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Abstract— Autonomous driving systems must have the abil-
ity to monitor the kinematic behaviour of multiple obstacles.
Therefore, 3D multi-object tracking (3D-MOT) is one of the
crucial modules in autonomous driving to detect the presence
of potential hazard movements such as human operated vehi-
cles and pedestrians. In this work, we present a novel online
3D multi-tracking system that uses the Aggregated Euclidean
Distances (AED) in data association module instead of using
Intersection over Union (IoU) as a new metric. AED is used
in order to obtain the relationship between predicted tracks
and current object detections. There are several benefits from
using AED in data association module. Firstly, it can reduce
the system’s complexity so that the execution time can be
significantly reduced (as calculating Euclidean distances is
much faster than obtaining 3D-IoU). Secondly, AED can provide distance measurement even when there is no overlaps
between the predicted tracks and the current detections, while 3D-IoU produces zeros for non-overlapping cases. To
demonstrate the validity of our proposed method, we performed extensive experiments on KITTI multi-tracking benchmark
and nuScenes validation datasets. The experimental results are compared against the open-sourced state of the art 3D
MOTs such as AB3DMOT, FANTrack, and mmMOT. Our method clearly outperforms the AB3DMOT baseline method and
other methods in terms of accuracy and/or processing speed.

Index Terms— Aggregated Euclidean Distances, AED, 3D MOT, real-time multi-tracking.

I. INTRODUCTION

AUTONOMOUS driving or driverless car system is a
promising technology for future transportation that po-

tentially has the capacity to improve road safety and to have
a better mobility. Self-driving cars promise to bring a number
of benefits to society, including prevention of road accidents,
optimal fuel usage, comfort and convenience [1].

In order to integrate driverless cars in urban traffics, their
safe operation must be ensured from the presence of potential
hazards such as human operated vehicles and pedestrians
[2]. Beside having good perception systems, they must also
have the ability to monitor the kinematic behaviour of the
multiple obstacles. Monitoring the kinematic behavior of
multiple obstacles is commonly known as Multiple-Object
Tracking (MOT). MOT involves a stage where newly detected
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obstacles are evaluated for association with already known
obstacle tracks. This stage, called the Data Association stage,
is responsible for partitioning sensor reports into tracks and
false alarms [3].

In this work, we propose an approach for fast and robust 3D-
MOT for real-time applications. The objective is to obtain the
highest possible accuracy in the least possible time in order
to have a feasible multi-object tracking system that can be
used in real-time applications. Our present article is basically
inspired by the work on 3D-MOT called AB3DMOT [7].
We introduce several extensions. Firstly, while AB3DMOT
[7] usually uses identity matrices multiplied by a chosen
scalar for covariance matrices used in kalman filter process,
we propose to estimate the covariance matrices to have a
better performance (details in Section III). Secondly, instead
of using 3D-IoU as in AB3DMOT [7], we propose to use
Aggregated Euclidean Distances (AED) to obtain a robust
data association and to speed-up the data association process.
AED is calculated based upon the aggregate of the euclidean
distances between corners boxes and between centroids of
the predicted tracks and the new detection objects. Finally,
in order to recover the lost track caused by miss detections,
we propose to include the maximum skipped frames module in
Birth/Death controller. The unmatched tracks will be preserved
for a certain number of frames and will be combined with the
updated matched tracks and the newly created tracks to predict
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new tracks positions.
To demonstrate the validity of our proposed method, we

perform extensive experiments by evaluating our framework
on the 3D MOT benchmarks: KITTI [8] and nuScenes [9]
validation datasets.

To summarize, our main contributions are as follows:
• We propose to estimate the covariance matrices used

in Kalman prediction states in order to have a better
accuracy.

• We propose to use Aggregated Euclidean Distance instead
of using 3D-IoU as a metric for obtaining the relationship
between the predicted tracks and the current detected
objects in the data association module to accelerate the
tracking process.

• We propose to include maximum skipped frames in
Birth/Death controller to recover tracks from lost detec-
tions.

• We perform extensive experimental and comparative anal-
ysis on two publicly available datasets (KITTI [8] and
nuScenes [9]).

The rest of the paper is structured as follows. Related works
are discussed in Section II. Section III presents our proposed
approach. The framework of the proposed pipeline is presented
in this section. Section IV describes data association including
the proposed AED and maximum skipped frames. Section V
provides the experiments and discusses the obtained results.
The last section, Section VI, draws some conclusions and
future directions.

II. RELATED WORKS

Multi-object tracking can be divided into two categories,
batch-based methods, and filter-based methods. Batch-based
methods also known as off-line methods use the entire se-
quences in order to find the global optimal solution. A com-
mon solution used in batch-based methods is the minimum
cost flow algorithm to find the optimum solution of the
network flow graphs [10] [15]. Graph-based clustering [30],
Network flow optimization [29] and Bayesian filtering-based
tracking [33] are some of the popular methods of the off-
line MOT methods in the recent past years. Another off-
line MOT proposed a submodular optimization for multi-
object visual tracking [19]. This method adopts a strategy to
reduce the search complexity by finding low-level tracklets
crossing several adjacent frames, and then combines them into
complete trajectories. To find low-level tracklets, the method
formulates data association in each segment as a network flow
optimization problem and then uses a network flow algorithm
to find the solution.

Online methods (like [5], [6], [7], [16], [17], and [18]) use
only the past and the current observations and associate the
current incoming observations to existing trajectories using
state spaces models like Kalman filter or Particle Filters. This
association is often formulated as a bipartite graph matching
problem and traditionally solved by using the Hungarian
algorithm [10] [11] [6] [21].

Data association is an important component in a multi-
object tracking systems. Karunasekera et al. [26] tried to

resolve the uncertainty of targets states by proposing a dissim-
ilarity measure based on object motion, appearance, structure,
and size. They used four distances, including appearance-
based distance, structured-based distance, motion-based dis-
tance, and size-based distance. These dissimilarity values are
then used in Hungarian algorithm, in the data association
module for track identity assignment. This method showed
good results, but applied to 2D images only.

Many other approaches have also been proposed (such as
[34], [31], [32] and [35]). In these works, the authors use
Recurrent Neural Networks (RNNs) to construct the affinity
model. Even though they have demonstrated the effectiveness
of their methods, these approaches may have a potential
vulnerability because the model is trained on a different
distribution from the test scenario, which can both diminish
the discriminability and result in error accumulation during
inference [12].

Systems based on tracklet association have been also pro-
posed in [12], [13], and [14]. Such systems employ deep-
learning models and require a high computational cost that
makes real-time performance a challenge. The concern of real-
time MOT application is not merely on the accuracy, but also
on the computational efficiency and system simplicity.

In order to improve the computational efficiency, a unified
motion and affinity model into a single framework has been
proposed in [20]. However, even though they stated that this
design has improved the computational efficiency with low
memory requirement and simplified training procedure, this
system still struggles with the processing speed that is only
successfully run at 5 FPS on a 1080 Ti NVidia GPU.

Several 3D multi-object tracking methods are extended from
2D multi-object tracking methods and most of them use 3D-
IoU as a metric to obtain the relationship between the predicted
tracks and the new incoming detections. Weng et al. [7] have
resulted a state of the art in 3D multi-object tracking. Their
simple method resulted in significant achievement in 3D-MOT.
For real-time efficiency and to keep a simple design, they did
not use neural networks but only employed the Hungarian
algorithm and Kalman Filter. Therefore, in this work, we
consider their method as a baseline reference for developing
our 3D-MOT system.

III. OUR APPROACH

In this work, we propose to extend the 3D MOT baseline
method called AB3DMOT [7]. We provide several extensions
as follows:
• Firstly, AB3DMOT used a default covariance matrices for

Kalman filter process, while in our method, we propose
to estimate the covariance matrices. This approach will
be discussed in the next subsection.

• Secondly, instead of using 3D-IoU, we propose to use
Aggregated Euclidean Distances (AED) to have a robust
data association and to speed up the data association
process.

• Thirdly, we propose to include maximum skipped frames
in Birth/Death controller to recover the lost tracks caused
by false negative detections.
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Fig. 1: Proposed System Pipeline. In this work, we have added three contributions. Firstly, we estimate the covariance matrices
Q and R in 3D Kalman filter module (blue color box). Secondly, we replace the 3D-IoU method in Data Association Module
(green color box) used in AB3DMOT method by the Aggregated Euclidean Distance (AED). And thirdly, we add the maximum
skipped frames parameter in Birth/Death module (yellow color box) to prevent the loss of many potential positive trajectories
caused by false negative detections.

AED is the aggregate of the euclidean distances between
corners boxes and between centroids of the predicted tracks
and the newly detected objects. Calculating euclidean dis-
tances takes a low computational cost compared to 3D-IoU’s
calculation. Moreover, the Aggregated Euclidean Distances
can provide distance measurement even when there is no over-
laps between the predicted tracks and the current detections,
while the 3D-IoU only results in zeros. We believe that using
AED in the data association module can reduce the system
complexity and can perform the tracking process much faster
than the use of 3D-IoU. In addition, we have validated that our
proposed 3D MOT system using the AED performs very well
and gives a very good performance for the tracking accuracy
and the processing speed.

The framework of the proposed algorithm is presented in
Figure 1. It includes four main parts: Moving 3D-target de-
tection as input to the system, target state prediction using 3D
Kalman Filter, associated matrix reasoning or data association
module using Hungarian algorithm and Bird/Death controller.

For 3D detections, we use the 3D detection obtained by
PointRCNN [27] and MEGVII [28] for evaluating KITTI and
nuScences datasets, respectively as used in AB3DMOT [7].
The classical 3D Kalman Filter algorithm is employed in the
target state prediction, and Hungarian algorithm is used to
associate the target states produced by 3D Kalman Filter and
the current detections that takes an input from the 3D detection
module.

A. 3D Multi-Object Tracking
We adopt the AB3DMOT [7] baseline in our work. For

every frame t, the output of 3D detection is a set of detection
D(t) = {D(t)

0 , D
(t)
1 , ..}. Every object is described in ego-

vehicle coordinates by its detection score s and box coordi-

nates, which are represented by its 3D box center coordinate
(x, y, z), 3D size (w, l, h), and box orientation θ. We model
object’s state st that has 11 variables as follows:

st =
(
x, y, z, θ, w, l, h, ẋ, ẏ, ż, θ̇

)
(1)

where: ẋ, ẏ, ż, and θ̇ are the velocities in x-,y-,z-directions
and the angular velocity, respectively.

AB3DMOT [7] is developed from SORT [11] algorithm
and it uses default covariance matrices which is a chosen
scalar multiplied by identity matrices. In our approach, we
estimate covariance matrices using an approximation of noise
covariance as explained in the following subsection. Moreover,
AB3DMOT [7] uses the 3D-IoU as the affinity function.
Meanwhile, we propose to use a new distance metric, which is
called the Aggregated Euclidean Distances (AED). However,
we still use the same data association method as used in
AB3DMOT, which is the Hungarian algorithm.

At time t, we are given an image of the current
frame F(t) ∈ RWxHx3, and the previous frame F(t−1) ∈
RWxHx3, as well as the tracked object information T(t−1) =

{T (t−1)
0 , T

(t−1)
1 , ..}. Every track is described by its track

identity (track id), box coordinates in ego-vehicle coordinates
represented by its 3D box center coordinate (x, y, z), 3D
size (w, l, h) and box orientation θ, and box detection score
s. Our aim is to track the current detected objects D(t) =

{D(t)
0 , D

(t)
1 , ..} in the current frame F(t) by assigning the same

objects appearing in the previous frame F(t−1) with a consis-
tent track identities, which are the same track identities as in
the previous frame F(t−1), and assigning the newly detected
objects with new tracks identities. Algorithm 1 explains the
details of this implementation.
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B. Kalman Filter
Kalman filtering [22] makes a forward projection state or

predicts the next state using prior knowledge of the state and
the current observation or measurement. It estimates the state
of a system at time k using the linear stochastic difference.
The state of a system at a time k (sk) that evolves from the
prior state at time k − 1 is written in the following form:

sk = Ask−1 +Buk−1 + wk−1 (2)

and the measurement model zk describing a relation between
the state and measurement at the current step k is written as:

zk = Hsk + vk (3)

where A, a matrix nxn, is the state transition matrix relating
the previous time step k − 1 to the current state k. B, a matrix
nxl, is a control input matrix applied to the optional control
input uk−1. H , a matrix mxn, is a transformation matrix
that transforms the state into the measurement domain. wk
and vk represent the process noise vector with the covariance
Q and the measurement noise vector with the covariance
R, respectively. They are assumed statistically independence
Gaussian noise with the normal probability distribution.

p (w) ∼ N(0, Q)

p (v) ∼ N(0, R)
(4)

In real-world applications, Q and R are difficult to tune, and
the performance of Kalman filter is strongly dependent upon
the results of tuning the Q and R [23].

Kalman filter [22] uses a feedback control form to estimate
the state by firstly predicts the state in a particular time
and then calculates the feedback using a noisy measurement.
Therefore, the equation of Kalman Filter can be divided
into two groups: the time update equations and measurement
update equations. In time update equations, the a priori state
estimate ŝ−k is predicted by using the state dynamic equation
model that projects forward one step in time as follows:

ŝ−k = Aŝk−1 +Buk−1 (5)

where: ŝk−1 is the previously a posteriori estimated state.
Then, the error covariance matrix P−k is predicted by:

P−k = APk−1A
T + Q (6)

where Pk−1 is the previously estimated error covariance matrix
and Q is the process noise covariance.

In measurement update equations, we start by computing
the Kalman gain Kk as follows:

Kk = P−k H
T (HP−k H

T + R)−1 (7)

where R is the measurement noise covariance. After that, we
perform the actual measurement zk.

A posteriori state estimate ŝk can be computed as a linear
combination of an a priori state estimate ŝ−k and a product
of Kalman gain Kk and the measurement residual, which
is the difference between an actual measurement zk and a
measurement prediction H ŝ−k .

ŝk = ŝ−k + Kk(zk −H ŝ−k ) (8)

After obtaining the updated (a posteriori) state estimate ,
the filter calculates the updated error covariance Pk, which
will be used in the next time step.

Pk = (I −KkH)P−k (9)

where I is an identity matrix.
For more detail about the principle of the Kalman filter, we

encourage the readers to refer to the reference [22].

Algorithm 1: Proposed 3D MOT Algorithm
input : Set of Detections D = {D0, D1, ..},

Maximum Age Agemax,
Max Skipped Frames SkippedFramesmax

output: Set of Valid Tracks T̂ = {T̂0, T̂1, ..}
Init set of Valid Tracks T̂ ← ∅
Init set of Tracks T ← ∅
Init set of Track Predictions PredT ← ∅
Init set of New Tracks NT ← ∅
Init Matched Tracks Indices MTindices ← ∅
Init Unmatched Tracks Indices UTindices ← ∅
Init Unmatched Detections Indices UDindices ← ∅
while True do

Get new detections D
# Use 3D-KF to predict the previous tracks
PredT ← 3DKalmanFilter.predict(T)
T.Age ← T.Age +1
# Associate tracks with new detections using
Hungarian and AED method
MTindices, UDindices, UTindices ←

AssociateTracking(PredT, D)
# Update matched tracks with assigned detections
for i, trk ∈ enumerate(T) do

if i 6∈ UTindice then
Ti ← 3DKalmanFilter.update(trk)
Ti.Age ← 0

end
end
# Initialize new tracks for unmatched detections
for i ∈ UDindice do

NTi ← 3DKalmanFilter.initTracks(Di)
NTi.Age ← 0
APPEND(T, NTi.)

end
# Tracks validation and deletion
for i← 0 to length(T) do

if Ti.Age < Agemax then
APPEND(T̂,Ti)

end
if Ti.Age > SkippedFramesmax then

Delete track Ti
end

end
return valid tracks T̂

end
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State Prediction
We formulate the state of dynamic model using constant

velocity model as the following: The state in time k, denoted
by sk, can be predicted by the previous state in time k − 1,
sk−1. Let x, y, and z be the positions in the x-, y- and z-
directions, respectively, and let θ be the orientation. Also let ẋ
and ẏ be the velocities in x-, y- and z-directions, respectively,
and the θ̇ be the angular velocity. Then, the 3D Kinematic
equation for state sk can be written as follows:

xk
yk
zk
θk
wk
lk
hk
ẋk
ẏk
żk
θ̇k



=



xk−1 + ẋk−1∆t+ ẍk−1
∆t2

2

yk−1 + ẏk−1∆t+ ÿk−1
∆t2

2

zk−1 + żk−1∆t+ z̈k−1
∆t2

2

θk−1 + θ̇k−1∆t+ θ̈k−1
∆t2

2

wk−1

lk−1

hk−1

ẋk−1 + ẍk−1∆t

ẏk−1 + ÿk−1∆t

żk−1 + z̈k−1∆t

θ̇k−1 + θ̈k−1∆t



(10)

Process Noise Covariance Matrix Q
As discussed in the above subsection that the performance

of Kalman filter is strongly dependent on the tuning of Q and
R. In some real-world applications, the diagonal parameteri-
zation of the covariance matrices works quite well, however,
it yields indeed a sub-optimal solution of the original problem
[23]. Therefore, in this work we present our approach to
address this problem in order to obtain the Q and R as natural
as possible.

The process noise covariance matrix Q or error in the
state process can be written as in eq.11, where (σx, σy, σz)
and (σẋ, σẏ, σż) are the standard deviations of the central
position (x, y, z) and their velocities, respectively. The σθ is
the standard deviation for the orientation θ, and the σθ̇ is the
standard deviation of its angular velocity.

Since we have the noise coming from the accelerometer
output [24], then the process noise Q can be regarded as the
uncertain product of error in acceleration [25]. Therefore, we
can find a relation between the position and the acceleration,

as well as the relation between the velocity and the accel-
eration. These relations can be obtained from the equation
eq.10 that the position is affected by ∆t2

2 multiplied by the
acceleration, and the velocity is affected by ∆t multiplied by
the acceleration. This means that if we have the error in the
acceleration, it will automatically affect the position and the
velocity. Therefore, since we have error in the acceleration, we
can define the standard deviation of position as the standard
deviation of acceleration σa multiplied by ∆t2

2 . Likewise, ∆t
is the effect on the velocity caused by the acceleration, we can
define the standard deviation of the velocity as the standard
deviation of acceleration σa multiplied by ∆t.

Then, the process covariance noise Q can be written as in
eq.12, where σax , σay , and σaz , are the standard deviations of
the acceleration in x-, y-, and z-directions, respectively, and
σaθ is the standard deviation of the angular acceleration of the
orientation θ.

Measurement Noise Covariance Matrix R

By supposing the measurement positions x, y, z and θ are
independent from one another, we can discard any interaction
between them so that the covariances between these elements
are 0. Then, we can only focus on the variance for each
element. Based on this assumption, the measurement noise
covariance R can be written as in eq.13.

IV. DATA ASSOCIATION

A. Aggregated Euclidean Distance

The costs are the fundamental parameters in track asso-
ciation. Having a cost function which dependent with some
parameters make the track association more robust. Regarding
data association between the predicted tracks and current
detections, we approach our 3D-MOT system by using the
Aggregated Euclidean Distances (AED) instead of using 3D-
IoU as applied in the AB3DMOT [7] baseline and other
previous works. To the best of our knowledge, this is the
first new metric proposition applied to this domain. There are
two intuitive reasons using this technique, firstly, compared
to 3D-IoU, calculating Euclidean distance is much faster
than obtaining the 3D-IoU. Therefore, using this technique
can reduce the system complexity and the execution time

Q =

x

y

z

θ

w

l

k

ẋ

ẏ

ż

θ̇

x y z θ w l h ẋ ẏ ż θ̇

σ2
x 0 0 0 0 0 0 σxσẋ 0 0 0

0 σ2
y 0 0 0 0 0 0 σyσẏ 0 0

0 0 σ2
z 0 0 0 0 0 0 σzσż 0

0 0 0 σ2
θ 0 0 0 0 0 0 σθσθ̇

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

σẋσx 0 0 0 0 0 0 σ2
ẋ 0 0 0

0 σyσẏ 0 0 0 0 0 0 σ2
ẏ 0 0

0 0 σżσz 0 0 0 0 0 0 σ2
ż 0

0 0 0 σθ̇σθ 0 0 0 0 0 0 σ2
θ̇



(11)
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Q =



∆t4

4 σ2
ax 0 0 0 0 0 0 ∆t3

2 σ2
ax 0 0 0

0 ∆t4

4 σ2
ay 0 0 0 0 0 0 ∆t3

2 σ2
ay 0 0

0 0 ∆t4

4 σ2
az 0 0 0 0 0 0 ∆t3

2 σ2
az 0

0 0 0 ∆t4

4 σ2
aθ

0 0 0 0 0 0 ∆t3

2 σ2
aθ

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
∆t3

2 σ2
ax 0 0 0 0 0 0 ∆t2σ2

ax 0 0 0

0 ∆t3

2 σ2
ay 0 0 0 0 0 0 ∆t2σ2

ay 0 0

0 0 ∆t3

2 σ2
az 0 0 0 0 0 0 ∆t2σ2

az 0

0 0 0 ∆t3

2 σ2
aθ

0 0 0 0 0 0 ∆t2σ2
aθ



(12)

R =

x

y

z

θ

w

l

k

x y z θ w l h

σ2
x 0 0 0 0 0 0

0 σ2
y 0 0 0 0 0

0 0 σ2
z 0 0 0 0

0 0 0 σ2
θ̇

0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


(13)

significantly. Secondly, calculating the Aggregated Euclidean
Distances in rotated boxes can achieve a robust distance
between two boxes which have a strong correlation to each
other. AED can provide distance measurement even when
there is no overlaps between the predicted tracks and the
current detections, while 3D-IoU only produces zeros for non
overlapping cases. Figure 2 illustrates the AED used in the
proposed method. The AED can be calculated as follows:

AED =
1

2
(
n∑
i=1

di + dc) (14)

where di is the distance between the corners of the bounding
boxes of the predicted tracks and the current detection objects,
and i varies from 1 to n = 4. We only use four bottom
box corners because the four top box corners have the same
coordinates as the four bottom box corners regarded from z
axis. The dc is the distance of the bounding boxes centers of
the predicted track and the current detection object.

The figure 3 shows two sets of illustration of measuring
similarity between the predicted track and the current detec-
tion using IoU and AED for the overlapping case and non-
overlapping case.

B. Initiation and Deletion of Track Identities
Also known as Death and Birth Memory in most of MOT

papers, it is a task to record the matched or unmatched
tracks with the new detections. It initiates new tracks or
deletes existing tracks when needed. The observations that are
not assigned to the existing tracks can initiate new tentative

tracks. A tentative track is confirmed when the observation
quality included in the track satisfies the confirmation criteria.
Similarly, low-quality tracks, as usually determined by the
update history, are deleted. Track quality may be defined as a
criterion for initiating a new track or deleting an existing one.

In this work, we propose to preserve the tracks for the num-
ber of frames in order to recover the lost tracks caused by false
negative detections. We include the maximum skipped frames
parameter in Birth/Death controller. The unmatched tracks
will be preserved for a certain number of frames and will
be combined with the updated matched tracks and the new
created tracks in order to predict new tracks positions.

Fig. 2: Description of Aggregated Euclidean Distances used
in our method.

Intuitively, if there is a lost track, it will be recovered if
the module finds the shortest AED between the lost track
and the new incoming object. If this new incoming object
passes the threshold criteria, it is considered as a lost track and
will be assigned the same track id as the last known track id
for this object and then will be marked as a matched track.
The figure 4 shows an illustration of recovering the lost
track (Tid 2) after occurring false negative detection for 3
consecutive frames. In this case, the position of the lost object
is predicted based on the last known of its estimated position.
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Fig. 3: Two sets of examples for obtaining the relation between the predicted track and the current detection using IoU and
AED. In overlaping case (a), both IoU and AED methods produce the positive values, but for the non-overlapping case (b),
the result of the IoU method is always zero, while the result of AED method is always a positive value.

Fig. 4: Illustration of using the maximum skipped frames. This figure illustrates an example of a lost track (Tid 2) caused by
false negative detection object at frames 2, 3 and 4. At frame 5, the same object is re-detected and successfully re-assigned
the same track id (Tid 2).

If this object is still missing in detection process, the system
continues to predict its position until the maximum value of
the skipped frames allowed as illustrated in the figure. The
lost track (Tid 2) can be recovered at frame 5 after the same
object is re-detected by the object detector.

The difference between our proposed method and the
method used in AB3DMOT [7] is that, in AB3DMOT [7],

they use the same parameter for both tracks validation and
tracks deletion, which is the Agemax. A track is considered
as a valid track if its age is less than the value of the
Agemax and the one whose the age is greater or equal to
the value of the Agemax will be discarded from the tracklets.
Based on their ablation study, the optimal performance is
obtained at the Agemax value is set to 2. This means that,
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they consider every unmatched track after 2 successive frames
will be deleted. As a consequence, it causes the possibility
deletion of many potential positive trajectories that might still
exist in the scene that cannot find the matched objects due to
false negative detections. Meanwhile, in our method, we still
adopt the Agemax parameter but only for validating of the
matched tracks. However, for removing the unmatched track,
we propose to use a different parameter that we call as the
maximum skipped frames instead of using the same value of
the Agemax as proposed in AB3DMOT. As the result, by
using two different parameters for validating and removing
tracks, we can set a better range to minimize the loss of
potential positive trajectories. Based on our ablation study, the
the maximum skipped frames that yields a better performance
is set to 10 frames.

V. EXPERIMENTS AND ANALYSIS

A. Experimental Data

We evaluated our proposed 3D-MOT method on the KITTI
[8] 3D MOT benchmark and nuScenes [9] datasets. Both
datasets provide LiDAR point cloud and 3D bounding box
trajectories. The KITTI 3D MOT dataset consists of 21
training/validation sequences and 29 test sequences. Since
KITTI provides the ground truth labels publicly only for
training/validation split, we evaluated our system using the
training/validation split only as in AB3DMOT [7]. Meanwhile,
the nuScenes [9] dataset consists of 1000 driving scenes. Each
scene is approximately 20s long and fully annotated with 3D
bounding boxes for 23 classes and 8 attributes. The nuScenes
dataset is divided into 3 parts, mini, trainval, and test parts.
The mini-part is a subset of the trainval-part containing 10
scenes used to explore data without downloading the whole
dataset. The trainval-part contains 850 scenes, which are 700
scenes for training dataset and 150 scenes for validation with
fully annotated. The test-part contains only 150 scenes with no
annotations. For nuScenes dataset, we also evaluated the same
partition as used in AB3DMOT [7], that is the trainval-part.

B. Evaluation Metrics

Conventional metrics applied to MOT systems are based
on CLEAR MOT metrics [36], such as MOTA (Multi Object
Tracking Accuracy), MOTP (Multi-Object Tracking Preci-
sion), IDS (Number of identity switches), FRAG (Number of
fragmentations generated by false negatives), FN/FP (Number
of false negatives/positives), and ML/MT (Number of Mostly
Lost/Tracked trajectories). However, these metrics do not take
into account the confidence’s score explicitly, which means
that the CLEAR metrics consider all object trajectories having
the perfect confidence’s score (s = 1). This assumption is not
optimal because there could be many false positive trajectories
with low confidence scores [7].

In order to tackle the conventional MOT metrics, in which
evaluation metrics do not consider the confidence and only
evaluate at a single threshold, the authors of the AB3DMOT
[7] introduced two integral metrics – AMOTA and AMOTP

(average MOTA and MOTP) in order to summarize the per-
formance of MOTA and MOTP across many thresholds, as
shown in eq. 15.

AMOTA =
1

L

∑
rε{ 1

L ,
2
L ,...,1}

(1− FPr + FNr + IDSr
numgt

) (15)

where FPr, FNr, and IDSr are the number if false posi-
tives, false negatives and identity switches at a specific recall
value r. L is the number of recall value and numgt is the
number of ground-truths. Likewise, AMOTP can be derived
by integrating MOTP across all recall values.

To normalize the value of the integral metric AMOTA to
range between 0% to 100%, the authors of the AB3DMOT
[7] scale the range of the MOTA at the specific recall value r
by introducing two new metrics called sMOTA and sAMOTA,
which are formulated as follows:

sMOTA = max(0, 1− FPr+FNr+IDSr−(1−r) xnumgt

r xnumgt
) (16)

sAMOTA =
1

L

∑
rε{ 1

L ,
2
L ,...,1}

sMOTAr (17)

For nuScenes dataset, we follow nuScenes evaluation metric
that uses AMOTA, which penalizes ID switches, false positive,
and false negatives and is averaged among various recall
thresholds.

C. Experimental Results
1) Optimal Parameters Setting: For our optimal results

presented in tables II, III, IV and V, we use the parameters
setting as the following:
• Parameters setting for estimating noise covariance ma-

trices: For simplicity, we assume that the standard devi-
ations in the positions (σx, σy, σz) are all the same. We
also consider the standard deviations in the acceleration
(σax , σay , σaz ) are the same. Empirically, we found the
optimum values that give the best of our results are as
shown in Table I.

TABLE I: Setting parameters used for estimating noise covari-
ance matrices.

Parameters KITTI Dataset nuScenes Dataset

∆t 20s 5s
σx 0.5m 3m
σy 0.5m 3m
σz 0.5m 3m
σθ 0.5rad 0.1rad
σax 0.5m/s2 15m/s2

σay 0.5m/s2 15m/s2

σaz 0.5m/s2 15m/s2

σaθ 0.5rad/s2 0.1rad/s2

• Parameters setting used in data association module:
Based on our ablation study, we found that setting the
maximum skipped frames to 10 frames in the birth and
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death memory module can give the best performance in
terms of accuracy. We also found empirically for AED’s
threshold values used to reject none matching criteria
in the data association module are as the following:
For KITTI dataset, we set AEDthreshold to 4 meters,
2 meters, and 1 meter, respectively for car, cyclist, and
pedestrian can achieve the best performance as presented
in the tables II, III, and IV. For the nuScenes dataset, we
set AEDthreshold to 4 meters for all categories for our
optimal results.

2) Quantitative Results: We compared our method against
open-sourced state of the art 3-D MOTs such as AB3DMOT
[7], FANTrack [6] and mmMOT [5]. We used 3-D detections
obtained by PointRCNN [27] and MEGVII [28] for evaluating
KITTI benchmark 3D-MOT and NuScences datasets, respec-
tively as used in AB3DMOT [7]. Tables II to V summarize
the quantitative evaluation results.

Table II shows the MOT performance of car evaluation on
the KITTI validation set using the proposed method. It shows
that our proposed 3D MOT system consistently outperforms
other modern 3D MOT systems in almost all evaluated metrics
for different matching criteria (e.g., 3D IoUthresh = 0.25,
0.5, and 0.7) except for ID switch (IDS) and Fragmentation
(FRAG). For IDS and FRAG, our results achieve the second
best results after the AB3DMOT [7]. The performance on the
KITTI validation set for car evaluation demonstrates a very
significant result in terms of the processing speed. We achieved
an impressive result, almost twice as fast as the AB3DMOT
[7] thanks to the use of Aggregated Euclidean Distance.

The interesting results occur when evaluating the cyclists
and pedestrians. These two objects are very challenging com-
pared to cars due to the small objects size and they can be
very close to each other. However, our proposed 3D MOT
again shows its superiority against other methods as shown in
tables III and IV for the MOT performances of cyclist and
pedestrian evaluation, respectively on the KITTI validation
set using the proposed method. The asterisk (*) signs marked
in the tables II, III and IV indicate that we re-executed the
open-source code of AB3DMOT [7] baseline in order to have
a fair FPS comparison.

In addition to KITTI dataset, we also conducted evaluation
on the nuScenes dataset as performed in AB3DMOT [7].
Our obtained results first confirmed the conclusions stated
in AB3DMOT in the sense that nuScenes dataset is more
challenging than KITTI dataset due to sparse lidar points cloud
inputs, complex scenes, and low frame rates that impact to
3D detections on nuScenes significantly lower quality than
3D detections on KITTI [7]. However, compared to the result
of the AB3DMOT [7], our proposed 3D MOT demonstrates
an impressive improvement of the performance as shown in
Table V.

3) Qualitative Results: We provide examples of the qual-
itative results of the comparison for car evaluation between
AB3DMOT [7] and our proposed 3D MOT system as shown
in figure 5.a) and figure 5.b), respectively for AB3DMOT [7]
and ours. For this comparison, we took the sequence 0 of the
KITTI test dataset from frame 1 to frame 7. The results are

visualized with different colors representing the different track
identities. We can see that the results of AB3DMOT contain
identity switches as marked by green boxes and yellow circles
for different frames as shown in figure 5.a). The changes of
these identities are caused by miss detection of the objects.
Meanwhile, our proposed system presented in Figure 5.b)
shows different results. Thanks to the preservation of the
maximum skipped frames, it does not have these identity
switches issues on the example sequences. We can see that
the results show that the lost tracks caused by false negative
detections are successfully recovered. The proposed system
produces stable results and has fewer identity switches.

D. Ablation Study

We performed an ablation study for cars on the KITTI
validation set by modifying different parameters.

1) Effect of preserving maximum skipped frames: We
first studied the effect of preserving of the maximum skipped
frames to the tracking performance and speed. Table VI shows
the effect of preserving maximum skipped frames to the
performance accuracy and tracking speed. We found that the
optimal result is achieved at the number of maximum skipped
frames is set to 10. Setting the number of maximum skipped
frames to below 10 impacts to degrading the performance
accuracy. As well, when the number of the maximum skipped
frames is set to above 10 also impacts to degrading perfor-
mance accuracy. However, in terms of speed, the longer of
skipped frames preserved, the longer of the execution time
required that impacts to the lower FPS.

2) Effect of different AED’s threshold applied: In this
study, we varied the distance threshold of AED in order to
obtain the best performance. Table VII shows the results of
study on the effect of applying different AED’s threshold for
car evaluation on the KITTI validation set. The results show
that the best AED’s threshold setting is at 4 meters, which
results in the optimal performance accuracy.

3) Effect of different parameters setting used for
estimating the covariance matrices Q and R: In order
to have a better performance, we conducted a study by
empirically varying the standard deviation parameters
(σx, σy, σz, σθ, σax , σay , σaz , σaθ ) and ∆t used for
estimating the covariance matrices Q and R. The tables
VIII and IX show the results of this study that the best
performance is achieved when ∆t is set to 20s, and
the values of the standard deviation parameters are set to
σx σy σz 0.5m, σθ 0.5 rad, σax σay σaz 0.5m/s2,
and σaθ 0.5 rad/s2.

In addition, we have also investigated to the performance
of our proposed 3D MOT in this study using the default
covariance matrices for Q and R as used in AB3DMOT [7]
baseline method. As we can see in Table IX, the performance
of our 3D MOT using the default covariance matrices is not
better than that of using the estimated covariance matrices that
we proposed. However, this performance is still better than that
of the AB3DMOT [7] baseline method thanks to our proposed
AED and maximum skipped frames methods.
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TABLE II: MOT performance of car evaluation on the KITTI validation set using the proposed method. In each column, the
best obtained results are typeset in bold fonts and the second best result are in blue violet color. (* We re-executed the open
source code of AB3DMOT [7] using our computer in order to have a fair comparison)

Method Matching Criteria sAMOTA↑ AMOTA↑ AMOTP↑ MOTA↑ MOTP↑ IDS↓ FRAG↓ FPS↑

mmMOT [5]
(ICCV019)

IoUth = 0.25 70.61 33.08 72.45 74.07 78.16 10 55
4.8 (GPU)IoUth = 0.5 69.14 32.81 72.22 73.53 78.51 10 64

IoUth = 0.7 62.72 24.71 66.06 49.19 79.01 38 406

FANTrack [6]
(IV020)

IoUth = 0.25 82.97 40.03 75.01 74.30 75.24 35 202
25.0 (GPU)IoUth = 0.5 80.14 38.16 73.62 72.71 74.91 36 211

IoUth = 0.7 63.91 24.91 67.32 51.91 80.71 24 141

AB3DMOT [7]
(IROS020)

IoUth = 0.25 93.28 45.43 77.41 86.24 78.43 0 15
*117.2 (CPU)IoUth = 0.5 90.38 42.79 75.65 84.02 78.97 0 51

IoUth = 0.7 68.81 27.26 67.00 57.06 82.43 0 157

OURS
IoUth = 0.25 94.66 47.66 79.84 86.86 78.85 7 37

214.0 (CPU)IoUth = 0.5 91.90 44.98 78.13 84.21 79.48 5 88
IoUth = 0.7 74.01 30.38 69.13 61.00 82.41 3 235

TABLE III: MOT performance of cyclist evaluation on the KITTI validation set using the proposed method. In each column,
the best obtained results are typeset in bold fonts and the second best result are in blue violet color. (* We re-executed the
open source code of AB3DMOT [7] using our computer in order to have a fair comparison)

Method Matching Criteria sAMOTA↑ AMOTA↑ AMOTP↑ MOTA↑ FPS↑

AB3DMOT [7]
(IROS020)

IoUth = 0.25 91.36 44.34 79.18 84.87 *772.7 (CPU)
IoUth = 0.5 89.27 42.39 77.56 79.82

OURS IoUth = 0.25 95.94 50.91 80.72 87.39 857.7 (CPU)
IoUth = 0.5 92.86 48.09 79.33 85.24

TABLE IV: MOT performance of pedestrian evaluation on the KITTI validation set using the proposed method. In each
column, the best obtained results are typeset in bold fonts and the second best result are in blue violet color. (* We re-executed
the open source code of AB3DMOT [7] using our computer in order to have a fair comparison)

Method Matching Criteria sAMOTA↑ AMOTA↑ AMOTP↑ MOTA↑ FPS↑

AB3DMOT [7]
(IROS020)

IoUth = 0.25 75.85 31.04 55.53 70.90 *250.8 (CPU)
IoUth = 0.5 70.95 27.31 52.45 65.06

OURS IoUth = 0.25 79.19 33.28 56.85 71.21 345.3 (CPU)
IoUth = 0.5 73.35 28.82 53.74 67.22

TABLE V: MOT performance for All categories on nuScenes
validation set using the proposed method. In each column, the
best obtained results are typeset in boldface.

Method AMOTA↑ AMOTP↑ MOTA↑

AB3DMOT [7]
(IROS020)

8.94 29.67 31.40

OURS 40.30 89.95 33.34

VI. CONCLUSION

In this work, we proposed a simple yet accurate, fast and
robust 3D MOT system for real-time applications. We per-
formed extensive experiments on the KITTI and nuScenes 3D
MOT datasets. Our proposed system has shown competitive
results against state of the art 3D MOT such as AB3DMOT
[7], FANTrack [6] and mmMOT [5]. The proposed method
also showed a very impressive processing speed. Additionally,

we explored the impact of the preserving maximum skipped
frames to recover the lost track affected by false negative
detection. In future work, it will be interesting to investigate
the evolutionary algorithm such as genetic algorithm in order
to estimate automatically the covariance noise matrices and
to estimate data association module instead of using classical
Hungarian method.
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Fig. 5: Qualitative comparison between AB3DMOT [7] (a) and our proposed system (b) on the sequence 0 of the KITTI test
set.

TABLE VI: Ablation study for the effect of preserving maximum skipped frames for car on the KITTI validation set using the
proposed 3D MOT.

Variants sAMOTA↑ AMOTA↑ AMOTP↑ MOTA↑ MOTP↑ IDS↓ FRAG↓ FPS↑

MaxSkippedFrames = 4 92.05 44.85 77.95 86.05 78.84 13 45 285.3
MaxSkippedFrames = 6 92.57 45.39 77.90 86.48 78.71 14 50 235.4
MaxSkippedFrames = 8 92.10 44.98 77.91 87.33 78.81 12 42 221.0
MaxSkippedFrames = 10 94.66 47.66 79.84 86.86 78.85 7 37 214.0
MaxSkippedFrames = 12 94.49 47.43 79.80 86.57 78.84 7 35 190.0
MaxSkippedFrames = 14 94.21 47.36 79.84 83.88 78.81 2 28 179.8

TABLE VII: Ablation study for the effect of different AED’s threshold applied (in meters) for car evaluation on the KITTI
validation set using the proposed 3D MOT. Maximum skipped frame was set to 10, which is the optimal value obtained from
the table VI.

Variants sAMOTA↑ AMOTA↑ AMOTP↑ MOTA↑ MOTP↑ IDS↓ FRAG↓ FP↓ FN↓

AEDThresh = 3 92.64 45.71 77.90 84.94 78.92 10 31 327 925
AEDThresh = 4 94.66 47.66 79.84 86.86 78.85 7 37 415 679
AEDThresh = 5 94.19 47.38 79.82 86.78 78.81 9 41 422 677
AEDThresh = 6 94.48 47.30 79.83 86.57 78.85 7 37 430 688
AEDThresh = 7 94.14 47.04 79.76 84.28 78.81 12 44 443 862
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TABLE VIII: Ablation study for the effect of different ∆t for car evaluation on the KITTI validation set using the proposed
3D MOT. We empirically set the standard deviations parameters as follows: σx = σy = σz = 0.5 m, σθ = 0.5 rad, σax = σay
= σaz = 0.5 m/s2, σaθ = 0.5 rad/s2

Variants sAMOTA↑ AMOTA↑ AMOTP↑ MOTA↑ MOTP↑ IDS↓ FRAG↓ FP↓ FN↓

∆t = 5s 93.97 46.94 79.81 86.68 78.81 10 38 410 702
∆t = 10s 94.07 46.97 79.76 86.54 78.78 8 38 412 739
∆t = 15s 94.11 46.90 79.81 86.73 78.83 8 39 405 683
∆t = 18s 94.15 47.01 79.84 86.54 78.68 7 35 411 706
∆t = 20s 94.66 47.66 79.84 86.86 78.85 7 37 415 697
∆t = 21s 94.30 47.01 79.79 86.82 78.83 8 39 408 688
∆t = 22s 94.05 46.86 79.82 86.75 78.83 7 36 408 695
∆t = 25s 93.07 45.90 77.79 86.13 78.63 7 37 401 665

TABLE IX: Ablation study for the effect of different setting of parameters for estimation of the process noise covariance matrix
Q and the measurement noise R for car evaluation on the KITTI validation set using the proposed 3D MOT. We use optimal
∆t = 20s obtained from table VIII.

Variants sAMOTA↑ AMOTA↑ AMOTP↑ MOTA↑ MOTP↑ IDS↓ FRAG↓ FP↓ FN↓

Using default covariance matrices Q and R 94.01 46.98 78.84 86.29 77.75 8 37 402 706

σx σy σz 0.1m, σθ 0.1 rad
σax σay σaz 0.1m/s2, σaθ 0.1 rad/s2 94.23 47.21 79.80 86.68 78.81 8 35 402 706

σx σy σz 0.5m, σθ 0.5 rad
σax σay σaz 0.5m/s2, σaθ 0.5 rad/s2 94.66 47.66 79.84 86.86 78.85 7 37 415 679

σx σy σz 1m, σθ 1 rad
σax σay σaz 1m/s2, σaθ 1 rad/s2 92.87 45.86 77.82 87.16 78.63 7 39 396 673
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