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Non-Contact Atrial Fibrillation Detection From
Face Videos by Learning Systolic Peaks

Zhaodong Sun , Juhani Junttila, Mikko Tulppo, Tapio Seppänen , and Xiaobai Li , Member, IEEE

Abstract—Objective: We propose a non-contact ap-
proach for atrial fibrillation (AF) detection from face videos.
Methods: Face videos, electrocardiography (ECG), and con-
tact photoplethysmography (PPG) from 100 healthy sub-
jects and 100 AF patients are recorded. Data recordings
from healthy subjects are all labeled as healthy. Two cardi-
ologists evaluated ECG recordings of patients and labeled
each recording as AF, sinus rhythm (SR), or atrial flutter
(AFL). We use the 3D convolutional neural network for re-
mote PPG monitoring and propose a novel loss function
(Wasserstein distance) to use the timing of systolic peaks
from contact PPG as the label for our model training. Then
a set of heart rate variability (HRV) features are calculated
from the inter-beat intervals, and a support vector machine
(SVM) classifier is trained with HRV features. Results: Our
proposed method can accurately extract systolic peaks
from face videos for AF detection. The proposed method
is trained with subject-independent 10-fold cross-validation
with 30 s video clips and tested on two tasks. 1) Classifi-
cation of healthy versus AF: the accuracy, sensitivity, and
specificity are 96.00%, 95.36%, and 96.12%. 2) Classifica-
tion of SR versus AF: the accuracy, sensitivity, and speci-
ficity are 95.23%, 98.53%, and 91.12%. In addition, we also
demonstrate the feasibility of non-contact AFL detection.
Conclusion: We achieve good performance of non-contact
AF detection by learning systolic peaks. Significance: non-
contact AF detection can be used for self-screening of AF
symptoms for suspectable populations at home or self-
monitoring of AF recurrence after treatment for chronic
patients.

Index Terms—Atrial fibrillation (AF), heart rate
variability (HRV), photoplethysmography imaging, remote
photoplethysmography, wasserstein distance.

I. INTRODUCTION

A TRIAL fibrillation (AF) is a common heart arrhythmia,
and about 2% of the global population is reported to have
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this disease [1]. AF might cause stroke and heart failure, but most
AF episodes are asymptomatic in the early phase. Early detection
of AF episodes is essential to avoid these severe diseases. The
common method for AF diagnosis is to observe electrocardiog-
raphy (ECG) signals measured from the electrodes attached to
the chest. However, this requires specific medical equipment and
complicated operations to measure ECG signals. Cardiologists
should determine the diagnosis from ECG signals, which is not
practical for daily checks or long-term monitoring. Although
some works [2]–[5], [5]–[12] designed automatic AF detection
algorithms from ECG and achieve a high accuracy, the acqui-
sition of ECG signals is complicated and not convenient for
daily use. Some works [13]–[21] propose to use contact photo-
plethysmography (PPG) from pulse oximeters, smartwatches or
phone cameras on fingers for more convenient and accessible AF
detection. However, all of the ECG and contact PPG methods
require the sensors attached to the body/skin, which might cause
irritation and hygiene issues. In addition, specific biomedical
equipment such as ECG sensors or pulse oximeters also decrease
the accessibility of these methods to more populations.

Compared with ECG and contact PPG, remote PPG1 provides
a non-contact way to monitor cardiac signals by using a camera.
Remote PPG is measured from the face color change induced by
the blood volume change in face videos [22], [25], and can reveal
cardiac rhythms for AF detection. As cameras are ubiquitous
nowadays, this might lead to potential solutions or products
for convenient non-contact AF detection. There are several
situations where AF detection from face videos is preferred.
First, AF detection from face videos can be used for telemedicine
during video conferences without specific medical instruments.
Second, contact AF detection is not applicable to people with
skin burns or other skin diseases on the measurement locations
such as fingers or chest. It has been reported that 486,000 people
in the United States were burned to receive medical treatment in
the year 2011 [26]. Third, cameras are ubiquitous and accessible
such as in smartphones or laptops, and much cheaper than the
smartwatches with ECG/PPG sensors. Finally, as people spend
a long time on using smart phones or laptops every day, the AF
detection from face videos can be integrated to smart phones or
laptops when people are using these devices.

Recent studies [24], [27]–[31] have made some contributions
to non-contact AF detection by remote PPG. Most studies

1Remote PPG is used to be literally distinguished from contact PPG. There
are other terms equivalent to remote PPG such as photoplethysmography imag-
ing [22], video photoplethysmography [23], and videoplethysmography [24].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-0597-0765
https://orcid.org/0000-0002-3963-0750
https://orcid.org/0000-0003-4519-7823
mailto:zhaodong.sun@oulu.fi
mailto:tapio.seppanen@oulu.fi
mailto:xiaobai.li@oulu.fi
mailto:juhani.junttila@oulu.fi
mailto:mikko.tulppo@oulu.fi


4588 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 26, NO. 9, SEPTEMBER 2022

focus on heart rate variability (HRV) features derived from
systolic peaks in remote PPG for AF detection and achieved
promising results. The problem is that remote PPG signals
are subtle compared to noises, and systolic peaks of AF pa-
tients have low amplitudes when the heart rate is high [21].
Therefore, it is challenging to develop a method that can
measure systolic peaks accurately enough for AF detection.
Therefore, we develop a method to accurately measure systolic
peaks from face videos to facilitate non-contact AF detection
and test the effectiveness of the method on our large-scale
dataset.

Our main contributions are listed below:
� We develop a deep learning-based remote PPG algorithm

by using the timing of the systolic peaks as the ground
truth and demonstrate that learning systolic peaks from
face videos can facilitate non-contact AF detection.

� We record the full version of Oulu Bio-face (OBF)
dataset [27] for non-contact AF detection, including
videos from 100 healthy subjects and 100 AF patients.
Two cardiologists evaluated ECG recordings of patients
and labeled each recording as AF, sinus rhythm (SR), or
atrial flutter (AFL).

� We test two types of AF detection models for the self-
screening of healthy subjects and patients, respectively,
and achieve high accuracy. The classification between
healthy subjects and patients with AF has an accuracy
of 96.00%. The classification between patients with SR
and patients with AF has an accuracy of 95.23%. Ad-
ditional experiments also demonstrate the feasibility of
non-contact AFL detection.

II. RELATED WORKS

A. Contact Methods for AF Detection

The AF detection from ECG can be based on 1) P-wave
detection [2]–[5], 2) R-R interval variability [5]–[9], and 3)
deep learning (DL)-based methods [10]–[12]. P waves are not
prominent features and are often influenced by artifacts, while
R peaks have higher amplitudes that can be easily detected. AF
patients have a larger R-R interval variability, which means the
cardiac rhythm of AF patients shows larger irregularity, so the
features from R-R intervals can be a good indicator for AF detec-
tion. Some traditional methods [6]–[8] extracted features such as
entropy [8] or HRV features [7] from R-R intervals and simply
use a threshold to do AF classification. Some methods [9],
[32], [33] applied machine learning methods such as support
vector machine (SVM) [32], convolutional neural network [33]
or neighborhood component analysis [9] to R-R intervals for
AF detection and achieved higher performance than traditional
methods. However, it is difficult for rhythm-based methods using
R-R intervals to distinguish AF from other arrhythmias, while
the morphology-based methods such as P-wave absence can
avoid false-positive errors in AF detection [34]. Deep learning-
based methods [10]–[12] can be directly applied to ECG signals
and achieve good AF detection performance with large datasets,
but they are sensitive to changes in ECG morphology and are
unclear how they generalize to unseen data [34].

Although ECG is a gold standard for AF diagnosis, some
studies found contact PPG [13]–[21] measured from fingertips
and ballistocardiograph (BCG) [35]–[37] can also be used for AF
detection. PPG and BCG signals do not have the P-wave in ECG,
so the systolic peaks in PPG and BCG are the only clue for AF de-
tection. Similar to the R-peaks in ECG, the systolic peaks are also
an indicator of cardiac rhythm and the peak-peak intervals can
also be used to derive the HRV features. For the daily use and bet-
ter accessibility, some work proposed to use the accelerometer
and gyroscope of a smartphone on the chest to get the BCG signal
for AF detection [10], while others proposed to use the camera
of a smartphone [6] on the fingertips or smart watches [18]–
[21] to get the contact PPG signals for AF detection. The AF
detection from contact PPG and BCG provides other alterna-
tives to ECG signals and is more convenient for daily health
monitor.

B. Remote PPG for non-Contact AF Detection

Recent studies [24], [29]–[31] showed that remote PPG from
face videos can be used for non-contact AF detection. Couderc
et al. [24] first used HRV features from remote PPG for AF
detection on a small dataset of 11 patients, which demon-
strates the feasibility of AF detection from face videos. Yan
et al. [30] collected a dataset including 217 patients among
which 75 patients showed AF. They used a pre-trained SVM
with features from autocorrelation analysis and achieved 95.4%
accuracy for classifying AF patients vs. non-AF patients. Shi
et al. [29] proposed a HRV feature fusion approach by com-
bining three remote PPG algorithms [27], [38], [39] for AF
detection. The method was tested on the previous version of OBF
dataset [27], including 30 AF patients and 100 healthy subjects,
and achieved an accuracy of 92.56%. Corino et al. [31] used
a simple model with three features to do AF detection from
remote PPG on 68 patients and achieved 87% AF detection
accuracy.

There are one or more of the following limitations in the
previous works. 1) Their AF detection accuracy is limited, as
the systolic peak information was not exploited for training
remote PPG algorithms. We propose to utilize systolic peaks
to train our remote PPG algorithm, and the reasons are in
two aspects. First, studies [15], [16], [24], [27]–[29] showed
that HRV features computed using systolic peaks are sufficient
for AF detection, so the waveform is not needed. Second, the
systolic peaks are the most prominent and reliable feature in
remote PPG, while other waveform features are subtle and easily
contaminated by noises. 2) Most previous studies were tested
on limited AF cases, and a larger scale of AF data is needed to
make a reliable evaluation of the methods. 3) The low diversity
of previous datasets also limits their application scope. Previous
studies mainly focused on classifying healthy subjects versus
before-treatment AF patients. It is also essential to compare
before-treatment (AF) and after-treatment (sinus rhythm, SR)
of the same patients, which was not concerned in any previous
study yet. 4) Previous studies (except [27]) did not compare the
non-contact AF detection performance with results from ECG
or contact PPG. The AF detection results from ECG or contact
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Fig. 1. The general framework of non-contact AF detection. The red dots in the remote PPG are the systolic peaks. 3DCNN = three dimensional
convolutional neural network, PPG = photoplethysmography, AF = atrial fibrillation, HRV = heart rate variability, SVM = support vector machine.

PPG can be a performance upper bound from which we can see
the gap between non-contact and contact AF detection.

III. METHOD

In this section, we will introduce the 3-dimensional con-
volutional neural network (3DCNN) model for remote PPG
monitoring and how to select a loss function to train our model
with the timing of systolic peaks to facilitate AF detection. We
will also explain using the HRV features derived from systolic
peaks for AF detection.

A. Remote PPG Monitoring

1) Preprocessing: We first need to crop the face region from
the face video. The face region is obtained from the landmarks
generated from OpenFace [40]. We first get the minimum and
maximum horizontal and vertical coordinates of the landmarks
to locate the central face point. The bounding box size is 1.2
times the range of vertical coordinates of landmarks and is fixed
for each video. After getting the central point and the size of the
bounding box, we can crop the face region from each frame as
shown in Fig. 1. The cropped face is resized to 128× 128.

2) 3DCNN for Remote PPG Monitoring: The cropped face is
fed into the 3DCNN model [28] for remote PPG monitoring.
3DCNN uses the 3D kernels to do the convolution on the
video along the width, height, and time axis. We will use the
similar 3DCNN architecture as [28] with one modification that
will be illustrated in the next part. The model is shown in
Fig. 2. The input for 3DCNN is the cropped face video clip
x ∈ RC×H×W×T where C is the number of color channels, H
is the video height, W is the video width, and T is the video
time length. The output remote PPG is pr = Gθ(x) ∈ RT . The
input video is a 4D video signal, while the network eliminates
the height, width, and color dimensions and converts the 4D
signal into a 1D remote PPG signal. To train this network, we
need to minimize a loss function. The loss function measures
the distance between the ground truth, which is the contact PPG
pc(t), and the network output, which is the remote PPG pr(t). A
previous method [28] used negative Pearson correlation as the
loss function with the contact PPG as the ground truth. This loss
function encourages the remote PPG signals and contact PPG
signals to have similar morphology. However, this loss function
also encourages the model to learn redundant information from
the contact PPG, such as diastolic peaks or artifacts.

3) Binary Systolic Peaks for 3DCNN Training: Using contact
PPG as the ground truth to train the network is not the best.

Fig. 2. Three-dimensional convolutional neural network (3DCNN) ar-
chitecture. The input is the image sequence of the cropped face. The
output is the systolic peak signal. “3× 3× 3 Conv, 64” means the 3D
convolution operation with filter size 3x3x3 and the output channel is
64. “dconv” is 3D transposed convolution, which works as upsampling.
There is also a batchnorm layer and a ReLU activation following each
convolutional block. There are 4 max pooling layers. All of them down-
sample the spatial dimensions, and two of them only downsample the
temporal dimension.

The systolic peak timing in the contact PPG is a better ground
truth. There are two reasons. First, [41] demonstrated that the
waveform morphology of contact PPG signals is not entirely
consistent with remote PPG due to their different measurement
locations. This means that contact PPG is not the actual ground
truth for each face video due to the inconsistency of contact
and remote PPG. However, [41] also showed that the timing of
systolic peaks is the consistent information between contact and
remote PPG. Second, contact PPG from patients usually contain
systolic peaks with much lower amplitude than that from healthy
subjects, as shown in Fig. 3. Väliaho et al. [21] also reported this
phenomenon and explained that a higher heart rate in AF causes
smaller stroke blood volume and lower systolic peak amplitudes.
If we use the contact PPG as the ground truth for model training,
the model might learn some redundant information and ignore
some systolic peaks with low amplitude. Therefore, we will
convert our contact PPG into binary systolic peaks as shown
in Fig. 3. The binary systolic peaks only have zeros and ones,
which means it only keeps the timing of the systolic peaks and
removes other redundant information. This kind of ground truth
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Fig. 3. Contact PPG (with systolic peaks marked with red dots) and
corresponding binary systolic peaks. Binary systolic peaks (b and d) are
extracted from the contact PPG signals (a and c). The PPG signal from
the AF patient contains complex patterns such as irregular heartbeat
rhythms and different systolic peak amplitudes. PPG = photoplethys-
mography, AF = atrial fibrillation.

can encourage the model only to learn the timing of systolic
peaks, which is also the only information used for AF detection.

The next question is how to use the binary systolic peaks
for our model training. We can regard our model output pr =
Gθ(x) and our binary systolic peak label s as two probability
distributions so that we can use some probability distribution
distances as our loss function. The reason is that probability
distribution distances can compare a binary pulse signal with
a continuous smooth signal. Our systolic peak signal is just a
series of binary signals, and our model output is the continuous
smooth signal, so probability distribution distances might be
a good choice. Previous used negative Pearson correlation loss
function can handle continuous values in contact PPG but cannot
work with binary values in binary systolic peak signals.

To satisfy the requirement of probability distributions, we
should ensure that the sum of a signal is one and the signal
is non-negative. We can normalize the binary systolic peak as
s̄ = s/Σisi. Since the softmax layer can make sure the model
output is non-negative and the sum is one, we add a softmax
layer to the output of the network Gθ(x) and the new network is
Hθ(x) = softmax(Gθ(x)). Therefore, we have our new model
output p̄r = Hθ(x). Our new loss function l(s̄, p̄r) is defined to
measure the distance between normalized systolic peak signal
s̄ and model output p̄r. We use Wasserstein distance as our
loss function l for learning the systolic peaks. The reason why
Wasserstein distance is used as the loss function and the full
analysis about the loss function selection is described in the
following.

B. Loss Function Selection for Learning Systolic Peaks

1) Candidate Loss Functions: For the proposed 3DCNN
model, both the model output signal p̄r and the normalized bi-
nary systolic peaks s̄ can be regarded as probability distributions.
Therefore, we can use some probability distribution distances to
measure their similarity. These probability distribution distances
can be used as loss functions for the model training. During
training, the loss function is minimized so that our model output
signal is well aligned with the systolic peak signals. In pre-
vious work [42], probability distribution distances were used
for comparing two time series in the power spectral density
(PSD) domain. However, the accurate representation of systolic
peaks can only be in the time domain. Therefore, we directly use
the probability distribution distances in the time domain. There
are some options for probability distribution distances, such as
squared Euclidean distance, Kullback-Leibler (KL) divergence,
Jensen-Shannon (JS) divergence, and Wasserstein distance.

Squared Euclidean Distance (SED): Squared Euclidean dis-
tance is a straightforward way to compare two time series.
It measures the Euclidean distance between two probability
distributions. It is also widely used as a loss function for deep
learning models. It is defined as

lSED(p̄r, s̄) =‖ p̄r − s̄ ‖22 (1)

Kullback-Leibler (KL) Divergence: The KL divergence is
another probability distribution distance widely used as the loss
function in classification tasks. In the classification tasks, it
measures the distance between the true classification distribution
and the predicted classification distribution. KL divergence is
defined as

lKL(p̄r, s̄) = KL(s̄ ‖ p̄r) =

T∑
t=1

s̄(t) log

(
s̄(t)

p̄r(t)

)
(2)

Jensen-Shannon (JS) Divergence: JS divergence is based on
KL divergence. Compared with KL divergence, JS divergence
is symmetric and bounded between 0 and 1. It is defined as

lJS(p̄r, s̄) =
1

2
KL

(
p̄r ‖ p̄r + s̄

2

)
+

1

2
KL

(
s̄ ‖ p̄r + s̄

2

)

(3)
Wasserstein Distance: Wasserstein distance is based on op-

timal transport. It finds the minimum cost to move the mass of
one probability distribution to turn the probability distribution
into another. It is defined as

lWS(p̄r, s̄) = min
π∈Π(p̄r,s̄)

E(x,y)∼π[‖ x− y ‖] (4)

where Π(p̄r, s̄) is a set containing all joint probability distribu-
tions with marginal distribution p̄r and s̄. Wasserstein distance
finds the joint probability distribution (transport plan) π so that
the movement cost is minimum. x and y are two random vari-
ables following the joint distribution π. However, the formula
above has a min operation and cannot be directly used as a loss
function. Since our signals p̄r and s̄ are one-dimensional, the
Wasserstein distance has a closed-form in the one-dimensional
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Fig. 4. Illustration of how Wasserstein distance works. The first, sec-
ond, and third rows are at epochs 1, 15, and 45 of model training. The
first column shows the ground truth systolic peaks and our model output.
The second column shows the cumulative sum of the two signals in
the first column and also shows the zoom-in figures. The gray area
is the Wasserstein distance value. During model training, we intend to
minimize this gray area so that the model output is similar to the systolic
peak signal. The decreasing of the area makes the peak signal from the
model sharper and more accurately aligned with the true systolic peaks.

case, as shown below.

lWS(p̄r, s̄)=

∫ 1

0

|F−
p̄r
(u)− F−

s̄ (u)|du=
T∑

t=1

|Fp̄r
(t)− Fs̄(t)|

(5)
whereFp̄r

is the cumulative sum of p̄r, which is also the cumula-
tive distribution function.F−

p̄r
is the inverse of functionFp̄r

. The
Wasserstein distance used for the model training is the rightmost
part of (5). Fig. 4 shows the interpretation of the loss function.
To calculate the value of the Wasserstein distance between two
signals, we first get the cumulative sum of each signal. From (5),
the Wasserstein distance is the absolute difference between the
two cumulative sum curves, as the gray area shown in the third
column of Fig. 4.

2) Analysis of Peak Misalignment: We first analyze the loss
function response when two comparing signals are misaligned.
We first generate a smooth peak signal ps from a truncated
Gaussian distribution curve N (0, σ2) with σ2 = 0.1 to imitate
the 3DCNN model output and normalize it to make sure the
sum is one. We also generate a binary peak signal pb to imitate
the ground truth systolic peak. These two signals are shown in

Fig. 5. (a) The smooth peak and binary peak. (b) Squared Euclidean
Distance with respect to the peak shift Δt. (c) JS divergence with re-
spect to the peak shift Δt. (d) KL divergence and Wasserstein distance
with respect to the peak shift Δt.

Fig. 5(a). We shift the binary peak signal pb(t) to pb,Δt(t) =
pb(t−Δt) and get the loss function values l(ps, pb,Δt). We can
plot the loss function values l(ps, pb,Δt) with respect to peak
shift Δt to see the loss functions response to the peak misalign-
ment. The results are shown in Fig. 5(b–d). For squared Eu-
clidean distance and JS divergence in Fig. 5(b–c), the loss value
becomes saturated and constant when the absolute peak shift is
too large, which means the loss function cannot assign a larger
penalty to a larger peak alignment. This disadvantage might
prevent the model from learning the accurate systolic peaks at
these saturated locations. On the other side, KL divergence and
Wasserstein distance in Fig. 5(d) assign a larger penalty when the
peak misalignment is larger and will not be saturated when the
peak shift is large, which means KL divergence and Wasserstein
distance could be the promising options.

3) Analysis of Peak Sharpness: We also analyze the loss
function response to peak sharpness. We hope the 3DCNN
model will output signals with sharper peaks rather than flat
ones, as sharper peaks are less impacted by noises and easier
to detect. We use the binary peak and a series of smooth peak
signals with different variances σ2 to analyze the response of the
loss function to the peak sharpness. We can change the variance
σ2 of the truncated Gaussian distribution curve N (0, σ2) to
control the sharpness of the smooth peak ps,σ2 . Smaller variance
σ2 means sharper peaks. This phenomenon is illustrated in
Fig. 6(a). The smooth peak with σ2 = 10 is almost flat, while
the smooth peak with σ2 = 0.01 is very sharp and similar to the
binary peak. By changing the varianceσ2 of the smooth peak, we
can plot the loss values l(ps,σ2 , pb) with respect to the variance
σ2 of the smooth peak in Fig. 6(b). From the plot, Wasserstein
distance has larger penalty values than other loss functions,
especially at large variance positions (small sharpness), which
indicates that Wasserstein distance can assign a much larger
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Fig. 6. (a) The binary peak and the smooth peak with difference
variances (sharpness). (b) The loss values of the four candidate loss
function with respect to the variance σ2 of the smooth peak.

penalty value when the output peaks are too flat. Therefore,
Wasserstein distance is the best to motivate the model to produce
sharp peaks.

C. AF Detection With HRV Features

The AF detection part is shown in the right part of Fig. 1. We
select 20 features as listed below according to previous stud-
ies [15], [16], [24], [27], [29] to train a support vector machine
(SVM) classifier with radial basis function (RBF) kernel.

� Time domain: mean inter-beat interval (IBI), standard
deviation of IBI (SDNN), standard deviation of successive
difference of IBI (SDSD), percentage of samples with
more than 50 ms difference from the consecutive beat
(pNN50), percentage of samples with more than 20 ms
difference from the consecutive beat (pNN20), the number
of samples with more than 50 ms difference from the
consecutive beat (NN50), the number of samples with
more than 20 ms difference from the consecutive beat
(NN20), the root mean square of successive differences
of IBI (RMSSD), median of IBI, range of IBI, the coef-
ficient of variation of successive differences (CVSD), the
coefficient of variation (CVNNI), maximum heart rate,
minimum heart rate, and the standard deviation of heart
rate.

� Spectral domain: the power in the low frequency (LF)
(0.04Hz-0.15 Hz), the power in the high frequency (HF)
(0.15Hz-0.4 Hz), and the ratio of LF and HF.

� Geometrical domain: Poincaré plot standard deviations
(SD1, SD2).

IV. EXPERIMENTAL SETUP

In this section, we first present our dataset. We will provide
the experimental protocol and evaluation metrics for two exper-
iments. One experiment is remote PPG monitoring, and another
is non-contact AF/AFL detection.

A. Dataset

1) Participants: We record the full version of the Oulu Bio-
face (OBF) dataset with 100 healthy subjects and 100 AF pa-
tients. The healthy subjects were recruited from the University of
Oulu, and AF patients were from Oulu University Hospital. The
study was performed according to the Declaration of Helsinki,

TABLE I
STATISTICAL INFORMATION OF THE PARTICIPANTS

Fig. 7. Data Recording Setup. RGB = red green blue, ECG = elec-
trocardiography, PPG = photoplethysmography, LED = light-emitting
diode.

TABLE II
RECORDING EQUIPMENT AND SETTINGS

RGB = red green blue, ECG = electrocardiography, PPG = photoplethysmogra-
phy, LED = light-emitting diode.

and the local committee of research ethics of the Northern
Ostrobothnia Hospital District approved the protocol (reference
number: 116/2016). All participants gave their written consent
before recording. The statistical information of participants is
summarized in Table I. The partitions of healthy subjects and
patients in the OBF dataset are OBF-H and OBF-P, respectively.

2) Data Acquisition: The recording setup is shown in Fig. 7.
A participant was seated in front of an RGB camera at a one-
meter distance. Two LED lights on both sides of the RGB camera
face toward the participant at a 45-degree angle at a 1.5-meter
distance. Meanwhile, ECG and contact PPG signals are mea-
sured by ECG and PPG sensors, respectively, and synchronized
with the video. The recording equipment and settings are shown
in Table II.
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TABLE III
OBF DATASET COMPOSITION AND CLASSIFICATION LABELS (THE NUMBERS

OF PARTICIPANTS ARE IN THE BRACKETS)

RGB = red green blue, ECG = electrocardiography, PPG = photoplethysmography,
AF = atrial fibrillation, SR = sinus rhythm, AFL = atrial flutter.

During the recording, the participant was seated facing the
camera, and the ECG/contact PPG sensors were attached to
them. For each healthy subject, there are two recording sessions,
and each lasts for five minutes. One session was recorded at a
resting status, and the other was recorded after 5 minutes of
exercise (climbing the stairs) so that a wider range of heart
rates is covered. The mean heart rates before and after exer-
cise are 73.6 bpm and 83.2 bpm, respectively. The heart rate
ranges before and after exercise are 50.09-107.2 bpm and 60.64-
130.1 bpm, respectively. For each AF patient, there are also
two recording sessions. One was recorded before cardioversion
treatment (AF symptom presented), and the other was recorded
after the treatment (back to sinus rhythm) so that each patient
has both AF and SR data. The mean heart rates before and after
treatment are 78.9 bpm and 66.5 bpm, respectively. The corre-
sponding ECG and contact PPG were recorded simultaneously
with each video. Finally, OBF-H has 200 videos. Due to data
loss, some patients only have one session, and the total number
of videos in OBF-P is 169.

3) Data Labelling: The dataset composition and labels are
shown in Table III. In order to do the AF detection, all the
videos in OBF-H are labeled as healthy. All patients’ data
in OBF-P were labeled by two independent cardiologists by
observing ECG signals. Only persistent AF/SR/AFL (i.e., no
rhythm transition during the recording) cases were labelled as
AF/SR/AFL, and complex cases (e.g., paroxysmal, ventricu-
lar extrasystole, supraventricular extrasystoles) were labelled
as ’Other’ (24 cases). Finally, there are 73 videos labeled as
AF, 61 videos labeled as SR, 11 videos labeled as AFL, and
24 videos labeled as other that are not used for classification
experiments.

B. Experiment I: Remote PPG Monitoring

1) Experimental Protocol: We train our models with three
dataset partitions: OBF-P, OBF-H, or the whole OBF dataset.
We also test our models on these three dataset partitions. The
model is trained for 45 epochs with a learning rate of 0.0001.
Each training video clip has 512 frames, and the batch size
for training is 4. The binary systolic peaks are obtained by
NeuroKit2 [43] from our contact PPG and will be used as the

ground truth to train the 3DCNN model. Wasserstein distance
is used as the loss function. For testing, the videos are divided
into non-overlapping 30-seconds clips and used as inputs. We
use subject independent 10-folds cross-validation in all experi-
ments except two cases, i.e., training on OBF-H and testing on
OBF-P, and training on OBF-P and testing on OBF-H, which
use cross-set protocol. We also compare our method (3DCNN-
PEAK) with four remote PPG methods: 3DCNN-BVP [28] is a
deep learning-based method using contact PPG waveforms for
training. POS [38], CHROM [44], and PBV [45] are classical
remote PPG algorithms without training.

2) Evaluation Metrics: We evaluate accuracy on two levels,
i.e., the average heart rate level and IBI level. Accurate mea-
sure on the IBI level is more challenging and essential for AF
detection since it requires accurate systolic peaks.

We use mean absolute error (MAE), root mean squared
error (RMSE), and Pearson correlation (R) to evaluate the
error of the average heart rate. MAE for heart rate is de-
fined as MAEHR =

∑N
n=1 |HRvideo − HRtrue|/N , where N

is the number of samples, HRvideo is the heart rate mea-
sured from face videos, and HRtrue is the true heart rate ob-
tained from the contact PPG. RMSE is defined as RMSEHR =√∑N

n=1(HRvideo − HRtrue)2/N . Small MAE and RMSE val-
ues indicate accurate heart rate estimation. Pearson correlation
is the linear correlation between the heart rates measured from
videos and the true heart rates. When the Pearson correlation is
close to 1, the heart rate estimation is accurate.

We use three metrics of mean absolute error (MAE), standard
deviation (STD), and accuracy as used in [46] to evaluate the
error of IBI. We can first define the absolute error of IBI as AE =∑K

t=1 |IBIvideo(k)− IBItrue(k)|/K where K is the length of
the IBI, IBIvideo is the IBI curve from face video, and IBItrue
is the true IBI curve from contact PPG. Since the original IBI
curve is an irregularly spaced time series, we should resample
the original IBI curve to get an evenly spaced time series to
calculate the absolute error between two IBI curves. The MAE
and STD of IBI are the mean and standard deviation of AE
for all samples. The accuracy of IBI is defined as ACIBI =
1− 1

N

∑N
n=1 AEn/(T/(Bn − 1)) where T is the time length

of a IBI curve and Bn is the number of systolic peaks in the nth

sample.

C. Experiment II: AF/AFL Detection

1) Experimental Protocol: Remote PPG is obtained from the
model trained on both OBF-P and OBF-H. HRV features (as
described in Section III-C) are calculated from the systolic peaks
in remote PPG and used for AF detection experiments. We
perform two kinds of AF detection. 1) We use videos from
healthy subjects and videos with AF labels from patients to
classify healthy vs. AF. 2) We use the patient videos with SR
labels and patient videos with AF labels to classify SR vs. AF.
We perform the classification with different clip lengths of 10 s,
20 s, 30 s, 60 s, and 120 s to see how the clip length influences
the AF detection. 3) We also perform the classification of SR
vs. AFL with clip length 30 s to investigate whether AFL can be
detected from face videos.
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In the classification experiments of healthy vs. AF and SR vs.
AF, we use subject-independent 10-fold cross-validation.2 In
the classification experiment of SR vs. AFL, the numbers of two
labels are unbalanced, and the number of samples is limited,
so we use another evaluation protocol in [29]. We randomly
select 6 SR patients and 6 AFL patients to form the training
set while randomly selecting another 5 SR patients and the
left 5 AFL patients as the testing set. Thus, subjects in the
training and testing sets are balanced and not overlapped. The
experiments are independently performed ten times, and the
average performance is reported.

We also report results achieved by using the ECG signals
and contact PPG signals with the same HRV features in Sec-
tion III-C, which are the ECG/contact PPG reference methods.
Theoretically, the ECG and contact PPG results should be the
upper bound that the model can achieve and are the reference
results compared with remote PPG results. We also report results
of ECG-based AF detection methods [9], [11] for healthy vs.
AF and SR vs. AF. For remote PPG, we compare our results
with four previous methods [28], [29], [38], [45]. For the base-
line methods [28], [38], [45] and ECG/contact PPG reference
methods, we use the same SVM classifier and HRV features
from Section III-C, while only change the input IBI series.
For [9], [11], [29], we use the features and models in their
papers.

2) Evaluation Metrics: AF detection results are summarized
into true positive (TP), true negative (TN), false positive (FP),
and false negative (FN). We use accuracy, sensitivity, and
specificity as the classification metrics. Accuracy is defined
as (TP + TN)/(TP + TN + FP + FN). Sensitivity is de-
fined asTP/(TP + FN). Specificity is defined asTN/(TN +
FP ). We also add metrics of F1 score and area under curve
(AUC) for more convincing comparison.

V. RESULTS AND DISCUSSION

In this section, we will present the results of our two experi-
ments. One experiment is remote PPG monitoring, and another
is non-contact AF/AFL detection. Results about computational
speed are also reported. Finally, extensive discussion about the
results is provided.

A. Results for Experiment I: Remote PPG Monitoring

We compare these four candidate loss functions mentioned
in Section III-B1. Table IV shows that Wasserstein distance has
the best performance for remote PPG monitoring. Fig. 4 also
shows how Wasserstein distance boosts the predicted systolic
peaks. Therefore, our experimental results validate our analysis
conclusion in Section III-B that Wasserstein distance is the best
option.

Table V shows the test results on OBF-P. No matter what
training set is used, our proposed method (3DCNN-PEAK)

2This means that all subjects are evenly divided into 10 folds. All data from
one subject is only in one fold. For each testing, one fold is used for testing, and
the left nine folds are used for training, which means data from one subject is
never in both testing and training.

TABLE IV
PERFORMANCE COMPARISON OF THE CANDIDATE LOSS FUNCTIONS

KL = Kullback-Leibler Divergence, JS = Jensen-Shannon Divergence, SED =

Squared Euclidean Distance, WS = Wasserstein Distance, MAE = mean absolute
error, RMSE = root mean squared error, R = Pearson correlation, STD = standard
deviation.

achieves the best performance on heart rate and IBI measure-
ment. Using both OBF-P and OBF-H for training is preferable
since this can further improve the model performance compared
with using OBF-P or OBF-H alone. The cross dataset test
shown in the OBF-H row indicates that our 3DCNN-PEAK
method has better generalization capability than the 3DCNN-
BVP method. Table VI shows the test results on OBF-H. Our
3DCNN-PEAK method still outperforms other baseline meth-
ods. Using both OBF-P and OBF-H for training also achieves the
best performance on OBF-H. The reason is that a larger dataset
(OBF-P + OBF-H) can include more face videos with different
noise types and facial skin types from both healthy subjects
and patients, which can train the model to be more robust to
noise and better capture subtle remote PPG. It is obvious that
the error of heart rate and IBI on OBF-H in Table VI is much
lower than on OBF-P in Table V for all methods, which means
the remote PPG monitoring for patients is more difficult than
for healthy subjects. We provide the final results of training
and testing on the whole OBF dataset in Table VII, and our
proposed 3DCNN-PEAK achieves the best results where MAE
values of heart rate and IBI are 1.4658 BPM and 50.7481 ms,
respectively.

B. Results for Experiment II: AF/AFL Detection

Fig. 8 shows the accuracy, sensitivity, and specificity with clip
lengths of 10 s, 20 s, 30 s, 60 s, and 120 s for both healthy vs.
AF and SR vs. AF. In general, ECG has the best performance
among all, and accuracy is high even with the shortest 10 s clip
length. Our proposed 3DCNN-PEAK outperforms other remote
PPG methods at most clip lengths. We can observe that longer
clips can provide better performance. However, longer recording
time also decreases the convenience and application scopes
of our method. Therefore, we need to balance the recording
time and classification performance. It can be observed that the
classification performance increases significantly from 10 s to
30 s but does not increase too much after 30 s for our method
and most other methods. In addition, the 30 s recording time
is not very long. Therefore, we select 30 s length to show
results from our method and other methods in the following
part.
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TABLE V
RESULTS OF HEART RATE AND INTER-BEAT INTERVAL ON OBF-P

MAE = mean absolute error, RMSE = root mean squared error, R = Pearson Correlation, STD = standard deviation.

TABLE VI
RESULTS OF HEART RATE AND INTER-BEAT INTERVAL ON OBF-H

MAE = mean absolute error, RMSE = root mean squared error, R = Pearson Correlation, STD = standard deviation.

TABLE VII
RESULTS OF HEART RATE AND INTER-BEAT INTERVAL ON THE WHOLE OBF DATASET

MAE = mean absolute error, RMSE = root mean squared error, R = Pearson Correlation, STD = standard deviation.

Table VIII shows the classification results for healthy vs.
AF when the clip length is 30 s. The accuracy, sensitivity, and
specificity for our method are 96.00%, 95.36%, and 96.12%,
respectively. For SR vs. AF results in Table IX, the accuracy, sen-
sitivity, and specificity for our method are 95.23%, 98.53%, and
91.12%, respectively. For SR vs. AFL in Table X, the accuracy,
sensitivity, and specificity for our method are 88.43%, 90.04%,
and 87.04%, respectively. Compared with other methods, our

method performs the best among remote PPG methods and is
close to ECG and contact PPG methods.

C. Results for Computational Speed

Our experiments were conducted on an Intel Xeon E5-2650
2.30 GHz CPU and Nvidia Tesla V100 GPU. The cropped face
is first extracted from the original face videos by OpenFace [40].
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Fig. 8. (a–c) The accuracy, sensitivity, and specificity with respect to the clip length for healthy vs. AF. (d–f) The accuracy, sensitivity, and specificity
with respect to the clip length for SR vs. AF. The red dot lines are the 30 s clip length that we choose for our classification experiments. ECG =
electrocardiography, PPG = photoplethysmography.

TABLE VIII
RESULTS OF CLASSIFICATION BETWEEN HEALTHY SUBJECTS AND PATIENTS

WITH AF FOR 30 S CLIPS

ECG = electrocardiography, PPG = photoplethysmography, AF = atrial fibrillation,
AC = accuracy, SE = Sensitivity, SP = Specificity, AUC = area under curve.

The running speed of this step is 30 fps. We train our 3DCNN
model with the whole OBF dataset (about 31 hours of face
videos) for 45 epochs, which costs about 45 hours. The inference
time of the model is about 2 ms (9× 105 fps) for one 30 s video
clip. The training of SVM classification takes 60 ms. For each
30 s clip, the inference time of SVM classification is about 1.2 ms
(1.5× 106 fps).

D. Discussion

From experiment I: remote PPG monitoring, there are three
points we can conclude from Tables V, VI, and VII. 1) The
evaluation of OBF-P, OBF-H, and the whole OBF dataset shows

TABLE IX
RESULTS OF CLASSIFICATION BETWEEN PATIENTS WITH SR AND PATIENTS

WITH AF FOR 30 S CLIPS

ECG = electrocardiography, PPG = photoplethysmography. SR = sinus rhythm. AF
= atrial fibrillation, AC = accuracy, SE = Sensitivity, SP = Specificity, AUC = area
under curve.

TABLE X
RESULTS OF CLASSIFICATION BETWEEN PATIENTS WITH SR AND PATIENTS

WITH AFL FOR 30 S CLIPS

ECG = electrocardiography, PPG = photoplethysmography. SR = sinus rhythm. AFL
= atrial flutter, AC = accuracy, SE = Sensitivity, SP = Specificity, AUC = area under
curve.
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that our proposed method can achieve the best performance of
remote PPG monitoring on both healthy subject data and patient
data. 2) Patient data is more challenging than healthy subject
data, but the proposed 3DCNN-PEAK can achieve better results
than other baselines on patient data. The results demonstrate that
the proposed method with learning systolic peaks effectively
improves remote PPG monitoring performance for patients. 3)
Training with the whole OBF dataset can perform better than
training with only OBF-P or OBF-H. Therefore, we use the
remote PPG signals from the model trained on the whole OBF
dataset for our classification tasks.

From experiment II: AF/AFL detection, two points can be
observed from the results. First, the ECG and contact PPG
achieve high accuracy, which validates that the HRV features are
effective for AF/AFL detection. Second, our proposed 3DCNN-
PEAK achieves slightly lower performance than the contact
PPG, but it works best among all remote PPG methods, which
indicates that learning systolic peaks can facilitate the AF/AFL
detection. We also discuss the performance difference among
healthy vs. AF, SR vs. AF, and SR vs. AFL. It can be seen that
the results of SR vs. AF are slightly lower than that of healthy
vs. AF, which means the SR vs. AF classification task is more
challenging. This is expected since both AF and SR samples
are from the patients, while the classification of AF vs. healthy
uses data from two different groups of subjects whose data is
more heterogeneous. In addition, results in Experiment I show
that patient data is more challenging and has lower remote PPG
monitoring performance, which may cause low classification
performance between SR patients and AF patients. It is noted
that the performance of all methods for SR vs. AFL is lower than
healthy vs. AF or SR vs. AF. There are two reasons. 1) There is
only a limited number of AFL patients in our dataset, and the
numbers of SR (61 subjects) and AFL (11 subjects) are highly
unbalanced, which might cause the performance decreasing.
A larger AFL dataset could give a performance improvement
and more reliable evaluation. 2) It was reported that adding
PPG morphology features helped detect AFL compared to only
using HRV features [15]. Since only HRV features are used
in our experiment, future works could focus on extracting the
remote PPG morphology from face videos to improve AFL
detection.

We checked some cases when the detector fails. One reason
is that some facial videos contain spontaneous facial motions
that lead to noises in remote PPG. Another reason is that some
PPG signals from patients contain systolic peaks with very low
amplitudes due to small blood stroke volume [21]. The two
factors may cause wrongly detected peaks and eventually lead
to wrong classification.

Our study may lead to healthcare products, e.g., self-screening
of AF symptoms of suspectable populations at home or self-
monitoring for the chronic patients to check for recurrence of
AF after treatment. Non-contact AF detection can also be used
in public places for rapids screening of AF since this method
does not need time to attach sensors to the subject, and the
computational speed is high enough for real-time application. In
addition, the non-contact way is more hygienic without contact
sensors.

VI. CONCLUSION

In this paper, we propose a novel method for non-contact AF
detection by utilizing the systolic peaks to train our deep learning
model. A large-scale OBF dataset was collected for non-contact
AF detection from face videos. We achieve high accuracy for
non-contact AF detection and demonstrate the feasibility of non-
contact AFL detection.
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