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ABSTRACT | In this paper, we present a brief history of silicon

photonics from the early research papers in the late 1980s and

early 1990s, to the potentially revolutionary technology that

exists today. Given that other papers in this special issue give

detailed reviews of key aspects of the technology, this paper

will concentrate on the key technological milestones that were

crucial in demonstrating the capability of silicon photonics

as both a successful technical platform, as well as indicating

the potential for commercial success. The paper encompasses

discussion of the key technology areas of passive devices,

modulators, detectors, light sources, and system integration.

In so doing, the paper will also serve as an introduction to the

other papers within this special issue.
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I. I N T R O D U C T I O N

Silicon photonics, originally expected to be a combination
of the revolutionary optical communication networks and
the enormous complementary metal–oxide–semiconductor
(CMOS) industry, is becoming a major platform for much
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more than this, including optoelectronic integrated circuits
(OEICs), nonlinear optics, and more recently, lidar, mid-
infrared sensors and quantum photonics circuits. This is
mainly because of its potential for high density of inte-
gration, low cost at large production volume, extremely
large bandwidth and high speed data transmission offered
by optical communications, its compatibility with CMOS
processes, wide transmission window, and good nonlinear
properties. Many challenges have been addressed with
innovative ideas in the last few decades [1]–[9], which
pave the way for the practical deployment of silicon-based
optoelectronic devices and integrated photonic circuits in
computing and communication systems.

The commercialization of silicon photonics, originally
driven by potential applications in telecommunication net-
works and intrachip communications, is now driven pre-
dominantly, but not exclusively by the increasing demand
for low-cost short-range optical interconnects in data
centers and the computing industry. Many products are
already available in the market and have been widely
deployed in the field. For example, the 100G CWDM4
(coarse wavelength division multiplexing 4-lane) QSFP28
optical transceiver and the light peak technology by
Intel [10], the 2 × 100G-PSM4 (parallel single mode fiber
4-lane) embedded optical transceiver by Luxtera [11], etc.
There are also emerging activities in longer reach applica-
tions, notably the applications pioneered by Acacia [12],
such as the recently released AC200-CFP2-LH module
targeted for long-haul dense wavelength division multi-
plexing (DWDM) networks which can reach a distance
of 2500 km.

Silicon offers many advantages over alternative mater-
ial systems (InP, GaAs, lithium niobate, etc.). One major
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advantage is the low cost that silicon photonics can poten-
tially offer because it can be manufactured in large scale
using the widely available CMOS foundries developed
for the microelectronics industry. The huge investment
in CMOS fabrication technology and the high quality of
SOI wafers have meant that it offers higher yield than
is possible with alternative material platforms. Another
advantage is the high refractive index contrast between
the silicon core and silicon dioxide cladding based on
silicon-on-insulator (SOI) wafers, which enables submi-
crometer confinement of light and tight bending of optical
waveguides, although multimicrometer platforms are also
available, as pioneered by Bookham Technology, Kotura,
and more recently, Rockley Photonics. High-density inte-
gration of photonic circuits on the SOI platform is thus
feasible. Furthermore, silicon is a very versatile platform.
It is possible to monolithically integrate not only optical
components, but also electronic circuits and even micro-
electromechanical systems (MEMS) in the same platform
at ultrahigh density [13], or in conveniently copackaged
offerings, for example, using flip-chip techniques [14].

In this paper, we discuss the history of silicon photonics
from the early research papers in the late 1980s and early
1990s, to the potentially revolutionary technology that
exists today. The paper encompasses a brief discussion of
the key technology areas of passive devices, modulators,
detectors, light sources, and system integration, with a
focus on the key technological milestones that were crucial
in demonstrating the capability of silicon photonics.

II. WAV E G U I D E A N D PA S S I V E
C O M P O N E N T S

The origins of integrated optics date back to the 1960s and
1970s with the demonstration of the first 2-D waveguides
on planar substrates and 3-D optical waveguides, which
are the basic elements for guiding light in integrated
circuits [15]–[24]. In the early years, there was a con-
siderable research effort in ferroelectric materials such as
lithium niobate (LiNbO3) and III/V semiconductors such
as indium phosphide (InP) and gallium arsenide (GaAs).
LiNbO3 was attractive because of its good electro–optic
coefficient enabling optical modulation, and the ease of
processing. Alternatively, InP and GaAs were interesting
since they offer a good prospect of optical amplification,
laser development, and electronic integration. However,
while being successful for long-haul applications, these
platforms were less suited to mass markets due to asso-
ciated fabrication costs. In the mid-1980s, Soref et al.
[25]–[28] proposed silicon as a material platform for
integrated photonics. The authors stated: “Silicon is a
‘new’ material in the context of integrated optics even
though Si is the most thoroughly studied semiconductor in
the world.” Subsequently, single-crystal silicon waveguides
[25], [26] were soon demonstrated, initially fabricated
using highly doped silicon substrates. Various substrate
configurations, such as silicon-on-sapphire (SOS) [29],

silicon germanium [30], and SOI [9], [31], [32] were also
studied. The SOI platform among them, first reported for
optical applications in 1988 [31], has by far, become the
most popular among the silicon-based waveguide systems.

In the late 1980s and early 1990s, Separation by
IMplantated OXygen (SIMOX) and Bond and the Etch-
back SOI (BESOI) techniques were the two main methods
for SOI wafer fabrication [22], [33]–[39]. Initially, very
large propagation losses (∼30 dB/cm) from a 2-μm-thick
planar waveguide [37] were demonstrated in these
wafers. Rapidly, Rickman et al. improved propagation
losses to respectable levels by investigating the influence
of buried oxide thickness (BOX). The results showed that a
BOX layer thickness of greater than 0.4 μm was necessary
to prevent substrate leakage losses for a silicon layer
of several microns. Around 1989, Kurdi et al. [31] and
Davis et al. [33] reduced propagation losses to acceptable
levels achieving 4 and 1 dB/cm, respectively. Multiple-
layer waveguiding structures using SIMOX fabrication
technology were also demonstrated [22], [32], [35].
During the1990s, most of the attention was turned to rib
waveguides, structures that could confine light in both
dimensions. In the early days, the majority of the work was
conducted on relatively large waveguides, of the order
of several micrometers in cross-sectional dimensions.
Silicon waveguides with propagation loss <0.5 dB/cm
were demonstrated in 1991 [40]. By 1994, Reed’s group
at the University of Surrey had achieved an even lower
loss value, for both transverse electric (TE) and transverse
magnetic (TM) mode at a wavelength of 1.532 μm [41].
These papers demonstrated that silicon was not only a
viable waveguiding material, but that the propagation loss
was not going to be a serious issue in the development of
the technology.

Desirable properties of an optical waveguide are single-
mode propagation, polarization independence, and low
propagation loss. Significant research effort was dedicated
in these areas [42]–[46]. In early 1991, Soref et al. [42]
were the first to propose a simple expression for the
single-mode condition of an SOI rib waveguide. Several
years later, Chan et al. [47] derived equations to predict
single-mode and polarization independence for relatively
small rib waveguides. It was found that the quasi-TM
single mode boundary is more restrictive than quasi-TE,
and hence provides guidance on the geometrical lim-
itations to retain single-mode behavior. In the follow-
ing years, this was studied by several groups [48]–[52],
taking into account the influence of the upper oxide
cladding on single-mode and polarization dependence of
rib waveguides. The authors defined more rigorous equa-
tions for both near and mid-infrared silicon photonics that
started to appear in the literature around 2008.

During the 2000s, submicrometer rib, strip, and
photonic crystal waveguides were fabricated on 220-,
340-, and 400-nm SOI platforms. Typical losses for rib
waveguides with large cross section (1–3 μm2) at the oper-
ating wavelength of 1.55 μm were 0.2 dB/cm [53]. Strip
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waveguides with small cross-sectional area (∼0.11 μm2)
exhibited significantly higher losses (1–2 dB/cm) and
losses increased exponentially when the waveguide width
was decreased [54]–[63]. Photonic crystal waveguides on
SOI were demonstrated in 2000 [64], [65], guiding the
light in a line of defects in the 2-D photonic crystal, which
offer many additional functionalities. Around the early
2010s, in order to reduce the propagation losses further,
small cross-sectional etchless/LOCal Oxidation on Silicon
(LOCOS) ridge waveguides were investigated and small
losses for the TE mode, of only 0.3 dB/cm, were demon-
strated [53]. Despite the low losses, these waveguide did
not become mainstream due to complications in other per-
formance parameters such as bending loss. Since the early
demonstration of a silicon wire waveguide with a subwave-
length grating (SWG) metamaterial core in 2006 [66],
metamaterial SWG waveguides have attracted strong inter-
est in academia and industry. Many advanced silicon
photonics devices with unprecedented performance have
been demonstrated [67], [68] with minimum feature size
greater than 100 nm, compatible with deep-up lithography.

Currently, the light scattering at waveguide’ sidewalls
still represents the dominant cause of optical loss in
conventional waveguides in the SOI platform. Device
fabrication technology (i.e., immersion lithography) and
postfabrication treatments such as reoxidation of the
waveguides are continually improving. 200-mm silicon
photonics manufacturing is transitioning toward 300-mm
wafers due to growing demand for a variety of applications
by academic and industrial sectors. Recently, a small sub-
micrometer 457 × 220 nm2 strip waveguides, fabricated
using 45-nm mask technology and 193-nm immersion
lithography on 300-mm SOI platform, demonstrated very
low losses of 0.7 dB/cm for the TE mode [69]. The TM
mode losses are still two to four times higher, while rib
waveguides fabricated by the same technology experienced
much lower losses (∼0.1 dB/cm for 700 × 220 nm2,
70-nm-thick silicon slab layer) [69]. These results rep-
resent the current state of the art and are expected to
improve even more in the future as new designs and
improved fabrication technologies emerge.

SOI has undoubtedly been the leading material platform
for passive devices. It has allowed the implementation of
passive components with outstanding performance includ-
ing waveguides, splitters [70]–[72], interferometers [73],
resonators [74], [75], (de)multiplexers [76], polarization
management devices [77], grating couplers [78]–[92], etc.
However, their functionality is limited to spectral wave-
lengths in which both silicon and silicon dioxide are trans-
parent (1.1–3.8 μm) [93]. Also, the high thermo–optic
coefficient of the Si core makes them strongly sensitive to
temperature variations, while the presence of two-photon
absorption (TPA) and induced free-carrier absorption
makes them potentially inefficient for nonlinear applica-
tions [94], [95] or other high power density applications.
However, it is possible to achieve temperature-independent
operation [96] or limit the free-carrier absorption induced

by TPA [97], [98] with more sophisticated waveguide
designs. Nevertheless, there is an increasing interest in
exploring alternate materials with relatively high index
contrast that will extend the operation range and appli-
cations of passive photonic devices.

Some of the CMOS-compatible materials that have been
considered for the near-infrared and the visible wavelength
regime include polycrystalline silicon [99], [100], amor-
phous silicon [101]–[103], doped silicon dioxide [104],
silicon oxynitride [105], [106], and silicon nitride (SiN)
[107], [108]. Among them, SiN has drawn attention for
a variety of photonic devices. Its key properties are a
wide transparency window covering the visible to the
mid-infrared (MIR), low nonlinear losses, a relatively low
thermo–optic coefficient, and an easily tunable composi-
tion. These features make it an ideal candidate to com-
plement the SOI platform. Devices fabricated on SiN have
shown high insensitivity to temperature variations while
achieving propagation losses below 2 dB/cm in the MIR
and well below 1 dB/cm in the visible and telecom wave-
length ranges [108]–[111]. Furthermore, SiN with a high
silicon content has demonstrated the potential for fabrica-
tion of devices with enhanced nonlinear response and low
nonlinear losses such as photonic crystal waveguides and
cavities [112], [113].

Other material platforms investigated in recent years
to extend the operational wavelength range of passive
silicon photonics devices to the MIR include silicon-on-
sapphire [114], silicon-on-porous silicon [115], suspended
silicon [116]–[120], silicon-germanium-on-silicon [121],
and germanium-on-silicon [93]. All these platforms have
improved performance within transparency windows in
the 2–16-μm wavelength range. These platforms exhibit
complementary characteristics related to their cost, fabri-
cation complexity, and device footprint that makes them
dominant for different wavelength regions of the MIR.

III. M O D U L AT O R S

Silicon does not exhibit a Pockels electro–optic effect as
used in modulators formed in more traditional photonic
materials. However, optical modulation in silicon photon-
ics can be achieved through different means. The major-
ity of the earliest demonstrations and probably still the
most popular today use the free carrier plasma dispersion
effect in silicon. This effect was characterized into useful
practical equations for near-infrared wavelengths by Soref
and Bennett in the 1980s [122] and extended out into
the MIR by Nedeljkovic et al. in 2011 [123]. As the name
suggests, this approach involves modifying the density of
free carriers present in the material through which the light
propagates, causing a modulation of real and imaginary
parts of the refractive index.

This modification can be induced optically, the so-called
light by light modulation approach for example [124].
More commonly electrical diode like structures are imple-
mented in and/or around the waveguide structure where
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the electron and hole densities in the waveguide can be
controlled electrically. Early modulators of this type used
free carrier injection structures which consist of a pin
diode formed across the waveguide. Early demonstrations
were limited to speeds in the megahertz range [125] but
improvements in performance achieved over time were
made by scaling down device dimensions and design
optimization with the first proposed gigahertz modulator
design published by Png et al. in 2004 [126]. Carrier injec-
tion devices are efficient enough to permit device lengths
on the order of hundreds of micrometers and are simple to
fabricate using standard CMOS techniques, but their main
limitation is the operation speed with the fastest demon-
strations on the order of a gigahertz [127] (although faster
may be achieved through a preemphasis drive technique as
first proposed by Png et al. [126], and later implemented
by Lipson et al. in a ring resonator format [127]).

In order push to higher device speeds, other electrical
structures have been proposed and demonstrated. The
first demonstrated gigahertz modulator was reported in
2004 [128] and employed the carrier accumulation struc-
ture (or MOSCAP as it is also known). In such a device, free
carriers are accumulated on either side of a thin insulating
layer positioned within the waveguide. This type of device
provides reasonable efficiency together with high-speed
operation, the issue being that it requires a more complex
fabrication process than either carrier injection or deple-
tion structures (see below in the following paragraph). A
particular challenge is the introduction of the thin insulat-
ing layer within the waveguide while having silicon with
good optical and electrical properties on either side.

In 2005, Gardes et al. proposed the first waveguide-
based carrier depletion device predicting speeds into the
tens of gigahertz [129]. In this type of device, free carriers
are depleted from a pn junction which is positioned so that
the depletion width interacts with the light propagating in
the waveguide. Such a device requires a simpler fabrication
process as compared to the accumulation modulator and
provides high-speed operation, but its efficiency is low,
meaning that device lengths are typically on the order of
millimeters. Intel was the first to demonstrate modulation
at 40 Gb/s from a depletion device in 2007 albeit with a
1-dB extinction ratio [130]. In 2011, Thomson et al. then
demonstrated 40-Gb/s modulation with a 10-dB extinc-
tion ratio [131]. In the same year, Gardes et al. showed
that 40-Gb/s modulation could be achieved with a 6.5-dB
extinction ratio for both TE and TM polarizations [132].
In 2012, Thomson et al. showed 50-Gb/s modulation with
a 3-dB extinction ration from a silicon depletion modula-
tor for the first time [133]. In recent years, modulation
rates up to 60 Gb/s [134], [135], 70 Gb/s [136], and
90 Gb/s [137] have been reported.

In recent years, there have been numerous demonstra-
tions of carrier depletion devices with optimizations of dif-
ferent performance metrics. They remain the most popular
techniques in silicon photonics and the one used in silicon
photonics multiproject wafer (MPW) services worldwide.

As mentioned above, the free carrier effect changes
both the real and imaginary parts of the refractive index,
however devices are more effective when implemented
as a phase modulator (at least in the near infrared).
Intensity modulation is then achieved using an optical
interference or resonance structure to translate from the
phase modulation produced. The Mach–Zehnder modu-
lator (MZM) is the most commonly used interference-
based structure providing good thermal stability and a
wide operating wavelength range as a modulator. The
ring resonator (RR) is the most commonly used resonant
structure, and can provide a much more compact and
lower drive power solution than the MZM. However, it
is highly sensitive to temperature, fabrication tolerances,
and has a narrow operating wavelength range, which
means that a tuning/stabilization technique is required
for practical use. Slow light structures provide another
means for reducing the power consumption and/or foot
print of the phase modulator, but again at the cost of
reduced optical bandwidth and increased fabrication and
temperature sensitivity [138].

Other mechanisms to achieve modulation in an “all
silicon” regime are through the use of the thermo–optic
effect [139] and MEMS-based structures [140], however
these are mostly limited to lower speed applications.
Another interesting technique has been the use of stress to
invoke the Pockels effect in silicon, although to date rather
large drive voltages are still required [141], [142].

The introduction of other materials onto the silicon
photonics platform provides another means to achieve
high-performance modulation in silicon. For example, the
use of III/Vs [143], graphene [144], EO polymers [145],
LiNbO3 [146], and SiGe [147], [148] have been demon-
strated. The use of SiGe, to form both quantum confined
stark effect (QCSE) [149] and Franz–Keldysh (FK) [147]
effect modulators is particular attractive since it retains
CMOS compatibly.

In recent years, focus has moved away somewhat
from developing the speed of the modulator, and looking
at modulation formats which can fit more data into a
modulator with a fixed bandwidth. Popular techniques
have included pulse amplitude modulation (PAM) [150],
quadrature phase-shift keying (QPSK) [151], quadrature
amplitude modulation (QAM) [152] and discrete multi-
tone (DMT) [153]. Concentration has also shifted heavily
toward the power consumption of the modulator and
design which can be operated with low drive voltages.

IV. P H O T O D E T E C T O R S

Photodetectors are one of the key components of opti-
cal links in integrated circuits as they convert light into
electricity. Over the last 30 years, a tremendous amount
of work has been focused on pushing the capabilities
of detector materials and their integration to associated
devices. The particular emphasis of the development has
been on high-speed, large-bandwidth, and low-noise char-
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acteristics to target the telecommunication market in the
O optical band (1260–1360 nm) and the C optical band
(1530–1565 nm). A variety of material systems currently
exist, where specific structures are targeting an optimum
integration with traditional CMOS driving circuitry. The
“standard” semiconductor materials currently competing
for large-scale, low-cost “CMOS” integration are group IV
materials silicon (Si), tin (Sn) germanium (Ge), or more
complex compounds for extended wavelength detection
such as InGaAs and HgCdTe. Moreover, less conventional
2-D materials have also created a lot of interest recently
such as graphene, carbon nanotubes, or MoS2. Currently,
the majority of the work is focused on data transmission
in the 1300–1550-nm wavelength range, corresponding to
the historical window of minimum optical loss for silica
optical fibers. Nevertheless more work is being undertaken
to expand the capability of detection and to cover a wide
spectrum range going from visible to mid-infrared. The
established trend for ideal photodetectors is to optimize
features or at least obtain the best tradeoff in metrics such
as: high responsivity or sensitivity, high detection speed,
large bandwidth, high quantum efficiency (QE), low dark
current, and low applied voltage bias.

Group IV materials such as Si, Sn, or more particu-
larly Ge are the most commonly integrated photodetection
material on the CMOS platforms. For Ge, liquid phase
epitaxy [154], [155] and a two-step epitaxial growth
technique has been developed to directly grow Ge on Si
to alleviate the issues linked to the lattice mismatch and
enable to obtain dislocation density of ∼ 106–107 cm−2

[156], [157]. Coupling the Ge photodiode to a waveguide
through edge coupling or evanescent coupling led to
responsivity larger than 1 A/W [158], [159], with band-
width beyond 30 GHz [159], [160], and dark current as
low as 0.2 nA [161]. Recently, with the help of GeSn
active layers, high-performance Ge p − i − n photodiodes
(PDs) have been fabricated to extend the photodetection
to the longer wavelengths up to 1800 nm and beyond
[162], [163]. Ge-on-Si avalanche PDs are also of great
interest as they combine the optical absorption of the
Ge layer with the carrier-multiplication properties of Si
[164], [165]. In the case of Si, the relatively large indi-
rect bandgap corresponds to a cutoff wavelength below
1100 nm [166], which makes the material mostly suitable
for visible light and infrared detection. Nevertheless, a
substantial amount of work on the material engineering
aspect has provided mechanisms to perform detection
at near-infrared through methods such as mid-bandgap
absorption (MBA) [167], [168], surface-state absorption
(SSA) [169], internal photon emission (IPE) [170], and
TPA [171]. MBA PDs are developed based on the fact
that high energy particles could introduce defect states
located within the bandgap of the intrinsic Si crystal, thus
enabling detection of sub-bandgap optical radiation. SSA
PDs are based on a similar principle as MBA PDs, but in
this case, surface states are introduced into the bandgap
of the intrinsic Si, providing a path to optical absorption

at longer wavelengths. IPE PDs rely on the principle that
photo-excited electrons in metal can gain energy higher
than the Schottky barrier and subsequently move into
the conduction band of the semiconductor. TPA PDs are
based on the nonlinear TPA process where an electron can
absorb two photons (having individual energies below the
semiconductor bandgap) approximately at the same time,
and reach the excited state in the conduction band.

InxGa1-xAs alloys are currently the most mature mate-
rial system for photodetection due to the alloy vari-
able bandgap where the absorption edge wavelength can
be varied between 0.85 and 3.6 μm, making it ideal
for near-infrared photodetection [172]. Nevertheless flip-
chip integration is currently the most common process
used to integrate the III/V layers with the SOI substrate
[173]–[177] with recent efforts focused on extending the
capability of InGaAs APDs for error-free, high-speed mod-
ern communication (∼50 Gb/s) as well as single pho-
ton detection systems [178]. The flip chip technique is
nonideal as the integration process must be carried out
through dice bonding at wafer level, a process that is time
consuming and therefore expensive. An alternative solu-
tion to bonding could be a new heterogeneous integration
approach using a metal-organic chemical vapor deposition
(CVD) technology. The epitaxy of a InxGa1-xAs absorption
layer is showing the promise of selectively grown III/V on
Si substrate [179].

In terms of material properties, HgCdTe is probably
the most promising semiconductor to cover infrared to
mid-infrared photodetection with a detection spectrum
between 0.7 and 25 μm. APDs for photodetection at
1060, 1300, and 1550 nm have all been fabricated
using liquid phase epitaxy or molecular beam epitaxy
[180]–[182]. Nevertheless, integration to CMOS circuitry
is more problematic as high-quality HgCdTe is usually
grown on CdZnTe substrate, which is a difficult material to
integrate with the silicon readout circuit due to different
thermal expansion coefficients and a 19% lattice mismatch
[183], [184]. The fabrication cost associated with the
CdZnTe substrate is also much higher than Si and Ge.

Different from bulk materials, low-dimensional mate-
rials provide some unique properties when used as
photodetectors. Interesting properties (such as exciton
parameters), which are often negligible in bulk materi-
als, are greatly accentuated in low-dimensional materials.
These unique electronic and optical properties make pho-
todetection promising even in an extremely small nanos-
tructure that is only one atomic-layer thick (graphene
or MoS2) [185] or just a few nanometers (carbon
nanotube) [186].

V. I N T E G R AT E D L I G H T S O U R C E S

Light sources are essential components in photonic inte-
grated circuits (PICs). Silicon, however, is a very ineffi-
cient light emitter due to its indirect bandgap. Therefore,
making an efficient light source in silicon photonics has
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proved to be one of the most challenging tasks for many
years. Lack of such sources has prevented this technology
showing its full potential. Although using an external,
off-chip light source (optically coupled to a silicon PIC) is
an acceptable approach in some applications, development
of low power consumption on-chip light sources for silicon
photonics is desirable for optical interconnects that are
targeting datacom applications where both low power
consumption and high bit rates are needed.

Although lasing in bulk silicon was achieved in 2004 via
stimulated Raman scattering and optical pumping [187],
this approach offers neither high-level integration nor the
relatively high power efficiency, needed for optical inter-
connects [188]. Some research effort has been directed
to modifying silicon in order to transform it into a
light emitting material, such as introducing light-emitting
centers in Si or SiO2 substrates [189], [190], mostly
based on rare-earth element doping [191]. Although,
an optically pumped CMOS-compatible laser has been
demonstrated using this approach [192], realization of
electrically pumped devices remains very challenging.

Most of the research efforts in this field have been
focused on integrating efficient light emitters (primarily
based on III/V semiconductors) onto the SOI platform.
Based on the integration techniques employed, we can dis-
tinguish three different approaches taken by researchers:
1) hybrid integration based on copackaging of III/V laser
die and SOI PICs; 2) monolithic integration, based on
various epitaxial growth techniques; and 3) heterogeneous
integration, based on wafer bonding techniques.

The oldest approach taken was hybrid integration where
a prefabricated optical source (laser or LED) is mounted
and fixed on a common substrate and optically coupled
to the PIC. The most common technique used for this is
flip-chip bonding, based on a solder bump and attachment
process [193]. This technique has been used for integration
of vertical cavity surface emitting lasers (VCSEL) on CMOS
circuits since the late 1990s [194]. However, integrating
VCSELs emitting at telecommunication wavelengths (1310
and 1550 nm) with silicon PICs has proved to be challeng-
ing and progress has only recently been reported [195].

A more conventional approach involved integration
of longitudinal cavity lasers based on InP and cor-
responding alloys. In 2010, Luxtera demonstrated a
40-Gb/s optoelectronic transceiver, based on a single III/V
continuous-waveform (cw) laser enclosed in an optical
micropackage (including a lens and isolator) that was
flip-chipped onto the underlying silicon die and optically
coupled to the photonic chip via grating couplers [196].
Further evolution of this device led to the demonstration of
the first 100-Gb/s optical transceiver, where a micropack-
aged distributed feedback (DFB) laser was epoxy-bonded
onto the chip [197].

Another approach based on copackaging was to form an
external cavity laser by placing a III/V die, acting as a semi-
conductor optical amplifier (SOA), and optically coupling
it to the silicon PIC that provided the wavelength-selective

optical feedback. Following this approach, external cavity
hybrid silicon lasers were demonstrated by Kotura [198],
Fujitsu [199], and Oracle [200], [201].

Despite being relatively straightforward from the fab-
rication perspective, hybrid integration usually requires
time-consuming and costly alignment schemes, and has
obvious limitations when high-density integration is
required.

Monolithic integration is based on epitaxial growth
of high-quality layers of, mostly, III/V semiconductors
on top of silicon or SOI substrates. The grown mate-
rial is subsequently processed to form hybrid lasers,
which are lithographically aligned to the underlying SOI
PICs. This approach requires no active alignment and
allows high-density integration and wafer-scale process-
ing. However, there are many challenges in its practical
implementation, primarily due to the lattice constant mis-
match between most III/V materials and silicon, as well
as the difference in thermal coefficients of expansions
(TCEs). Several growth techniques were employed in this
field. Researchers reported lasers based on GaSb grown
on misoriented Si substrates, operating both in pulsed
[202], [203] and continuous-wave regimes [204], as well
as GaAs-based quantum dots (QDs) in a well laser, emitting
at 1.3 μm [205]–[208]. Recently, reported InAs/GaAs QD
lasers demonstrated record-low threshold current density
and excellent aging test results [209]. Combined with less
sensitivity of QD lasers to threading dislocations compared
to standard quantum-well (QW) lasers, this approach is
offering a promising way for fabrication of high-quality
light sources on the silicon photonics platforms.

Certain efforts were focused on developing hybrid lasers
in Ge-on-Si material systems, with the idea of growing
a tensile-strained, n-type germanium on a silicon sub-
strate in order to achieve a direct bandgap light emis-
sion [210]. Using this approach, both light-emitting diodes
(LEDs) [211] and electrically pumped lasers [212] were
demonstrated, but only in the pulsed regime and with a
very high threshold current density.

Another promising approach in monolithic integration
is based on direct growth of III/V nanowires on SOI
platform forming a photonic crystal cavity [213], [214].
This approach does not require growth of any buffer layer
and allows fabrication of small-footprint lasers with a high
Q-factor.

However, a general drawback of monolithic integration
is that growth temperatures are generally above 400 ◦C,
which is not compatible for back-end-of-line (BEOL)
processing in a CMOS foundry. Germanium–silicon–tin
(Ge1-x-ySixSny) has recently emerged as a promising mate-
rial for low-temperature growth on silicon [215], [216],
but further improvements are needed to achieve a direct
bandgap in this material.

Heterogeneous integration based on bonding tech-
niques is another promising technology for large-volume,
wafer-scale fabrication of lasers in silicon photonics. This
approach combines the best elements of hybrid and
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monolithic integration by bonding high-quality III/V mate-
rial (in the form of wafers or individual dies) onto SOI sub-
strates. Subsequent processing of III/V material is carried
out to form hybrid III/V/Si lasers. In this way, alignment
between the III/V layers and the silicon waveguides is
achieved via photolithography on a wafer scale, while the
technologically challenging growth of III/V materials on a
silicon substrate is avoided.

The most common wafer bonding technique used for
this integration is plasma-assisted, low-temperature direct
bonding. Adhesive bonding based on use of the ther-
mosetting polymer divinylsiloxane–bisbenzocyclobutene
(DVS–BCB) and various metal bonding techniques are also
employed.

The first hybrid III/V/Si optically pumped laser based
on direct bonding and evanescent coupling was reported
in 2005 [217], followed by an electrically pumped Fabry–
Perot (FP) laser in the following year [218]. Following
this approach, researchers reported DFB [219], distrib-
uted Bragg reflector (DBR) [220], racetrack [221], and
microring lasers [222], [223]. In 2010, using this tech-
nique, Intel demonstrated first four-channel silicon pho-
tonics link operating at 50 Gb/s [224]. Using DVS–BCB-
based adhesive bonding and the same principle of evanes-
cent coupling, both FB [225] and DFB lasers [226] were
reported, followed by lasers with more advanced hybrid
cavity designs and lower threshold currents [227], [228].
Also, microdisk hybrid III/V/Si lasers, with a very small
footprint and large free spectral range, were demonstrated
using both direct [229] and DVS–BCB bonding [230].

Metal bonding techniques have also been used for the
fabrication of hybrid III/V/Si lasers [231], [232]. In 2013,
Skorpios Technologies reported the first III/V/SOI hybrid
laser fabricated in a commercial foundry, based on the
metal bonding of a III/V die onto SOI [233].

In order to economically utilise relatively expensive III/V
material, researchers have focused on development of
multiple die-to-wafer bonding techniques. One of the
most promising approaches in this type of bonding is
transfer printing [234]. This technique was used to fab-
ricate electrically pumped AlGaAs/AlInGaAs double QW
FP lasers [235] and InGaAsP/InP-based VCSELs on SOI
substrates [236].

VI. PA C K A G I N G A N D C O U P L I N G

Fibers are the high-speed transmission lines that make
up the backbone of most optical communication systems.
When coupling to fibers from the PICs used by silicon
photonics, loss is critical and must be minimized. Losses
are the result of many mechanisms particularly from reflec-
tions when light transfers between media. Alignment to
PIC waveguides is also critical, made particularly difficult
by the size difference between fibers and typical sub-
micrometer silicon photonic waveguides where the spot
size produced by a standard telecommunications fiber is
approximately 630 times larger. Coupling between these

structures is comparable to aligning a basketball-sized pipe
to a pea-sized tube, causing the majority of light to be lost.
Larger waveguide platforms also exist without such a large
mode size mismatch, such as those pioneered by Bookham
Technology [237], the first Silicon Photonics company,
Kotura [238] and more recently, Rockley Photonics [239].
For coupling to submicrometer waveguides, engineered
structures on the fiber and waveguide will reduce losses;
a lens at the fiber tip will focus the light to a smaller spot,
significantly improving transmission, however, a smaller
spot size makes the physical alignment of the fiber even
more difficult, which normally requires a precision of a few
hundred nanometers. Tapering of waveguides increases
their surface area, however, with the scale of nanophotonic
fabrication, structures as large as fibers are difficult to
fabricate on-chip. Furthermore, vertical tapering on chip is
difficult, and requires local thickening of the waveguiding
structure. Consequently, many coupling setups use a com-
bination of these methods to produce acceptable results.

Edge or butt coupling via a polished facet at the edge of
a PIC is a common method for coupling, but the invention
of grating couplers in the 1970s [240] allows the option to
align a fiber near normal to the surface of the PIC. Grating
couplers phase match the fiber mode to a waveguide
mode, permitting optical coupling, whereas an unaltered
surface would merely reflect or transmit the light. Many
detailed modifications can improve coupling efficiency for
both edge coupling [241]–[246] and grating coupling
[78]–[92], but for mass market applications, cost is of
crucial importance, which means that active alignment
techniques applied to more traditional long haul photonics,
are too costly for these applications..

Photonic packaging is the process of using the aforemen-
tioned coupling methods in a commercially viable way. Tra-
ditional optical telecommunications requires relatively low
volumes, permitting high precision, active alignment that
is high cost and time consuming. Recent trends in silicon
photonics are pushing toward mass markets and therefore
a high volume production environment, requiring auto-
mated, high-speed, cost-effective packaging processes.

The first demonstration of commercial silicon photonic
packaging was in 2008 with the start of ePIXpack; using
glass blocks for support, a fiber array was manually aligned
to grating couplers and glued in place with epoxy [247].
This approach has been used a number of times since,
improving on the concept [248], [249]. Passive align-
ment was first demonstrated by Galan et al., who used
v-grooves to align a fiber to an inverted taper. They demon-
strated an added loss of 1.5 dB with a total insertion loss
of 7.5 dB [250].

In 2012, Bernabe et al. published work using a v-groove
capping chip which holds and positions fibers above a
grating coupler, using a facet at the v-groove end to reflect
light down to a grating coupler on the chip surface. With
an added loss of 4 dB, this approach has the advantage
of providing in-plane alignment that is semipassive, using
computer vision for alignment [251]. Researchers at the
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Tyndall Institute have developed a process using angled
fibers positioned above grating couplers, where the angled
facet is used to redirect the coupled light [252]. This
actively aligned solution has a total coupling loss of 4.5 dB.

In 2015, significant improvements were achieved in
coupling efficiency with work from Lindenmann et al.
[253], [254]. They showed a coupling loss of 1.7 dB, using
a novel method of 3-D writing waveguides in polymer
much like a wire bond. In the same year, Barwicz et al. from
IBM [255] produced a design similar to [250], utilizing
v-grooves and optical mode converters. However, instead
of typical inverted tapers, suspended subwavelength meta-
material mode converters [246] are used, which employ
the subwavelength metamaterial mode converter demon-
strated previously at NRC Canada [66], [243] and a
suspended silicon dioxide layer [246] as additional mode
guiding layer for an improved coupling efficiency. The IBM
team demonstrated multichannel passive alignment with
1.3-dB insertion loss. Packaging has received very little
research interest compared to most other disciplines within
silicon photonics, even though the package will often con-
tribute a large portion of PIC production cost. Regardless,
packaging has shown a positive trend toward lower loss
and reduced assembly time, which will only improve as
industrial interest in silicon photonics continuous to grow.

VII. I N T E G R AT I O N
Integration of photonics and electronics is one of the key
subjects for the development of silicon photonics. During
2006–2007, Luxtera [256], [257] successfully demon-
strated the approach of monolithic optoelectronic inte-
gration, where multiple channels of an optoelectronic
transceiver were implemented at 10 Gb/s per channel
in a 0.13-μm CMOS SOI process. With the monolithic
integration approach, the cofabrication of optical devices
and CMOS transistors on the same silicon wafer provides
versatile possibilities of new optoelectronic functions and
dramatic improvement for system footprint and power
dissipation. For example, in 2015, based on the 90-nm
SOI process node, IBM introduced the CMOS9GW silicon
photonic platform, and a 16-Gb/s full transceiver link has
been demonstrated in [258]. Based on the same platform,
the speed has been boosted to 56 Gb/s by using the four-
level PAM approach [259]. Meanwhile, several designs
based on the 45-nm SOI platform [260]–[262] have been
reported, including the first single-chip processor that com-
municates directly using light [261]. In addition to this,
IHP introduced the SiGe:C platform, which is based on
the 0.25-μm BiCMOS technology, and a 13-dB extinction
ratio 28-Gb/s nonreturn-to-zero (NRZ) transmitter was
reported in 2016 [263].

In general, the monolithic integration approach enables
the shortest possible electrical interconnects between opti-
cal and electrical devices, which hence minimizes other-
wise unavoidable parasitic effects due to the packaging.
However, the SOI substrate used in these silicon photonics
platforms differs from the substrate used for standard

CMOS technologies. Monolithic integration with photon-
ics would require major process changes, which are not
normally compatible with the time scale of technology
evolution in electronics technology [264]. Currently, the
most advanced monolithic silicon photonics platforms are
based on a 45-nm SOI CMOS process, whereas the stan-
dard CMOS technology has evolved into the 10-nm node.
Therefore, a two-wafer solution is usually desirable, which
means the electrical design can fully utilize the high-speed
and low-power consumption advantages from the state-
of-the-art CMOS technologies, while the optical design
can be realized with lower cost, more mature processing
platforms. Furthermore, this approach means that large
photonic devices do not consume expensive real estate in
the most expensive CMOS platforms, and also enables elec-
tronic circuits to be upgraded to better CMOS platforms
without necessarily abandoning the photonic designs in a
tried and tested platform. Therefore, this approach is likely
to continue in the short term, until a more flexible and cost-
effective method of monolithic integration can be found.

The most traditional low-cost packaging solution to
combine the electronics and photonics chips is the wire-
bonding-based approach, which inevitably suffers from
parasitic effect introduced by the bonding wires. Due to
its simplicity and costs effectiveness, it is of the interest to
many research groups to demonstrate initial concepts on
the codesigning optoelectronic functions, but seriously lim-
its the data rate for commercial devices. In contrast, flip-
chip-based 3-D integration approach [14], [265]–[268]
has become one of the alternative techniques, which can
significantly reduce the parasitic effect introduced by the
packing and increase the interconnection density. A rep-
resentative example is the 10-Gb/s transceiver described
in [14], in which the electronic design is realized with 40-
nm CMOS and many 25-μm pitched microsolder bumps
are deposited as interconnect between the optics and
electronics. For more advanced integration, through silicon
vias (TSVs) or through oxide vias (TOVs) [268] have
been introduced into the silicon photonics integration in
2015, where an order of magnitude reduction in parasitic
capacitance and two orders of magnitude higher inter-
connect density have been reported. Meanwhile, during
2015–2016, STMicroelectronics has introduced a design
based on the fine pitch copper pillar interconnect while
realizing the electronics in 65-nm CMOS or 55-nm BiCMOS
technologies [264]–[266]. The reported maximum data
rate was 56-Gb/s NRZ transmission with power consump-
tion at 300 mW.

With increasing complexity, it has become clear that
integration of photonics and electronics requires code-
sign between the optical and electrical functions. This
means that neither the electrical devices nor the optical
devices can be treated as a standalone component and
indeed the realization of system functionality depends on
the integration of these functions at the design stage.
A simple example is the wavelength stabilization sys-
tem design for a microresonator [269]–[271], where a
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dedicated thermal control loop is designed to compen-
sate for temperature drift and errors due to fabrication
tolerances. The more advanced examples are segmented
modulator and driver systems [262], [263], [272]–[275],
where advanced modulation formats (such as PAM-4 and
QAM-16) or optical signal shaping (such as feedforward
equalization) become the system requirement. The trend
of this electrical–optical codesigned system may signifi-
cantly broaden the application area of silicon photonics
as well as dramatically change the structure of existing
optoelectronic transceivers.

VIII. P O W E R E F F I C I E N C Y

The power efficiency of a silicon photonics transceiver
is a critical and yet complex issue. It can be traded off
with many other parameters, such as extinction ratio,
optical loss, linearity, optical-signal-to-noise ratio (OSNR),
and system stability. Generally, the power efficiency of
an optical transceiver is calculated by dividing the power
consumption with its maximum data rate, and expressed
in Joules per bit. For instance, the first monolithically inte-
grated optoelectronic transceiver [256], [257] presented
by Luxtera (fabricated with the 130-nm CMOS technology
node) consumed 1.25 W at 10 Gb/s, equating to a power
consumption of 125 pJ/bit. This power consumption figure
includes the power consumed in the Serializer/Deserializer
(SERDES), driver, and TIA for a point-to-point transmis-
sion, but not the more complicated signal processing ele-
ments analog-to-digital converter (ADC)/digital-to-analog
converter (DAC) and digital signal processing (DSP) nor-
mally required for a long-haul communication network.
Within that optoelectronic transceiver, the most power-
hungry device is the MZM driver, which consumes 575
mW. This is mainly because the driver circuit uses double
matching resistors at both ends of the MZM electrodes.

To enhance the power efficiency of an MZM driver,
there has been some work [265]–[267] in recent years
to increase the data rate of the transmitter by using more
advanced fabrication processes, such as the 28-nm CMOS
or the 55-nm BiCMOS technology node. For example, a
data rate of 56-Gb/s ON–OFF keying (OOK) was achieved
at 300 mW [266] fabricated with the 55-nm BiCMOS
technologies, which equivalent to 5.4 pJ/bit. On the other
hand, several designs [259], [262], [263], [272]–[275]
adopted advanced modulation formats (such as PAM-4
or PAM-16) with segmented MZM approaches, with each
segment of the MZM treated as a lumped capacitive ele-
ment, thus eliminating the need for termination resistors.
For instance, the power efficiency for segmented MZM is
0.25 pJ/bit for 40-Gb/s PAM-16 in [272]. However, it is
difficult to claim these approaches are superior since the
use of advanced modulation formats will inevitably suffer
from worse OSNR performance and will require additional
decoding circuits at the receiver side.

Besides the MZM, the ring-resonator-based modulator is
a well-known device for low power consumption. It not

only eliminates the use of 50-� matching resistors, but
also features an exceptionally small footprint, which is
preferred for monolithically integrated photonic circuits.
For example, power consumption as low as 0.17 pJ/bit
for the OOK mode [260] and 0.042 pJ/bit for the PAM-4
mode [262] has been demonstrated for the ring-resonator-
based modulator, which is one order better than for MZMs.
However, as has been mentioned in Section III, thermal
stability, fabrication tolerances, and the narrow operating
wavelength range limit its utilization. Control of these
factors to make the use of a ring-resonator-based modu-
lator practical would cause additional power consumption
which needs to be considered when assessing the overall
power benefits.

IX. R E C E N T T R E N D S

Beyond the devices in optical communication wavelengths,
silicon photonics at mid-infrared wavelengths is now
emerging as a new frontier. Many groups around the
world have started to work in this area because of the
potential applications envisaged for chemical and biolog-
ical sensing, trace-gas detection, environmental monitor-
ing, etc. [93]. The potential of seamless integration of
multiple components on a single chip offers an attrac-
tive solution for applications at mid-infrared wavelengths.
Soref et al. theoretically studied various types of opti-
cal waveguides for longer wavelength transmission in
2006 [276]. Subsequently, various designs of grating cou-
plers [277]–[280] and waveguide devices [114]–[116],
[119], [121], [281] based on various platforms have
been experimentally demonstrated at mid-infrared wave-
lengths, such as silicon-on-sapphire, air-cladded silicon
(suspended silicon), Ge-on-Si, and Ge-on-SOI. A silicon
cascaded Raman laser was demonstrated by Rong et al. in
2008, with a potential to make room-temperature lasers
at mid-infrared wavelengths [282]. Raman amplification
in mid-infrared was demonstrated in bulk silicon [283],
with an amplification of 12 dB demonstrated at 3.39-μm
wavelength. The absence of TPA at mid-infrared wave-
lengths also offers intriguing opportunities for the study
and application of nonlinear optical effects, which may find
applications in novel laser systems, gas sensing devices, or
quantum photonic systems. More recently, there have been
also studies investigating high-speed modulators [123]
and detectors [167] beyond 1550-nm wavelength in order
to potentially increase communication systems capacity.

Silicon has now been developed into a truly versa-
tile platform with superior performances. It has been
used as a platform for many other applications that had
not been envisaged in the early years, such as photonic
phased arrays [284], [285], microwave photonics systems
[286], [287], and integrated optical gyroscopes [288].
Integrated quantum photonics and optomechanical devices
on SOI platforms are also attracting great interest recently.
Integrated optomechanical devices have the potential to
integrate novel nano–opto–electro–mechanical systems on
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chip. A detailed review is presented by Van Thourhout and
Baets [289]. Quantum photonic circuits are also the subject
of a great deal of emerging research for applications in
secure communications, sensing, and computing systems.
Silicon photonics has been proved to be the preferred plat-
form to realize compact and scalable integrated quantum
photonic circuits [290], [291].

The high cost of fabrication facilities has started a trend
toward “fabless silicon photonic” [292], similar to the
development of CMOS technology. In this approach, a
research group or startup company can design photonic
circuits and have them fabricated in a silicon photonics
foundry. Some foundries offer cost sharing between users
utilizing the so-called MPWs. This enables users to fabri-
cate devices and circuits at a modest entry cost, typically
starting at only a few tens of thousands of U.S. dollars, a
small fraction of the total cost of the fabrication process
of full SOI wafers. The equipment needed for fabrication
of integrated photonic circuits is prohibitive for all but
the largest companies, and therefore the shared platforms
have facilitated a huge body of research work worldwide.
Organizations which offer the ability to build passive and
active photonic circuits in an MPW environment include,
for example, the EPIXfab in Europe (now via Europrac-
tice) [293], IME in Singapore [294], and the CORNER-
STONE project in the United Kingom [295], and has given
affordable access to a photonics fabrication facilities for
academia and industry alike.

X. C O N C L U S I O N

Although origins of integrated optics date back to the early
1960s and 1970s, with a variety of materials and material
platforms being investigated, the SOI platform still remains
the most popular platform for silicon photonics. Device
fabrication technology and postfabrication treatments are
continually improving, and propagation losses as low
as 0.7 and 0.1 dB/cm were demonstrated at 1550-nm
wavelength for submicrometer strip and rib waveguides,

respectively. The SOI platform is well suited for real-
izing the current and potential commercial products.
As a complement to the SOI platform, a wide variety of
materials have been considered for the visible and near-
infrared wavelength regimes, including polysilicon, amor-
phous silicon, doped silicon dioxide, silicon oxynitride, and
silicon nitride. Additionally, several other platforms such
as silicon-on-nitride, silicon-on-sapphire, and germanium-
on-silicon, among many others, are currently being inves-
tigated to enable and improve the performance of silicon
photonic devices at longer wavelengths (2–16-μm wave-
length range).

The cost of silicon photonic products is now dominated
by the packaging process. An accurate and expensive active
alignment process is generally required currently for sili-
con photonic devices. Although a lot of effort was spent
to reduce the cost by developing low-cost passive align-
ment techniques or simplified/optimized active alignment
techniques, the progress is modest, and no single “best”
solution exists today. There are always some performance
tradeoffs.

Regarding active components in silicon photonic cir-
cuits, monolithic integration of a viable laser source is
not yet achieved. Hybrid III/V/Si lasers based on different
bonding techniques have shown promising results, with
multiple die-to-wafer bonding approach being pursued as
the economically viable technique for industrial-volume
fabrication. On the other hand, further progress in direct
growth of QD or nanowire III/V lasers on SOI platform
might eventually lead to fabrication of integrated light
sources suitable for commercial applications. The inte-
grated modulators and detectors in silicon photonics have
been very successful in the last decade, and many commer-
cial products are available. However, the modulation speed
and power consumption of the current carrier-depletion-
type modulators, and the sensitivity of the photodetec-
tors are still not satisfactory for the ever-growing need
for data capacity in the communication and computing
network. �
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