not. In
automatic extraction algorithms, the parameters usually need
to be preset according to different images. Then, the whole
workflow can be executed without supervision.

A. Semiautomatic Methods

Tracking roads manually in the HRSI is the most time-
consuming part of geo-databases updating [22]. Researchers
eagerly hope that the computer can automatically extract the
road network and update the map in real-time. However, au-
tomatic extraction methods cannot achieve satisfying results
in consideration of the complexity of RS images. Therefore,
researchers have to adopt a compromised solution, that is,
semiautomatic extraction, because human can perform the task
of road identification flawlessly and almost effortlessly. Some
semiautomatic methods are successfully applied to the exist-
ing commercial software, such as Feature Analyst, Definiens
eCognition, and GeoEye Road Tracker [23]. In semiautomatic
road extraction methods, seeds (typically the center points or
contours of a road segment) are manually provided, and road

Fig. 2. Road extraction based on Snake model. (a) Deformed from initial lines
(ribbon snakes). (b) Deformed from seed points (balloon snakes). (a) Ribbon
snakes. (b) Balloon snakes.

directions are also requested sometimes. Then, other road cen-
ters are searched according to certain road features and linked
to form road segments. In semiauto mode, the algorithms can
request intervention when they fail to find the other road centers
due to the complexity of RS images, or rollback the previous
results when the algorithms extract wrong roads, which increases
the performance and robustness of these methods [24]. Due to
the various technologies applied, it is difficult to describe all the
existing methods. Some classic methods of existing methods are
described in the following sections.

1) Methods Based on Active Contour Model: The active
contour model, also called Snake, was proposed by Kass
et al. [25]. In this model, an energy function is defined first
on the contour drawn by the user; then, the minimum value
of the energy function is iteratively computed by adjusting
the contour until the contour finally converges. The algorithm
has been successfully applied to medical image segmentation
and has been extended to other domains. In road extraction,
these algorithms are called ribbon snakes or balloon snakes
[26]–[32]. The deformation of contours can start from initial
lines or points. In the case of initial lines, the initial lines are
manually drawn, and ribbon contours are initialized around
the lines. The algorithm calculates the minimum energy by
deforming the ribbon contours until the contours are no longer
changed. An illustrative diagram of a ribbon snake is depicted
in Fig. 2(a), in which the gray dashed line is an initial road line.
For starting from the initial points, the road region is regarded
as a pipeline, and seed points are manually placed inside the
pipeline. Then, circular or rectangular contours are initialized
centered at these seeds. The contours deform like expansive or
shrunk balloons by calculating the minimum value of the energy
function iteratively. Ideally, the contours are exactly on the edges
of the road when the energy is minimized. The road regions can
be easily obtained by merging the final contours. The principle
of the balloon snake is exhibited in Fig. 2(b), where the red
circles are the initial circular contours centered at the seeds,
and the blue contours are the deformed contours (for clarity, the
contours are drawn once in every three iterations). The methods
are practicable by combining the prior knowledge of human
and the accurate calculation of computer. However, the energy
optimization is easy to fall into the local optimal and extracts the
wrong road regions owing to the complexity of RS images. The
level set algorithm is an evolutionary Snake algorithm, which
also requires an initial contour curve, and then performs contour
evolution according to the functional energy optimization [33].
Niu [34] studied a method that integrated the boundary gradient
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Fig. 3. Extraction of road edge by FMM.

with the area information to construct a model to minimize an
objective function that connects the optimization problem with
the propagation of regular curves. It is worth noting that, these
methods can be fully automatic if the initial lines or seed points
can be automatically detected.

2) Methods Based on Geodesic Path: In road linking, a road
that connects two seed points xs and xe can be approximately
defined as a smooth curve that has a constant gray value c [35].
Let W denote the potential (or saliency) map of an image, the
length of the smooth curve connecting xs and xe in image γ can
be defined by a weighted length, as shown in (1). Function (1)
can be regarded as an energy function, and the geodesic path
γ∗ can be solved by minimizing the energy function, as defined
in (2). The fast marching method (FMM) is extensively used
in minimizing energy function, which is proposed by Cohen
[36]. In FMM, an energy map is computed by accumulating the
gradients in potential map from xs (start point) to xe (end point),
and then, the geodesic path can be tracked starting from xe to xs
conversely following the steepest descent in energy map [37].
The essence of this method is to find the path with the greatest
gradient between the two seeds. As such, a continuous, single-
pixel path is found. On this basis, only the edges of the road can
be obtained, as displayed in Fig. 3. Meanwhile, this method is
inefficient because it calculates the accumulated energy map for
a huge number of pixels. To enhance the efficiency, Yang et al.
[38] improved this method by using multipoints fast marching
simultaneously. Moreover, to obtain the road centerline, Miao
et al. [35] extracted the road edges between seeds by a fast
marching run. Then, they produced a road probability map using
the extracted road edges. After that, the image was classified
into road and nonroad according to the road probability map.
Finally, a kernel density estimation (KDE) map was generated
using the road class pixels, and the road centerline was extracted
by applying fast marching again on the KDE map. Later, they
proposed a similar algorithm [39], which applied the geodesic
method on the hue–saturation–value color space instead of red–
green–blue color space, and achieved better performance

L (γ) =

∫ 1

0

W (γ (t)) ‖γ′ (t) ‖dt, γ (0) = xs , γ (1) = xe

(1)

γ∗ = argmin
γ∈(xs,xe)

L (r) . (2)

3) Methods Based on Dynamic Programming: Dynamic pro-
gramming is a technique for solving optimization problems

Fig. 4. Template matching for road centerline extraction. (a) Correct road
centerline. (b) Deviated road centerline.

when not all variables in the evaluation function are interre-
lated simultaneously [40]. In general, a parameter model of
the road should be given and expressed as a metric function;
then, dynamic programming is taken as a computational tool to
determine the optimal path among the seed points. The basic
process can be listed as follows. First, a series of seed points
are manually placed on the road regions as the initial vertices.
Connecting these seed points, an initial polygon is formed.
Second, dynamic programming is used to find the maximum
value of the merit function by adjusting these seeds in a local
window. Third, new equidistance vertices are inserted by a
linear interpolation between every two adjacent vertices, and the
dynamic programming is applied on this new polygon. Finally,
the third step is repeated until convergence is reached, and the
path represented by the final polygon is regarded as the road
centerline. Gruen and Li [41] proposed a semiautomatic road
extraction scheme that combined the wavelet decomposition for
road sharpening and a model-driven linear feature extraction
algorithm based on dynamic programming. Inspired by [41],
Poz and Do Vale [42] introduced road width into the metric
function, which can be used for road extraction in HRSI. Fur-
thermore, Poz et al. [43] improved the dynamic programming
optimization in object space to overcome a certain degree of
noise. Moreover, the follow-up works [44]–[46] autoestimate
seeds using maximum road likelihoods, and connect these seeds
by minimizing cost paths and construct road networks by mixed
integer programming, and finally overcome the inefficiency of
artificial intervention.

4) Methods Based on Template Matching: The template
matching methods are applicable because the road features are
stable and the road surface shows high similarity in a certain
range. In template matching methods, a specific matching win-
dow (e.g., rectangular window [46], [47], circular window [48],
or T-shaped window [49], etc.) is constructed at the starting
point. Then, the initial window is pushed forward at a certain
step iteratively to find a series of matching points by the best
similarity criterion with respect to some characteristic or statistic
features, such as color, intensity, profile, and texture. Finally,
the matching points are connected to form road segments, as
presented in Fig. 4(a). However, the matching window may
encounter occlusion (e.g., shadow, trees, and buildings) that
violates the road features. Thus, it may fail to find the next
road point. The manual intervention is required to reselect a
new seed and resume the matching process. In some situations,
the position of the seed significantly influences the extraction
result. If the seed is not exactly on the road center, then the
extracted lines may also deviate from the road center [46], as
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illustrated in Fig. 4(b). The new template matching methods
typically included a preprocessing of the automatic adjustment
of the seed points.

B. Automatic Methods

The human intervention required by semiautomatic methods
reduces the working efficiency significantly. To improve the
automation, researchers have studied automatic road extraction
methods for decades. Despite the lack of a fully automatic
algorithm to produce satisfactory results for all types of RS
images, some successful works have been achieved in certain
special scenes.

1) Methods Based on Segmentation: There are many algo-
rithms applied to image segmentation, which can also be used in
the road extraction issue. In fact, many segmentation techniques
are already used in road extraction to obtain road regions [50].
The following algorithms are commonly used: artificial neural
network (ANN), support vector machine (SVM), Bayesian clas-
sifier, watershed algorithm, mean shift (MS), K-means, Gaussian
mixture models (GMM), superpixel segmentation, conditional
random field (CRF), graph-based segmentation, etc.

The ANN is inspired by the biological neural system, and
developed rapidly after the introduction of the back propaga-
tion algorithm. A back-propagation neural network for road
extraction was proposed by Mokhtarzade and Zoej [51]. They
searched the best network structure by designing the network
with different hidden layer sizes and training the network with
different epochs. Neural network was applied for road detection
in the paper [52]. At first, a binary image was generated by
neural network using only spectral information. Then, different
texture features are computed for each pixel using a gray level
co-occurrence matrix from the source image, which were used
to produce a segmented image. Finally, the road map was op-
timized by fusing the binary image and the segmented image.
Although neural networks are widely used for image segmenta-
tion, they are more likely to get into the local minima and become
overfitting.

The SVM is a generalized linear classifier for binary classi-
fication trained by supervised learning. SVM uses a hinge loss
function to calculate empirical risk and adds regularization terms
to the solution system to optimize structural risk. SVM can
perform nonlinear classification by the kernel function. Yager
and Sowmya [53] exploited the SVM classifier for solving the
problem of road extraction from remotely sensed images using
edge-based features, but the correctness is relatively low as many
researchers reported. In paper [54], the SVM was employed
merely to classify the image into two groups of categories:
road and nonroad. Abdollahi et al. [55] presented an automatic
method for road extraction by integrating the SVM and level set
methods. The estimated probability of classification by SVM
was used as input in the level set method, which achieved high
performance of road extraction from Google Earth images. The
road and building detection using a multiclass SVM method was
proposed by Simler [56], in which the both spatial and spectral
information were used at the object level. The SVM methods
can minimize the structural risk and the have good generalization

Fig. 5. Segment by mark-based watershed algorithm. (a) Origin image with
basin makers. (b) Segment of watershed algorithm.

ability, but have the difficulties in the selection of kernel function
and sensitive to the training samples, etc.

Bayesian classifiers are statistical classifiers. They can predict
class membership probabilities, such as the probability that a
given sample belongs to a particular class. The principle of the
classifier is to calculate the posterior probability of an object
using its prior probability and the Bayesian theorem, that is,
the object belongs to a certain class with the largest posterior
probability. In the paper [57], the buildings were detected by
Bayesian decision theory in regard to Laplacian probability
density function followed by the discerning of roads by a special
intensity threshold. Storvik et al. [58] described a Bayesian
framework for classification based on the multiscale features,
which was realized by the iterative conditional modes algorithm.
The naive Bayes classifier shows better robustness unlike SVMs,
which are easily affected by noise samples.

Watershed is a classic image segmentation algorithm with the
defect of over-segmentation. Two means are commonly used to
solve this problem: region merging and marker based. A road
extraction algorithm based on region merging was proposed in
the work [59]. The region merging process was constrained by
the threshold of minimum region area and the maximum inten-
sity variance between regions (named hydronephrosis basin).
Then, the initial road segments were identified by combining
the shape features of the regions and the road’s prior. However,
the threshold minimum region area is difficult to be preset.
The marker-based watershed algorithm, which was proposed
by Meyer [60], requires a marker-map provided by the operator.
Fig. 5(a) depicts an RS image with three initial basin markers
indicating that the image will be divided into three regions.
Fig. 5(b) demonstrates the result of Meyer’s algorithm. The
outputs of the marker-based algorithm are remarkable, but the
manual intervention reduces the degree of automation of the
watershed algorithm. In some application field, researchers tried
to automatically determined the initial basin markers to improve
the automation degree [61]–[63]. Wu et al. [64] proposed a
regional adaptive segmentation to automatically find the initial
markers. Inspired by [64], Li and Zhang [65] presented a fast
automatic road extraction algorithm. The algorithm initially
collects the road regions using the technology proposed in
[64], then it extracts lines using linear features [66]. Finally, it
identifies road objects automatically by fusing region features,
line features and road’s prior. Watershed-based segmentation
algorithm also can be used to find the road seed points for fully
automatic road extraction method [67].

MS method is a clustering technique used to classify data
into different categories and does not require information about
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Fig. 6. Road extraction by K-means. (a) Original RS image. (b) K-means
clustering. (c) Extracted roads.

the specific object [68]. An analysis framework based on MS
was proposed to extract spectral and spatial features from HRSI
data [69]. In this approach, the MS was used to obtain an
object-oriented representation of hyperspectral imagery. A road
extraction method-based MS was suggested in [68], in which the
MS procedure was obtained by successive computation of an MS
vector and translation of the kernel by the MS vector. A simple
yet effective method for road network extraction was proposed in
[70], which achieved the detection of potential road center points
using MS based on homogenous property and ribbon-like shape
of road. By the way, the MS algorithm also can be used to adjust
the manual seeds in semiautomatic road extraction based on the
road KDE [35], [71].

K-means clustering is an unsupervised learning algorithm.
It uses the similarity indices as the distance to classify the
data into different categories based on the features of the data.
The algorithm does not need to manually set the cluster seeds,
but randomly initializes K centroids. Then, it calculates the
Euclidean distances between data and K centroids. It classifies
the data into the cluster with the smallest distance. When all
the data are classified, the mean feature vector of each cluster
will be calculated again and be treated as the new centroid of
the cluster. The process is repeated until each cluster centroid
converges. In some HRSI, an evident intensity difference is
observed between the roads and the background. The K-means
clustering algorithm can be used to segment an image into differ-
ent clusters [72], [73], as displayed in Fig. 6. Fig. 6(a) presents
an IKONOS RS image generated by fusing four bands (blue,
green, red, and near-infrared); Fig. 6(b) demonstrates the result
of K-means clustering, where K = 3; and Fig. 6(c) presents the
result of recognition using road’s prior. The method is suitable
for situations where the road and the surrounding background
are significantly different (e.g., suburban and rural roads). In
the case of urban roads, the spectral features of buildings are
similar to those of roads. Thus, roads are difficult to be classified
effectively. For example, the clustering error is illustrated in the
northeast corner of Fig. 6(c). In addition, the hyperparameter of
K in these algorithms is not constant for different scenes, thereby
reducing automation.

GMM is a parametric probability density function that is
extensively used in computer vision and pattern recognition. It
assumes that the distribution of data can be modeled by a mixture
of K different Gaussian distributions. Expectation-maximization
algorithm can be used to solve the parameters optimization of
GMM. Li et al. [74] presented a road region extraction method

Fig. 7. Road region recognition based on GMM. (a) Origin image. (b) Merged
superpixel. (c) Clustering by GMM.

Fig. 8. Road centerline extraction based on GMM. (a) Road region. (b) Long
axes of GMM. (c) Axes adjusted by SCMS.

based on GMM using object features. The algorithm used the
superpixel segmentation algorithm [75] to divide the image into
a series of superpixels initially. Then, it merged these superpixels
into larger objects following graph theory and then extracted the
13-D features of these objects, including gradient, color (YUV
space), and texture. Finally, the GMM was applied to cluster
these objects into different categories using the 13-D features.
The algorithm framework is depicted in Fig. 7. Fig. 7(a) exhibits
the original image, Fig. 7(b) displays the merged superpixels,
and Fig. 7(c) presents the GMM clustering result, where the
hyperparameter K equals 4. The pixels in the segmented road re-
gions can be represented as 2-D discrete joint random variables.
On this basis, Miao et al. [76] presented a novel application of
GMM for extracting the road centerlines from the segmented
road regions. The road regions were cut into multiple segments
by taking road pixels as observations. Then, different road
segments were fitted with various Gaussian models to obtain
the long axis of the Gaussian ellipse, which corresponds to each
road segment. Meanwhile, each long axis is regarded as the
initial centerline of each road segment. Finally, the SCMS [77]
algorithm is used to adjust these initial centerlines to the exact
positions. The process diagram is illustrated in Fig. 8.

Superpixel segmentation technology was first proposed by
Ren and Malik [78], which combined adjacent pixels with sim-
ilar features into pixel blocks and replaced massive pixels with
a minimal quantity of irregular blocks. The texture interference
was reduced, and the efficiency of the algorithm was improved
after superpixel segmentation. After that, several new superpixel
segmentation algorithms were introduced including Graph-Cut
[79], Quick-Shift [80], GCa10 and GCb10 [81], Turbopixel
[82], SLIC [83], ERS [75], PBO [84], etc. In [45], the image
was first segmented into superpixels. These superpixels were
treated as the smallest units (entities) to be labeled. Then, a
feature vector per superpixel was extracted and fed into a binary
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Fig. 9. Cost functions, from left to right: angle cost, boundary cost, region
cost. Red: impossible to extend the road. Green: may extend the road. Blue: the
tracked road information.

random forest classifier, which assigned each superpixel a unary
road likelihood. Next, superpixels with high road likelihoods
were sampled randomly as seed nodes and linked by minimum
cost paths. Seppke et al. [85] proposed a superpixel-based road
extraction algorithm. The algorithm cut the image into super-
pixels using SLIC and constructs a region shell (RS) graph,
which held not only the geometry of the superpixels but also the
boundaries (shells) between them. Then, the algorithm tracked
roads starting from the user-provided seeds and directions in
accordance with the cost functions [24] including an angular
cost function, a boundary cost function and a regional cost
function. The angular cost function punished the situation where
the road changes drastically. The boundary cost function was
used to judge the adjacency of two superpixels based on the RS
graph. The region cost function was used to determine which
neighboring superpixels are similar to the starting superpixel.
The tracking algorithm judged the most likely next block by
combining the three cost functions, as depicted in Fig. 9. Weg-
ner et al. [86] developed a higher-order CRF formulation for
road extraction based on superpixel segmentation, in which the
prior is represented by long-range cliques with robust PN-Potts
potentials. To overcome the drawback of too many irrelevant
cliques, minimum-cost paths are embedded in a higher-order
CRF framework in order to construct an explicit prior about the
shape of roads.

Hierarchical graph-based image segmentation for road ex-
traction was described in [87], which consisted of a graph
representation of initial segmentation and hierarchical merging
and splitting of these segments based on color and shape fea-
tures. Cem and Beri [88] proposed a road extraction method
based on probability and graph theory, which consisted of three
modules: road center detection, road shape extraction, and graph
theory-based road network formation. In the third module, the
detected road center pixels were represented in a parametric
curve form, which allowed the refining of some road segments
due to their shape and neighborhood conditions. An unsuper-
vised framework to identify buildings and roads from VHR was
proposed in [7]. First, the buildings, shadow, vegetation, and
others were classified by a four-label graph optimization. Then,
the regions that might belong to the road were extracted. Finally,
a graph optimization was used again to characterize the regions
belonging to buildings and roads.

Fig. 10. Road seeds composed of edge fragments.

Recently, in order to improve classification accuracy, the
combination of different classifiers has become a hot research
topic. The essence is to train different classification models by
the same samples. The classification results are achieved by
combining the outputs of these classifiers [55], [89].

2) Edge Analysis Methods: According to Marr’s vision the-
ory, the road recognition process can be divided into three levels:
road edges detecting, pairing and connecting in the low level,
road feature information processing in the middle level and road
object recognition in the high level. Inspired by this idea, the
edge-based methods detect (generally by Canny) the road edges
initially and then remove the false positives in accordance with
the predefined road model. Then, the parallel edges, also called
road primitives, are paired into road seeds; finally, these road
seeds are connected to road segments according to prior [90],
as depicted in Fig. 10. Baumgartner et al. [67] detect roads
based on the extraction of edges in a high-resolution image and
the extraction of lines in the image with reduced resolution.
Roadsides are generated using both resolution levels and explicit
knowledge about roads. Then, roadsides are used to construct
road parts and intersections. In [91], the Canny edge detection
algorithm was applied on R, G, B, and NIR band separately and
the union of the edges on these four edge maps was obtained.
Then, parallel-line pairs were found. These methods are more
robust than the other methods because they neglect the radiation
characteristics of different road materials and only depend on the
gradients. However, given the excessive dependence on the road
edges, the performance of these methods relies on the outputs of
the road edge detection and is limited by the complexity of RS
images. Moreover, automatically setting the parameters of the
edge detection algorithm is difficult. Therefore, these methods
are only suitable for extracting simple roads, such as main roads.

3) Map-Based Methods: The coordinates of most roads in
the world are already available in several map databases. The
famous free map called OpenStreetMap (OSM) is used by most
researchers, which has covered more than 88% of the urban
roads globally [92]. Over 2 million registered users in the
OSM project collect data using the manual survey. However,
OSM roads are not very accurate because they are contributed
by volunteers without quality control, and some of them are
computed from GPS trajectories. The misalignment of road co-
ordinates motivated the study of map-based road centerline ex-
traction (or refinement) methods [23], [93], [94]. These methods
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Fig. 11. Road centerline extraction based on map matching. (a) Calculated
road width and road center point. (b) Adjusted road centerline.

Fig. 12. Overview of the road extraction based on swarm intelligence opti-
mization.

generally have two objectives: one is to refine the road coordi-
nates combining the road map and the local texture, and the other
is to extract the road profile. These methods locate the rough
road positions using the road map initially and then adjust the
coordinates to the road center points or extract the road shape
exploiting the texture of the local region. Fig. 11 demonstrates
the road centerline extraction process [92]. In Fig. 11(a), the red
line is a road curve generated according to the road reference.
The green stripe is the actual road width estimated based on
the local intensity, and the blue dot is the exact center point of
the road obtained using the algorithm. Fig. 11(b) exhibits the
adjusted road centerline, which is marked by the blue line.

4) Swarm Intelligence-Based Methods: Bio-inspired swarm
intelligence is an evolutionary computing technique that has
attracted considerable interest over the past two decades [95].
Various biomimetic swarm intelligence technologies including
particle swarm optimization, ant colony optimization (ACO),
artificial bee colony and firefly algorithm, etc., were invented
to solve the problems of optimization. These algorithms aim
to solve certain problems by simulating the behavior of real
biological populations. In realistic intelligent groups, a simple
intelligent individual can solve complex problems beyond itself.
Swarm intelligence algorithms perform well in solving discrete
and network-based problems; in addition, the parallel processing
characteristics of swarm intelligence pave the way for efficient
target detection [96]. Maboudi et al. [97] introduced an algo-
rithm for extracting road regions using ACO technology. First,
multispectral data were used to segment the image for generating
image objects; meanwhile, the feature vector of each object was
calculated. Second, a directed graph was constructed regarding
these objects as nodes and the migration costs (bidirectional
difference) between two nodes as edges. Finally, the ants moved
in the graph and aim to connect the nodes for generating a
road map. The algorithm process is demonstrated in Fig. 12.
Moreover, the author has further improved the abovementioned
algorithm in the work [22].

5) Object-Based Methods: In RS imagery, the road proba-
bility of pixels is difficult to evaluate given the lack of context
information. By contrast, if multiple adjacent pixels with similar
features are merged into objects, then the spectrum, shape,
texture, and other features of each object can be extracted
more stably. In addition, more accurate road probabilities can
be achieved by integrating these features [98]. In comparison
with different object-oriented road extraction methods, the main
differences between them are the methods of object segmenting,
feature depicting, and the decision making to classify object
types. Ding et al. [99] discovered that road regions typically
have consistent local directions. The pixels were merged into
the objects with similar main directions to calculate geometric
measurements, such as linear feature indices and the area of
these objects. Afterward, a segment-linking algorithm was used
to extract road objects amongst them. In [22], an image with
a very high resolution was smoothed to reduce the heterogene-
ity of a road surface. Then, the multiresolution segmentation
algorithm was used to segment the image into many objects.
Afterward, the road membership descriptor of each object was
defined by a fuzzy inference system, which will be used in the
ACO algorithm to distinguish the road objects in the follow-
ing steps. In [74], the image was segmented into superpixels
using ERS [75]; the grayscale, color (YUV space), and texture
features of each superpixel were extracted, and the pixels with
similar features were assembled into large objects through a
graph-based algorithm based on the abovementioned features.
Finally, the GMM algorithm was used to classify these large
objects into several different types, as presented in Fig. 7. In
order to detect the objects in different granularity, multiscale
segmentation and clustering algorithms are often employed to
extract road objects [98]. Huang and Zhang [100] proposed a
road extraction method based on multiscale structural features
of the objects. It classified different terrain objects using SVM,
and recognized the road objects using majority voting machine.
Finally, the road centerlines were extracted using connected area
analysis. Article [101] constructed a point process, which was
able to simulate and detect thin networks using an object-based
approach. First, the road network was approximated by a con-
figuration of connected segments. Then, the global minimum
of the energy function was found by a simulated annealing
technique based on a Monte Carlo dynamics (RJMCMC) for
finite point processes. An object-based method was proposed
in [102], which started from an initial segmentation obtained
by fractal net evolution approach [103]. The road region of
interest (RoadROI) was obtained after vegetation and shadows
are removed. The RoadROI was used to construct a binary
partition tree for representing the road-like regions.

6) Multispectral Segmentation Methods: Different from the
road extraction methods based on the segmentation method
described in Section IV-B1, the methods based on multispectral
segmentation require multispectral images and even hyperspec-
tral images support. A multispectral image is composed of pixels
with multiband features of radiation. Generally, various types of
object have different reflection intensities, which can be used to
classify terrestrial objects into distinct catalogs [104]. Maboudi
et al. [97] and Xue-Wen and Han-Qiu [105] analyzed the spectral



LIAN et al.: ROAD EXTRACTION METHODS IN HIGH-RESOLUTION REMOTE SENSING IMAGES: A COMPREHENSIVE REVIEW 5497

Fig. 13. Multispectral features of different objects in IKONOS images.

characteristics of water, vegetation, bare soil, buildings, cement
roads, and asphalt roads in IKONOS satellite imagery and find
that roads can be well distinguished from vegetation, water,
and bare soil using GN feature (i.e., normalized the intensity
difference between the green and the near-infrared bands). How-
ever, distinguishing between roads and buildings is difficult, as
displayed in Fig. 13. Usually, the object shape features and
the Gabor wavelet transform are used after multispectral seg-
mentation to distinguish between roads and buildings further.
Thus, using the multispectral features, the unconcerned objects
can be excluded efficiently. However, these methods are not
applicable in panchromatic or RGB images. Moreover, most of
the aerial images are RGB images. In addition, images captured
by different satellite sensors have different numbers of bands,
and the spectral features of the same objects in different satellite
images may be different, which further decreases the versatility
of this method.

V. DATA-DRIVEN ROAD EXTRACTION METHODS

The data-driven methods mentioned in this work mainly refer
to learning-based methods. These methods have been used for
road detection in the early years [106], [107]. Although some
promising results have been achieved by these approaches, they
still failed to scale up to large challenging datasets that suffered
from the small size of the neural network and the absence
of big data [108]. In 2006, Hinton published a famous paper
[109] in Science, in which he verified the following points: first,
multihidden layer neural network has an excellent ability of
feature representation; second, the difficulty of training deep
neural network can be effectively overcome by “layer-by-layer
initialization.” Since then, the neural network with multiple
hidden layers are called deep neural network, and the machine
learning based on deep neural network is called deep learning.

To the best of our knowledge, the first attempt of extract
road from HRSI using deep neural network was conducted by
Minh and Hinton [108]. They built a patch-based convolutional
neural network with millions of learnable parameters with large
receptive field to predict the class of pixels centered at the
patch and achieved significant improvement of precision and
recall. Experiments showed that deep neural network exhibits
significant ability of feature representation. In this section, we
describe several attempts for road extraction based on the deep
neural network in recent years.

Fig. 14. Framework of methods based on patch-based DCNN.

A. Patch-Based DCNN Methods

It is infeasible to predict the class of a pixel directly because
the features of a single pixel are insufficient for distinguishing its
type. Therefore, the contextual information of a pixel is impor-
tant to determine its membership. Mnih [110] first attempted to
build a GPU-based, deep convolutional neural network, which is
capable of exploiting a large image context as well as learning
discriminative features. The DCNN is used to predict a small
patch of labels from the same context. To utilize the correlation
between neighbor pixels, the road probabilities of a small block
of adjacent pixels were simultaneously predicted by the DCNN
taking a larger patch as input. Thus, the classification accuracy
is improved and the computation cost is reduced. Mnih [110]
formulated the core problem as a probability distribution esti-
mation, as expressed in (3), where n(S, i, ws) denotes a wsxws

patch of the image S centered at the pixel i, S is the input image
and M̃ is the predicted map of the model. Generally, wm is less
than ws, especially when wm = 1 means predicting the label
of a pixel at a time. However, predicting the labels of a small
block in one pass is more efficient, as defined in (4), and is more
effective in handling noisy training data. The model predicted
the road probability by sliding window with a specific stride
(i.e., patches may overlap with each other). Finally, it assembled
all the labeled patches to generate the global map of the entire
image. The generic architecture of patched CNN models is
illustrated in Fig. 14, where the encoder is a deep convolutional
neural network based on any kind of backbone, such as VGG,
ResNet, Inception, and MobileNet. The fully connected layers
act as a linear discriminator. In the encoder, only the first layer is
equipped with a max-pooling layer to prevent the loss of spatial
information. In general, postprocessing is conducted for further
reasoning pixels’ classes, which enhances the smoothness of
the predict results. Similarly, Saito et al. [6] designed a single
patch-based DCNN for extracting roads and buildings from
HRSI simultaneously followed by postprocessing to improve
the performance

P
(
n
(
M̃, i, wm

)
|n (S, i, ws)

)
(3)

P (m̃|s) =
w2

m∏
i=1

P (m̃i|s) . (4)

In the patch-based DCNN models, an image patch around
a pixel is used as the input for model training and reasoning.
These methods have several disadvantages: first, the predic-
tion is time-consuming because the test image needs to be
cut into numerous overlaid patches, which are inferred one by
one followed by the reassembling of these patches to generate
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Fig. 15. Framework of methods based on FCN.

the global segmentation. Second, it is inefficient in computing.
The adjacent pixels are usually duplicated, and the patches are
computed separately and repeatedly. Third, the small size of the
patch limits the perspective field, but large size leads to poor
efficiency of computation.

B. Fully Convolutional Network (FCN)-Based Methods

FCN predicts images end to end unlike the patch-based
DCNN. They are implemented based on the CNN by replacing
the last fully connected layers with convolutional layers. The
final convolutional layer then outputs a map of the labels. In
CNN models, the invariance of shifting, scaling, and distor-
tion achieved by max pooling, weights sharing, and spatial
subsampling guarantees the excellent performance in pattern
recognition, e.g., the accuracy of document recognition of LeNet
[111] exceeds 99%. Although CNN performs well in image
recognition, the identification of a specific part of the image
was still a worldwide problem until 2015 when the FCNs were
proposed by Long [112]. FCN classifies the image at the pixel
level and solves the problem of semantic segmentation. In con-
trast to the classic CNNs, which accept images with fixed size
and output a fixed-length feature vector for classification using
fully connected layers (full-connection layer + softmax layer),
FCN accepts image of any size and up samples the output of the
encoder (the front part of the FCN) to restore feature map to the
same size as input image using the interpolation layers and the
map presents the membership of each pixel whilst preserving its
spatial information. The schematic network is shown in Fig. 15.
In road extraction, road segmentation can be treated as semantic
segmentation problem where roads and nonroads are labeled by
1 and 0, respectively.

Zhong et al. [113] applied FCN to extract roads and build-
ings in areal images. The paper showed that it is inappropriate
to directly use the existing FCN pretraining model to extract
roads or buildings, and found that the accuracy is significantly
improved by adding the outputs of pooling layers into the final
score layer, which suggests the direction of further research.
The experiments also revealed that excessive pooling will hurt
the performance of segmentation. After testing and adjusting
the hyperparameters of the proposed network, the final road
segmentation precision, recall, and intersection of union (IoU)
on the Massachusetts road dataset (Mass. Roads) [110] are 0.71,
0.66, and 0.52, respectively.

C. DeconvNet-Based Methods

Since the advent of the FCN, the technology of semantic
segmentation based on deep neural networks has become an

Fig. 16. Framework of methods based on DeconvNets.

independent research field. However, FCNs resort to ad hoc
methods to up sample features that result in noisy predictions
and also restrict the number of pooling layers in order to avoid
too much upsampling and thus reduces spatial context [114].
DeconvNets are variant of FCN replacing the interpolation lay-
ers as deconvolutional layers (called decorder), such as SegNet
[114], DeepLab [115], and U-Net [116]. The decoder helps
map low-resolution feature maps at the output of the encoder
stack to full input image size feature maps [114]. The generic
architecture of DeconvNets is shown in Fig. 16, where the center
part is an important component to capture multiscale features in
many articles. In this section, we describe several attempts based
on these models.

Wei et al. [9] built a road structure refined CNN (RSRCNN)
for road extraction based on VGG encoding road structure in
the cross-entropy loss. RSRCNN achieved 0.662 F1-score on
Massachusetts road dataset. Panboonyuen et al. [117] presented
an enhanced deep convolutional encoder-decoder network in-
corporation of exponential linear unit for road segmentation
in aerial images taking SegNet as backbone, which obtained
0.857 F1-score. Mattyus et al. [118] developed a variant of
FCN using ResNet as an encoder with a fully deconvolutional
decoder to estimate road topology from aerial images directly.
Mosinska et al. [119] introduced an iterative refinement method
to extract topologies based on U-Net and proposed a novel
topological loss term considering that pixel-wise losses alone
are unsuitable to reflect the topological impact of prediction
mistakes. Gao et al. [120] proposed an end-to-end framework
called the multiple feature pyramid network similar to the RSR-
CNN. They exploited the multilevel semantic features of HRSI
and designed a novel loss function to focus on the problem
of unbalanced categories. Inspired by ResNet [121] and U-Net
[116], Zhang et al. [15] designed a deep residual U-Net for road
extraction, which combined the strengths of residual learning
and U-Net. The network consisted many residual units, and the
architecture was similar to U-Net with rich skip connections.
The residual units make the deep network easy to be trained, and
the skip connections facilitated the information propagation and
reduced the number of trainable parameters. The input images
were cropped from the original RS images with an overlap of
14 pixels. The global map was reassembled by stitching all the
submaps, and the values in the overlap parts were averaged.
The experiments showed that the breakeven point of precision
and recall curve on Mass. Roads was 0.9187, which surpassed
the state-of-the-art methods, although the parameters are only
one-fourth of U-Net. Inspired by DenseNet [122] and U-Net,
Xu et al. [123] proposed a GL-Dense-U-Net for extracting roads
from aerial imagery. The authors introduced the local and global
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information to focus on the local texture and morphological
structure of roads, respectively. The network was designed based
on DenseNet and U-Net because DenseNet has fewer trainable
parameters, thereby making it easy to be trained. Meanwhile,
U-Net has an elegant architecture with convenient informa-
tion propagation. Thus, the GL-Dense-U-Net consists of two
parts, namely, contracting and expanding, similar to encoder
and decoder. These parts were connected by the local attention
units to maximize the features in different stages. The global
attention units in the expansive part extracted the road infor-
mation when recovering the map from deep-level features. In
this work, edge enhancement was conducted to reduce the noise
and computation complexity. This method achieved remarkable
performance (i.e., 0.9572 F1-score) on a special, relatively small
dataset [124].

In the public road extraction competition, methods based on
deconvolutional network are most commonly used. D-LinkNet
[125], the best solution in Deepglobe-2018 [126], was a UNet-
like network combined with a dilation part in the center. The
dilation part contains dilated convolutions both in cascade mode
and parallel mode. The receptive field of each path is different.
So, the network can capture multiscale features. A modified
UNet was used in the second-best solution [127]. It used ResNet-
34 pretrained on ImageNet as its encoder and decoder adapted
from vanilla U-Net. Its loss function was composed by binary
cross entropy and IoU. The other solutions in the leaderboard of
Deepglobe-2018 almost used the encoder-decoder architecture
with skip connections, like UNet. The power of the deconvo-
lutional network can also be confirmed by the top 3 solutions
of SpaceNetChallange-2018 [128]. They all used the UNet-like
network structure to predict the road regions in the first stage.

Inspired by the success of D-LinkNet, the encoder-decoder
architecture with dilated convolutions is further applied in later
researches [129]–[133]. A road extraction method using weakly-
supervised learning was proposed in [132] for road extraction at
global scale. The authors found that the trained model is highly
specific to particular regions and produce worse in those regions,
which did not adequately represented in the training set. So, they
use the data from OSM to train more generalizable models. The
dataset covers more than 700 000 square miles consisting of
about 1.8 million tiles spanning six continents, which is 1000
times the area covered by the DeepGlobe dataset. The model was
designed based on D-LinkNet. The batch normalization layers
were replaced by group normalization layers, if not, the training
fails to converge. Finally, they found that more regions in the
training set results in better performance in prediction. Inspired
by [134], Wu et al. [133] presented a road extraction method
using weakly labeled data. The scheme combined graph cut
theory and deep learning technique in the loss function. The loss
function consisted of two parts: a partial loss used to reflect the
feature of the pixels labeled road or nonroad, and a regularized
loss used to reflect the similarity between these pixels.

D. Generative Adversarial Nets (GANs)-Based Methods

GANs are initially designed by Goodfellow et al. [135], which
have received considerable attention in recent years. GANs

Fig. 17. Framework of methods based on GANs.

consist of two parts, namely, a generator and a discriminator.
Throughout the training process, the generator strives to make
the generated images realistic, and the discriminator aims to dis-
tinguish the forged images from the real ones. In the end, the two
parts finally achieve a dynamic equilibrium, and the generator
can be used to segment images. Fig. 17 shows the architecture of
GANs used in road extraction, where the generator produces the
road segmentation map, the discriminator takes the segmentation
map or ground truth map as the input, combined with the RGB
image, to decide the probability that the label map comes from
a true map or a generated map.

Inspired by [136], which confirmed that the GANs can enforce
the continuity of spatial labels and generate accurate and smooth
results versus nonadversarial training, Shi et al. [137] used a
novel end-to-end conditional GAN for road region extraction by
optimizing a structure loss. In this work, SegNet was adopted
to build the generator part to output smooth segmentation
maps containing higher-order spatial consistency and detailed
boundary information. The model presented high performance
on a small dataset including 550 images, which were cut out
of Google Maps and manually labeled by the author. Costea
et al. [138] argued that the road map must be recognized by
high-level information, such as road graphs. To achieve this
goal, they assembled a dual-hop GAN with two conditional
GANs cascaded with each other. The first GAN detected the
road region map according to the RGB image. The second
GAN extracted the intersections using the road region map and
the source image. After the road regions and interactions were
extracted, an optimal road graph was identified by applying a
smooth-based graph optimization [139] in the postprocess. The
network was evaluated on a large dataset of European roads and
outperforms the state-of-the-art methods.

E. Graph-Based Methods

Most of the above-mentioned methods are based on pixel-
level segmentation. These segmentation-based methods may be
suffered from the noisy CNN outputs, which are difficult to be
corrected in postprocess stage [140]. Moreover, the pixelwise
classification supervision leads to road networks with frag-
mented road segments and poor connectivity [141]. On the other
hand, the vectorized representation of road maps (road graph)
is more convenient in real-world applications, such as road
mapping and driving navigation. Thus, graphed-based methods
are getting more attention. Currently, there are two strategies to
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Fig. 18. Framework of road tracking methods (taking iterative road center
detection strategy as an example).

generate road graphs, i.e., iterative road tracking and polygon
detection.

The road tracking methods usually iteratively construct the
road graphs according to the output (the next road point or
marching direction) of a patched CNN, as shown in Fig. 18.
Ventura et al. [142] designed a patched CNN to predict the
local connectivity amongst the central pixel of an input patch
and its border points. By iterating this local connectivity, they
swept the whole image and inferred the global topology of the
road network. Bastani et al. [140] proposed a new method called
RoadTracer to extract accurate road network directly from aerial
images using an iterative search process guided by a patch-based
CNN decision function. Inspired by [142] and [140], Lian and
Huang [143] presented a road network tracking algorithm. The
key component is a road center points estimation DCNN model.
The DCNN model predicts the road center points iteratively
during the tracking process. VecRoad, a point-based iterative
graph exploration scheme with segmentation-cues guidance and
flexible step, was proposed in [144]. They used the framework
of RoadTracer and proposed several schemes to improve the
performance of road graph construction. The location of the
next moving was represented as a “point” that unified the rep-
resentation of multiple constraints such as direction and step
size in each moving step. Moreover, the informative cues such
as road segmentation and road junctions were jointly detected
and utilized to guide the next moving, which results in better
alignment of roads.

Some researchers argued that a road segment can be regarded
as a polygon in a local image patch. Therefore, some methods
extracted roads using polygon detection, such as active contour
models and topology tracking. Most of the existing algorithms
run in iterative mode. Directly predicting polygons from image
is a relatively new research direction. Recent approaches such
as PolygonRNN [145] and PolygonRNN++ [146] addressed
the problem of polygon prediction directly using deep neural
network. The approaches consisted of an RNN coupled with a
CNN. The CNN encoder produces image features that are used
to predict the first vertex, which is fed to the recurrent decoder.
The RNN exploits the visual attention at each time step to
predict other polygon vertices and generates polygons. Inspired
by PolygonRNN, Li et al. [147] proposed the PolyMapper to
construct roads in a vector representation directly from aerial
images. The approach interpreted the topology of roads as a
simply connected maze and followed the principle of a maze
solving algorithm to reformulate the topology of roads. The
PolyMapper also consisted of two parts: the CNN part and
the RNN part. The CNN part was a VGG-16 to extract a set
of skip features based on an image patch, and the RNN part

predicted the potential position P (yt+1|yt, yt−1, y0) of yt+1

polygon vertex according to the output of the patched CNN
part. Unlike PolygonRNN, the PolyMapper is a fully automated,
end-to-end learnable approach. Belli and Kipf [148] presented
a generative graph transformer (GGT), a deep autoregressive
model based on self-attention. The GGT model was designed for
the recurrent, conditional generation of graphs and consists of an
encoder–decoder architecture. A gray-scale image was passed
through the encoder, which produces a conditioning vector using
a context attention mechanism on the previously generated node.
The self-attentive decoder used the conditioning vector and the
previously generated nodes to predict the next node in the graph.
This sequential process incrementally generates the graph.

VI. METRICS

The most common used metrics for evaluating the road extrac-
tion methods are completeness, correctness, quality, precision,
recall, F1-score [68], [73], [108], [149], and IoU [94], [113],
[150], [151]. The completeness is the percentage of the reference
network that lies within the buffer around the extracted road
centerlines, which is defined as (5), where true positive (TP) in-
dicates the road segments detected correctly, false positive (FP)
represents the wrong parts, and false negative (FN) denotes the
unextracted fragments. The correctness represents the percent-
age of the extracted road centerlines, which lie within the buffer
around the reference network, as defined by (6). The quality is a
measure of the “goodness” of the final result. It takes into account
the completeness of the extracted data as well as its correctness,
which is defined as (7). The F1-score is the harmonic mean of
completeness and correctness, which is defined as (8). Recall
and precision are usually used to evaluate the performance
of segmentation methods. In the field of road extraction, they
are regarded as relax completeness and correctness by some
researchers [110], [152]. Some researchers also use them to
measure the performance of road segmentation (a subtask of
road extraction) in remote sensing images [124], just as they
are used to evaluate the performance of semantic segmentation
methods. They are also defined by (5) and (6), respectively, but
TP means the number of the correctly segmented pixels, and
FP and FN are the number of the wrongly classified pixels. The
IoU used in road extraction describes the accuracy of road area
segmentation, which is defined as (9), where the target is the road
reference and the prediction is the predicted road segmentation.
By the way, the mean IoU (mIoU) is infeasible to evaluate the
road segmentation. Because roads in the HRSI are small objects,
even if the algorithm predicts the entire image as the background,
mIoU can be close to 50% while IoU is 0.

Because F1-score and IoU fail to adequately incentivize the
creation of connected road networks, more evaluation metrics
have been proposed. The TOPO metric simulates a car driving
a certain distance from several seed locations, and compares
the destinations that can be reached in the ground truth graph
G with those that can be reached in the estimated graph G′ in
terms of precision and recall [140]. The SP metric can be found
in [86], which randomly samples two points lying both on the
true and the estimated road network, and checks whether the



LIAN et al.: ROAD EXTRACTION METHODS IN HIGH-RESOLUTION REMOTE SENSING IMAGES: A COMPREHENSIVE REVIEW 5501

TABLE I
COMPARISON OF DIFFERENT SEMIAUTOMATIC METHODS

shortest path between the two points has the same length in both
networks. The procedure repeats with different random points
and records the percentages of correct, too short, too long, and
infeasible paths, until these percentages have converged. The SP
metric is hardly reproducible, so the connected road ratio (CRR)
metric is proposed in [118] to capture the ratio of road segments,
which are estimated without discontinuities. Inspired by CRR,
The CONN metric is defined in [142] to measure the similarity
of connectivity between G and G′. A novel metric [average path
length similarity (APLS)] is introduced in the third SpaceNet
competition [128] to measure the similarity between G and G′.
The APLS is defined as (10), where N is the number of unique
paths, whereas L(a, b) is the length of the path (a, b). The sum
is taken over all possible source (a) and target (b) nodes in the
ground truth graph. The node a’ denotes the node in the proposal
graph closest to the location of ground truth node a. The APLS
metric scales from 0 (poor) to 1 (perfect). StreetMover Distance
was introduced in [148], which was computed as the optimal cost
of moving the predicted proposal point cloud to the ground-truth
target point cloud. The main benefits of the StreetMover distance
are its interpretability, scalability, and invariance with respect to
node permutation graph translations and rotations

Completeness =
TP

TP + FN
(5)

Correctness =
TP

TP + FN
(6)

Quality =
TP

TP + FP + FN
(7)

F1− score =
2∗Completeness ∗ Correctness
Completeness + Correctness

(8)

IoU =
target ∩ prediction

prediction ∪ prediction
(9)

APLS = 1− 1

N

∑
min

{
1,

|L (a, b)− L (a′, b′)|
L (a, b)

}
. (10)

VII. COMPARISONS

A. Comparison of Semiautomatic Methods

Table I displays the subjective comparison of different
semiautomatic road extraction methods. The performance

comparison of these algorithms is not presented because the
performances usually can be improved by increasing the density
and precision of the seeds.

Table I also indicates that most of the algorithms exploit
similar features (e.g., gray, texture, and edge features) and some
extracted features as auxiliary information. However, different
algorithms require different degrees of manual intervention. The
template matching methods request fewer seeds and achieve
real-time performance. Therefore, these methods are extensively
used. Shortest path methods are rarely used in practice because
it is highly time-consuming, although they require the least
seeds. Dynamic programming and snakes require additional
seeds and have to define complex cost function according to
specific scenarios, which leads to less application.

B. Comparison of Automatic Methods

Table II displays the subjective comparison of the different
automatic road extraction methods. The performances of the
algorithms are also not listed in Table II considering the lack
of benchmark dataset. In Table II, each algorithm has its own
advantages and disadvantages. It is difficult to obtain satisfactory
results from large scale RS images using only one algorithm.
Thus, research on integrating different methods is promising.
In addition, high resolution presents detailed features but is
accompanied by additional noise, such as cars, shadows, and
occlusions. On this basis, many researchers have emphasized
object features and structures rather than local intensity.

C. Comparison of Data-Driven Methods

Thanks to the open-source benchmark dataset, we can perform
quantitative comparisons of the data-driven road extraction al-
gorithms. Several benchmarks are available for evaluating road
extraction methods. Mass. Roads dataset1 is the most popular
one, in which each pixel in an image is annotated as foreground
or background. The spatial resolution of the images in the Mass.
Roads dataset is 1 meter per pixel, and each image consists
of 1500 × 1500 pixels. Specifically, the road dataset contains
1172 aerial images that cover more than 2600 km2 in total [110].
Another popular benchmark is provided by the DeepGlobe Road

1[Online]. Available: http://www.cs.toronto.edu/∼vmnih/data/

http:&sol;&sol;www.cs.toronto.edu&sol;&sim;vmnih&sol;data&sol;
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TABLE II
COMPARISON OF DIFFERENT AUTOMATIC METHODS

TABLE III
COMPARISON OF DIFFERENT DATA-DRIVEN METHODS ON MASSACHUSETTS ROAD DATASET

Extraction Challenge,2 which consists of 8570 images and spans
a total land area of 2220 km2. A total of 6626 images from this
dataset are selected for training, 1243 images for validation, and
1101 images for testing. SpaceNet road dataset3 is specifically
built for the SpaceNet road detection and routing challenge,
which consists of 8000 km of road centerlines with associated
attributes, such as road type, surface type, and the number
of lanes. This dataset first introduces the data-agnostic APLS
metric to evaluate road network proposals. The dataset is divided
into three parts as follows: 60% of the dataset is distributed for
training, 20% for testing, and 20% for validating.

In this article, we use the Mass. Roads benchmark for per-
formance comparison because it has the most performance
reports, thereby allowing fair and comprehensive comparisons
amongst various methods. It should be noted that we do not find
the performance reports on the Mass. Roads dataset achieved

2[Online]. Available: http://deepglobe.org/
3[Online]. Available: https://medium.com/the-downlinq

by GAN-based methods. Thus, we present the performance
tested on the other dataset. The evaluation metric is F1-score,
which is a tradeoff between precision and recall. We present
the scores reported in the original papers. For an approach
with multiple variations in model architecture, we only show
the score of the optimal model for the sake of brevity. To
be consistent with the expression in this work, we classify
these models as patched CNN, FCN, DeconvNet, GAN, and
graph-based. The comparison of different neural network mod-
els is summarized in Table III, where the tags 4, 5, 6 denote
Evaluated on the European Road Dataset, a private dataset cut
out from Google Earth, and RoadTracer dataset, respectively.
The patch-based CNN models use a large local context to infer
the class of a pixel, thereby achieving the high performance
(relax version). However, it is inefficient to reason each pixel
ignoring the correlation between adjacent pixels. The FCNs
achieve pixel-to-pixel reasoning, but the accuracy is low due
to the simple interpolation used in the upsampling stage. The
deconvolutional networks significantly improve spatial accuracy

http:&sol;&sol;deepglobe.org&sol;
https:&sol;&sol;medium.com&sol;the-downlinq
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TABLE IV
PERFORMANCES ACHIEVED IN THE SAME DATASET BY THE HEURISTIC AND DATA-DRIVEN ALGORITHMS

by adopting deconvolutional layers and utilizing the low-level
convolutional output (called skip connections). Although the
GANs can produce consistent output, the problems of model
collapse, non-convergence, and gradient vanishing make the
network training more complicated.

D. Comparison Between Heuristic and Data-Driven Methods

We compare the performances of heuristic algorithms and
data-driven algorithms in the same dataset, see Table IV, where
the tags 7 and 8 denote Cheng-TGRS-2018 and Vaihingen data.
It can be found that data-driven methods achieve better perfor-
mances, and the performances have been improved by more
than 10% basically. Therefore, the data-driven methods are
the mainstream in this field now. However, the integration of
heuristic algorithms and deep learning is getting attention. A
coarse-to-fine road extraction method was presented in [153].
They argued that intensity distribution and structure feature
information are both crucial for road extraction task. In [153],
a local Dirichlet mixture model (LDMM) was introduced to
presegment images into roads and nonroad using intensity distri-
bution at the coarse level. Then, based on the results of LDMM,
a multiscale-high-order deep learning strategy was employed to
further remove FP at the fine scale. The ablation experiments
showed that the performance combining heuristic algorithms
and deep learning is better than using any one alone.

VIII. CONCLUSION AND PROSPECTS

This article summarizes the methods extracting roads from
HRSI in the past two decades, which are classified into heuristic
and data-driven. For heuristic algorithms, we further divide the
algorithms into two types (i.e., automatic and semiautomatic)
and introduce the principles and inspirations of them. For data-
driven methods, we focus on the methods based on deep learning,
and survey how the different deep learning technologies and
frameworks are applied in road extraction methods. Compre-
hensive comparisons are described inner and inter different
type of methods. The hand-crafted feature engineering required

in the heuristic algorithms decreases the algorithms’ general-
ization, makes them difficult to apply to large-scale datasets.
Comparisons of performances achieved by heuristic methods
and data-driven methods in the same dataset show the advance
of the data-driven method. This article cannot elaborate on all
kinds of heuristic algorithms due to the diversity of them and
fails to compare their performances objectively for the lack of
benchmark dataset used by them.

In general, the existing road extraction algorithms are not
smart enough to fulfill practical applications. Interventions,
such as adjusting some parameters, specifying the road type
or manually placing the seeds, etc., are required by most of the
algorithms. Even by manual intervention, satisfactory results are
sometimes difficult to obtain. In addition, different extraction
methods have their own advantages and disadvantages. There-
fore, the intelligence of road extraction for RS imagery still
requires further study. Future research may continue from the
following aspects.

1) Methods based on large-scale neural network: Experi-
ments showed that deep neural networks are ideal so-
lutions for pattern recognition. However, DNN models
trained by one scenario may be inapplicable to the other
scenes. If the neural network is designed reasonably and
the training data are sufficient and sampled from all over
the world, then the network should be able to perform well
in most common scenes.

2) Methods based on high-resolution DNN: In the end-to-end
process models, the backbone networks (such as ResNet
and VGGNet) mainly acquire low resolution of repre-
sentation, and the spatial discrimination of the restored
high-resolution representation is insufficiently strong. We
hold that it is necessary to study high-resolution deep
neural network that can learn abundant high-resolution
representations by maintaining high resolution throughout
the whole process.

3) Integration of heuristic algorithms and deep learning: We
believe that if a method can make full use of statistical
features and learning features, it can achieve higher per-
formance. There are two directions that can be developed.
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One is weakly or semisupervised learning, which uses
heuristic algorithms to generate initial labels, and the
other uses heuristic algorithms to preprocess images and
postprocess outputs of DCNN.

4) Methods based on graph neural networks (GNNs): GNNs
are deep learning based methods that operate on graph do-
main, which have been widely applied in recent years due
to their convincing performance and high interpretability.
The road network is essentially a graph composed of
intersections (vertices) and road segments (edges). We
believe that road extraction based on graph learning is
a promising research topic.
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