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Abstract—Estimating the number of sources received by an
antenna array have been well known and investigated since the
starting of array signal processing. Accurate estimation of such
parameter is critical in many applications that involve prior
knowledge of the number of received signals. Information theo-
retic approaches such as Akaikes information criterion (AIC) and
minimum description length (MDL) have been used extensively
even though they are complex and show bad performance at some
stages. In this paper, a new algorithm for estimating the number
of sources is presented. This algorithm exploits the estimated
eigenvalues of the auto correlation coefficient matrix rather than
the auto covariance matrix, which is conventionally used, to
estimate the number of sources. We propose to use either of
a two simply estimated decision statistics, which are the moving
increment and moving standard deviation as metric to estimate
the number of sources. Then process a simple calculation of the
increment or standard deviation of eigenvalues to find the number
of sources at the location of the maximum value. Results showed
that our proposed algorithms have a better performance in
comparison to the popular and more computationally expensive
AIC and MDL at low SNR values and low number of collected
samples.

Index Terms—number of sources, eigenvalues, moving stan-
dard deviation, Akaikes information criterion, minimum descrip-
tion length, moving increment

I. INTRODUCTION

Estimating the number of sources in an efficient and accu-
rate way is important to many applications that involve array
signal processing. Such applications assume this parameter to
be known in prior and further processing would depend on
such parameter. These algorithms include: Direction of Arrival
(DoA) [1], blind source and channel order separations [2][3].
In DoA algorithms, such as MUSIC or ESPRIT, knowing
the number of sources impaired to the array is critical in
eigenvalues decomposition to separate between noise and
signal subspaces. DoA estimation can be involved in many
further applications that include localization and tracking of
objects, dedicating the signal to a desired user in wireless
networks and sound and speech processing [1]. Hence, many
algorithms have been proposed to detect the number of sources
that include: information theoretic criterion based [4] [5] [6],
eigenvector-based [7],and threshold based estimations [8].

Information theoretic approaches such as Akaikes infor-
mation criterion (AIC) [5] and minimum description length
(MDL) [6] are the most widely used methods for number
of sources estimation. Those methods are criterion based
estimation algorithms that are mostly computationally complex
and have bad performance with low number of samples and
low SNR. Complexity problem that is found in both methods
is due to the minimization of criterion to search for minimum
AIC or MDL values beside the eigenvalue decomposition
(EVD) operation on the auto covariance matrix of the observed
data. The poor performance problem is due to the incorrect
estimation of auto covariance matrix at low SNR especially
with low number of samples. This results in no clear difference
between eigenvalues that are needed for number of sources
estimation. Beside all that, such methods assume the noise
to be sparse-like uncorrelated from the signal and hence
fail in practical scenarios such as underwater [9] and indoor
offices [10]. As a result, a lot of research tried to solve these
problems by modifying the traditional algorithms or proposing
another way for estimation.

Some works tried to reduce the complexity by not go-
ing through EVD and solving the problem utilizing Multi-
Stage Wiener Filter (MSWF), [11], however, applications such
as DoA would mostly involve EVD so going through that
wouldn’t add complexity. Another work in [12] presented a
threshold based estimation algorithm that is based on peak to
average ratio (PAR) characteristics. The algorithm calculates
the PAR values of the received data and get the differences
between adjacent ones which is compared to a threshold. If the
difference exceeds the threshold, then the number of sources
is detected by the location at that point. The threshold here is
set based on the gradient of the PAR values, the number of
array elements and the minimum PAR value. Results showed
a better performance than AIC and MDL under low SNR
conditions, however the threshold need to be adjusted and
the probability of detection is still effected drastically by the
number of samples.

In this paper, it was noted that most information theo-
retic approaches are computationally complex while threshold
based approaches need a reconfigurable threshold with differ-
ent parameters. As well, almost all previous work did consider978-1-4799-5344-8/15/$31.00 c© 2015 IEEE
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the auto covariance matrix eigenvalues without considering
the auto correlation coefficient matrix eigenvalues which can
result in a much simpler detection approaches. Hence, this
paper proposes a simple estimation algorithm that uses the
auto correlation coefficient matrix to estimate eigenvalues and
estimate the number of sources by looking for the maximum
difference or moving standard deviation between eigenvalues.
The moving standard deviation in here is the difference
between two consecutive biased standard deviation of two
eigenvalues only. The algorithm was compared, in term of
error rate, to information theoretic approaches with different
scenarios and setups.

The rest of the paper is organized as follows, section II will
present the system model while section III presents how the
eigenvalues are calculated. Section IV presents some existing
techniques and section V will present the proposed algorithm.
Section VI will present simulation results and comparisons
and finally, conclusion and future work will be presented in
section VII.

II. SYSTEM MODEL

In our system model, we assume that the receiver is
equipped with M -sensor uniform antenna array. Considering
K signals are impinging on the receiver’s array, the received
signal at an instant of time t can be expressed as:

y(t) =

K∑
k=1

a(θk) ∗ sk(t) + w(t), (1)

where a(θk) is the steering vector for the a signal arriving
at azimuth angle θk, sk(t) is the impinging signal from the
kth source at time t, and w(t) is the additive white Gaussian
noise (AWGN). In the matrix notation, (1) can be represented
as:

Y = AS + W, (2)

where Y ∈ CM×N , A ∈ CM×K ,S ∈ CK×N , W ∈ CM×N ,
with N being the total number of collected samples and C is
the set of complex numbers. The matrix of steering vectors is:

A = [a(θ1),a(θ2)...a(θk)]. (3)

The steering vector a(θk) for a uniform circular array (UCA)
can be represented as:

a(θk) = e(2π/ηr(cos(θ−γ))), (4)

with waveform η, radius r and γ is 360/N ∗ [0 : N − 1].
The auto covariance matrix R of the received data can be

expressed as:

RYY = E
[
YYH

]
(5)

= ARSSAH + RWW

where, E[.] denotes the expectation operation, H denotes the
Hermitian operation, RSS is the auto covariance matrix of the
impinging signal, RWW = σ2I is the auto covariance matrix
of the receivers AWGN with σ2 is the noise variance and I
is M × M unitary matrix. It is worth noting that the auto

covariance matrix of the impinging signal RSS is assumed
to be a full rank matrix. This implies that its columns are
linearly independent or in other words, the impinging signals
are not correlated. Consequently, if the impinging signals are
correlated, RSS will be rank deficient.

III. PROBLEM FORMULATION

The auto covariance matrix of the received signal from
the M antenna array is typically estimated when estimating
the DoA [13], [14]. For subspace based techniques such as
MUltiple SIgnal Classification (MUSIC) [15], which is widely
used and known for its superb performance particularly at low
SNR levels, the EVD is applied on RYY as a step to estimate
the DoA. In other words, estimating the RYY and its EVD is
a conventional step in most of the DoA estimation algorithms.
Applying EVD on RYY leads to:

RYY = UYΛYUH
Y (6)

= USΛSUH
Y + UWΛWUH

W,

where US and UW are signal and noise subspaces unitary
matrices, and ΛS and ΛW are diagonal matrices of the
eigenvalues of the signal and noise, respectively. (6) can be
expressed as:

UYΛYUH
Y = diag (λ1, λ2, ...λK , 0, ..., 0) + σ2I. (7)

The eigenvalues (λ1, λ2, ...λM ) with their corresponding
eigenvectors (e1, e2, ...eM ) define the signal and noise sub-
space as US = [e1, ..., eK ] and UW = [eK+1, ...., eM ]
respectively. The problem is then estimating the value of K,
i.e., the number of impinging signals, given the estimated
(λ1, λ2, ...λM ).

IV. EXISTING TECHNIQUES

AIC and MDL are the most widely used algorithms for
number of sources estimation. They are order determination
information theoretic models that use the eigenvalues of the
sample auto covariance to determine how many smallest
eigenvalues are approximately equal. Those eigenvalues would
lie in the noise subspace while others would lie in signal
subspace. Both algorithms consist of minimizing a criterion
of log likehood over the number of signals that are detectable.
In here, the derivation of those criterion will not be stated,
however the details of both of them can be found in [5].
When ordering the eigenvalues in a descending order, i.e.,
λ1 ≥ λ2 ≥ ...λM , AIC criterion can be expressed as:

KAIC = argmink

(
− 2 log

 ΠM
i=k+1λ

1
M−k

i

1
M−k

∑M
i=k+1 λi

(M−k)N

+

2k(2M − k)

)
(8)



while MDL criterion can be expressed as:

KMDL =argmink

(
− log

 ΠM
i=k+1λ

1
M−k

i

1
M−k

∑M
i=k+1 λi

(M−k)N

+
1

2
k(2M − k) log(N)

)
(9)

where k is the index of the eigenvalues. For the rest of the
paper, we will use AIC and MDL as references to compare the
performance of our proposed algorithms. Another approach
for estimating the number of sources is based on setting a
threshold for the eigenvalues increment [16]. It was noted
that the eigenvalues of the noise subspace are close to each
other and the difference between them doesn’t exceed a certain
threshold. Hence, the increment in the eigenvalue is compared
with a threshold to estimate the number of sources. Their
estimated threshold (γinc) is given by:

γinc = ρ(M,N)
Ps

(1 +
√
Ps/λM )2

(10)

where Ps is the estimated signal power, λM is the eigenvalue
with index M, i.e. last eigenvalue. ρ in here is a coefficient
that is found through extensive computer simulation for each
two particular M and N . In other words, each time either N
or M or both of them change, a comprehensive simulation has
been run beforehand to find the best ρ value.

AIC and MDL are more computationally expensive than the
eigenvalues increment threshold based approach given that it
will be needed to solve the minimization problem given in (8)
and (9) each time an estimation of the number of sources
in needed. On the other hand, the eigenvalues increment
threshold based approach requires an extensive iterations a
prior to adjust ρ accordingly. In addition to that ρ depends
on several parameters such as N , M and SNR making its
adjustment a tedious process.

V. PROPOSED ALGORITHM

In our proposed algorithm, we exploit the auto correlation
coefficient matrix rather than the auto covariance matrix to
estimate the number of impinging sources. To define the
auto correlation coefficient matrix, we first redefine the auto
covariance matrix in (6) as:

VYY = E
[
(Y − µY) (Y − µY)

H
]

(11)

= ARSSAH + RWW − µYµ
H
Y

where µY = E[Y]. The elements in the diagonal of VYY

are the variances of Y. The auto correlation coefficient matrix
CYY is then given by:

CYY = (diag(VYY))
− 1

2 VYY (diag(VYY))
− 1

2 . (12)

We then apply the EVD on CYY which leads to:

CYY = UCΛCUH
C , (13)

UCΛCUH
C =diag

(
λC1 , λ

C
2 , ...λ

C
K , 0, ..., 0

)
+ (diag(VYY))

− 1
2
(
σ2I− µYµ

H
Y

)
(diag(VYY))

− 1
2 .

(14)

The eigenvalues (λC1 , λ
C
2 , ...λ

C
M ) with their corresponding

eigenvectors (eC1 , e
C
2 , ...e

C
M ) define the signal and noise sub-

space as US = [eC1 , ..., e
C
K ] and UW = [eCK+1, ...., e

C
M ]

respectively. As well, the problem is then estimating the value
of K given the estimated (λC1 , λ

C
2 , ...λ

C
M ). We first arrange the

eigenvalues in an ascending order, rather than a descending
order as in the case of AIC and MDL. Hence, eigenvalues
are arranged from the beginning as (λC1 , λ

C
2 , ...λ

C
M ) where

λC1 ≤ λC2 ≤ ...λCM and (λC1 , λ
C
2 , ...λ

C
M−K−1) would lay in the

noise subspace while (λCM−K ...λ
C
M ) are in signal subspace.

It can be inferred from (14) and (7) that since the eigen-
values of the signal subspace contain both signal and noise
power, the values of sources’ signal eigenvalues are expected
to be higher than noise eigenvalues at moderate and high SNR
values. At the same time the noise eigenvalues are expected
to be comparable to one another. The main contribution of
using EVD of the auto correlation coefficient matrix in (14)
rather than EVD of the auto covariance matrix in (7) is
that the difference between signal eigenvalues and the noise
eigenvalues is more accentuated, which leads to an easier and
more efficient estimation of the number of sources, particularly
at low SNR values. Moreover, the mathematical operation
applied to estimate a decision statistic, which is then used
to decide on the number of sources, can be as simple as
our proposed moving increment or moving standard deviation
rather than the complicated decision statistic for the AIC and
MDL given in (8) and (9).

To illustrate the advantage of using EVD of the auto cor-
relation coefficient matrix, as we propose, versus EVD of the
auto covariance matrix, which is conventionally used in most
of the existing techniques, we plot the moving increment and
moving standard deviation of the estimated eigenvalues of the
auto correlation coefficient matrix versus the auto covariance
matrix for different SNR values in Fig.1 and different number
of collected samples in Fig.2. The simulation parameters for
the first figure are: 8 elements antenna array, 2 impairing
signal, 1024 samples and different SNR values. The simulation
parameters for the other figure are the same except that the
SNR is kept fixed at -7 dB and the number of samples changed
from 128 to 1024. From these figures, one can see that in the
case of using the eigenvalues of the auto correlation coefficient
matrix, the jump in the decision statistic when first moving
from the noise subspace to the signal subspace is always
the highest. The decision statistics then starts to decrease, in
other words, the highest increment in the decision statistic
always happens when moving from noise subspace to signal
subspace. On the contrary, when using the same two decision
statistics with the eigenvalues of the auto covariance matrix,
the first jump between the noise and signal subspaces is
not necessarily the largest. In addition to that the decision
statistics in the signal subspace increase monotonically. This
implies that when using the decision statistics of the auto
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correlation coefficient matrix, the problem is transformed into
a simple maximization problem, where the index at which
the highest jump occurs is searched for. While for the case
of using the decision statistic of the auto covariance matrix,
the decision statistics should be compared to a threshold to
decide on the number of sources. As stated in [16], which
uses covariance eigenvalues in their algorithms, estimating
the threshold is a tedious process that requires an extensive
simulation and iterations to estimate the appropriate threshold
for each particular set of parameters.

A. Moving Increment of the auto correlation coefficient matrix
Eigenvalues

Our first proposed decision statistic (δ) used as a metric to
decide on the number of sources is the moving increment of
the estimated eigenvalues of the auto correlation coefficient
matrix. The moving increment is estimated as the difference
between each two consecutive eigenvalues:

δi = λCi − λCi−1 for i = 2, 3, ..,M. (15)

The highest increment would then imply the shift between
noise eigenvalues to signal eigenvalues. The index at which
this shift happens can be estimated as:

j = arg max
i

δi.

In this case, the number of sources can be given by K =
M − j + 1.

B. Moving STD of the auto correlation coefficient matrix
Eigenvalues

Our second proposed decision statistic (α) used as a metric
to decide on the number of sources is the moving standard
deviation of the estimated eigenvalues of the auto correlation
coefficient matrix. The biased sample standard deviation in
general is a measure of variance or difference of the sample
from the mean, it can be calculated by:

sM =

√√√√ 1

M − 1

M∑
i=1

(xi − u)
2
, (16)

where u is the mean and M is the size of the sample or, in our
case, the size of the eigenvalues involved in standard deviation
calculation.
Now, finding the biased standard deviation of two eigenvalues,
can be done by:

STD(i) =
√

(λCi − u)2 + (λCi−1 − u)2, (17)

where u is the mean of the two eigenvalues involved which
is:

u =
λCi + λCi−1

2
. (18)

We define our second decision statistic, which is the moving
STD (α) as the difference between two consecutive STDs:

αi = STD(i)− STD(i− 1) for i = 3, 4, ...,M

=

(
(λCi − λCi−1)− (λCi−1 − λCi−2)

√
2

)
. (19)

Similarly, as in the case of using the moving increment, the
highest index at which the shift between the noise eigenvalues
and the signal eigenvalues can be estimated as:

j = arg max
i

αi

Consequently, the number of sources can be given by K =
M − j + 1.
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VI. SIMULATION RESULTS

Simulation results were carried in different scenarios to
test algorithm’s performance with different cases that include
different SNR values, different number of samples, different
number of impairing signals, and different array configuration.
Performance metric used for comparison was the percentage
error rate, which can be expressed as:

error rate =

(
1− number of successes

number of runs

)
× 100 (20)

Except for the last simulation, the array that was used was a
uniform circular array with 8 elements. The original signal was
a QPSK signal and the noise added was a white Gaussian noise
with the different SNR values. The number of runs iterations
is 10000.

A. Algorithms Performance at Various SNR

The first simulation was done to test AIC, MDL and the
proposed algorithms performance with different SNR values.
SNR values ranged from -20 to 15 dB, the number of samples
was fixed to 1024 and the actual number of sources was 2.

As shown in Fig. 3, the proposed algorithms behaved
better than MDL in low SNR values and better than AIC
in high SNR values. For less than -10dB, the performance
of the proposed algorithms had a comparable performance
to AIC and better than MDL. However, the estimation was
inaccurate for all algorithms for less than -12 dB SNR. The
reason for the proposed algorithms inaccurate estimation at
this stage is due to the inconsistent change in eigenvalues that
is resulted from high noise and hence the standard deviation
or increment changes randomly and the detection can happen
at different stages. The reason why MDL behaves badly is the
underestimation of the number of sources which was detected
to be 1 as well. After -10 dB SNR, the performance of
MDL and the proposed algorithms came to be the same with
minimum error rate that is almost 0 while AIC kept its error
rate of about 10. The reason why AIC is not giving lower
error rate is the overestimation of the number of sources which
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happen with relatively high SNR values. This overestimation
is probably due to AIC added penalty term as was proven by
[17].

B. Algorithms Performance at Various Number of Samples

One of the important parameters to consider in any al-
gorithm design is the number of samples needed by the
algorithm to estimate correctly. This is important for algorithm
practical implementation as the number of samples needed to
be minimized in such scenarios. Hence, MDL, AIC and the
proposed algorithms were tested against different number of
samples at SNR value of -5 dB with 2 impairing signals.

As can be seen in Fig.4, the proposed algorithms did have a
better performance than MDL and similar performance to AIC
for low number of samples. MDL algorithm underestimated
the number of sources with low number of samples as eigen-
values were not well distrusted in a way that can be detected
by the algorithm criterion and the added penalty term. MDL
and the proposed algorithms did have the same performance
for more than 256 samples which was almost 0 error rate.
AIC, on the other hand, overestimated the number of samples
and hence had its 10% error rate, which was found in almost
all test cases that were conducted in this paper.

C. Algorithm Performance with Different Number of Impair-
ing Sources

Different algorithms might have different sensitivities in
terms of the number of sources they can estimate. Hence,
algorithms were tested against a different number of impairing
sources at SNR value of -5 dB and the number of samples
equal to 1024 samples.

As can be seen in Fig. 5, AIC outperformed all other
algorithms in the maximum number of sources it can estimate.
MDL and moving STD algorithm could estimate up to 5
sources with less than 20% error and fail to estimate more
while AIC could estimate 6 and 7 but with high error rate. The
reason behind this drawback goes back to separation between
the DoA angles was not enough to estimate the number of
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sources correctly at this point. In general, moving STD algo-
rithm could estimate up to 6 signals with 8 elements array and
couldn’t estimate more no matter what the separation or SNR
value was. Moving Increment algorithm could estimate up to
5 sources with this configuration. However, such performance
drawback can be safely negligible due to the fact that receiving
6 sources at the same time is almost impossible in practical
wireless scenarios. Besides, even if the number of sources
was estimated correctly, further applications that use such
estimation, such as DoA, won’t be able to estimate more than
5 sources and hence the difference in the performance won’t
effect.

D. Algorithm performance with Different Array Elements

This simulation examines the effect of increasing the num-
ber of elements that construct the array. The test was done on
the SNR value of -5, 100 samples and 2 signals were impaired
to the array.

As shown in Fig. 6, when the number of elements increases
the error rate will decrease until it reach almost 0 error

rate when the number of elements is 8 for the moving STD
based algorithm and 12 for MDL and moving increment based
algorithm. Before 16 elements array moving STD algorithm
showed the best performance compared to three simulated ones
which can be resulted back to low number of samples that
caused MDL and moving increment to perform worst than
others at that stage. After 16 elements both MDL and the
proposed algorithms showed an error rate of almost 0%.

VII. CONCLUSION

This paper presented a new algorithm for number of sources
estimation based on eigenvalues decomposition. The algorithm
depended on the auto correlation coefficient matrix instead of
auto covariance matrix to get the eigenvalues and find the num-
ber of samples at the maximum moving increment or moving
standard deviation. In general, moving STD behaved better
than moving increment and had more stable performance that
is comparable to AIC and MDL. Results showed a better
performance than MDL at low SNR values and better than
AIC at high SNR. In addition to that, the proposed algorithm
was much simpler than the information theoretic approaches
as it depends on simple maximizing problem only.
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