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Abstract

In vivo brain connectomics have heavily relied on using functional and diffusion Magnetic 

Resonance Imaging (MRI) modalities to examine functional and structural relationships between 

pairs of anatomical regions in the brain. However, research work on brain morphological (i.e., 

shape-to-shape) connections, which can be derived from T1-w and T2-w MR images, in both 

typical and atypical development or ageing is very scarce. Furthermore, the brain cannot be only 

regarded as a static shape, since it is a dynamic complex system that changes at functional, 

structural and morphological levels. Hence, examining the ‘connection’ between brain shape and 

its changes with time (e.g., growth) may help advance our understanding of connectomic brain 

dynamics as well as disorders that may affect it. To address these limitations, we unprecedentedly 

introduce two population-based shape and growth connectivity analysis tools that further extend 

the field of connectomics to brain morphology and dynamics: the morphome and the kinectome. 

Specifically, for a population of anatomically labelled shapes, the morphome identifies a network 

of anatomical shape regions that are connected when morphologically similar at a single 

timepoint, whereas the kinectome identifies anatomical shape regions that elicit similar evolution 

dynamics across successive timepoints. These proposed generic tools can be easily invested to 

examine how a baseline shape influences its deformation trajectory at later timepoints using any 
longitudinal shape data. We evaluated these tools on 23 infants, with right and left cortical surfaces 

reconstructed at birth, 3, 6, 9 and 12 months of age. Investigating the relationship between the 

neonatal morphome and the postnatal kinectome (from birth to 1 year of age) gave insights into 

brain connectivity at birth and how it develops over time.
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1. INTRODUCTION

Brain connectomics marked a new era for brain function (using task-based and resting state 

fMRI) and structure (using diffusion tensor imaging) analysis using big neuroimaging data, 

such as the Human Connectome Project [1], the Baby Connectome Project [2], and UK 

Biobank [3]. However, while providing tools for quantifying connections between different 

neuroanatomical structures, conventional connectomics tools are not particularly designed to 

investigate the morphology (or shape) of the brain and its dynamic changes with time (e.g., 

cortical growth and cortical atrophy). Specifically, ‘shape-to-shape’ connections, where we 

measure the morphological similarity between the brain structure shape and another brain 

structure shape, are rarely explored in the neuroscience state-of-the-art –with the exception 

of recent works introducing cortical morphological networks for brain disorder diagnosis [4, 

5]. Previous works showed that brain morphology can be affected by different psychiatric 

disorders. For instance, hemispheric shape asymmetries appeared to be influenced by 

sexually dimorphic factors or by schizophrenia pathophysiology [6]. Furthermore, although 

complex and variable, the morphology of cortical gyri and sulci at birth predicted 

pathological functioning in certain developmental and neuropsychiatric disorders [7], 

thereby highlighting that brain morphology and function are intertwined. Moreover, different 

cortical attributes identified cortical shape-related alterations manifesting during a brain 

disorder progression such as temporal and parietal cortical thinning in both autistic children 

[8] and non-demented Down’s syndrome subjects [9].

On the other hand, since the brain is a highly complex dynamic system, it would be more 

comprehensive to model it as an evolving shape rather than a static one. Indeed, shape 

evolution modeling is one of the most growing research fields in computational anatomy 

[10] with diverse applications to studying changes in anatomical structures in age brain 

development [11] and ageing [12]. Brain morphological changes were also reported in brain 

disorders and diseases such as basal ganglia shape compression in boys with attention deficit 

hyperactivity disorder [13], and hippocampal atrophy and ventricular enlargement in 

Alzheimer’s disease [14]. However, to the best of our knowledge, no previous studies 

examined the ‘shape-to-shape’ and ‘growth-to-growth’ relationship in developing or ageing 

brains.

To address all these limitations, for the first time, we take the connectomics field one step 

further into examining shape-growth connections. To this aim, we propose two novel 

connectivity-based tools, the morphome, and the kinectome, that investigate shape-to-shape 

and growth-to-growth relationship with application to developing cortical surfaces using 

neonatal and postnatal structural T1-w and T2-w MR images. While the morphome, a 

population-based morphological connectivity atlas, pins down cortical regions that 

morphologically ‘wire’ together in the developing infant population, the kinectome, a 

population-based growth connectivity atlas, identifies cortical regions that develop similarly 

from birth timepoint. The main contributions of our work can be summarized as follows. 

First, we propose novel brain connectivity-based analysis tools that investigate both the 

morphology and dynamics of the brain as an interconnected complex system. Second, we 

evaluate these tools on developing cortical surfaces from birth till 1 year of age to reveal 
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population-based shape and growth traits. Third, we investigate the relationship between the 

estimated morphome and kinectome in developing brains.

2. ESTIMATION OF SHAPE AND GROWTH BRAIN NETWORK ATLASES

In this section, we introduce our multi-step framework to estimate a shape network atlas and 

a growth network atlas for a population of longitudinal cortical brain networks (Fig. 1). In 

the first step, for each subject, we model the morphology of each cortical surface using the 

multidirectional varifold metric proposed in [15] as well as its developmental trajectory 

encoded by the estimated deformation velocity field from baseline to the last acquisition 

timepoint. In the second stage, we generate for each subject: (1) a shape brain network, 

where the strength of each connection between two cortical regions of interest (ROIs) 

represents the similarity in shape between these regions; and (2) a growth brain network, 

where the strength of each connection is defined as the correlation between the average 

developmental trajectories of two ROIs. In the third stage, we generate the morphome 

through integrating shape brain networks of neonates and the kinectome through averaging 

their corresponding growth brain networks. We detail each of these three stages below.

Geodesic multidirectional varifold regression for shape and growth modeling

Given a set of shapes {S1, …, SNS} for Ns subjects, we nest each of these into a 

multidirectional varifold space W*, where each shape Sk (i.e., k–th subject in the population) 

is represented as a sum of two ‘orthogonal’ varifolds, one along its non-oriented normal 

vector n⃡ direction and the other along its non-oriented principal curvature direction κ⃡: Sk = ∫ 
ω(x)t n⃡ (x)dλ(x) + ∫ ω(x)t κ⃡ (x)dλ(x), where dλ(x) represents Lebesgue measure on the 

surface [17]. The square-integrable 3D vector field ω characterizes the geometry of the 

surface shape through local convolutions using a reproducing Hilbert kernel KW.

In a discrete space, a surface S with M meshes (triangles) is approximated by the sum of 

Dirac varifolds evaluated at the center positions xi of its M meshes using their corresponding 

non-oriented normal and principal curvature directions: S = ∑i = 1
M (δ(xi, ni)

+ δ(xi, κi)
). This 

elegant mathematical representation of a surface shape allows to capture the shape geometric 

details, which are larger than a fixed scale σW (standard deviation of the kernel KW). 

Representing a shape as a multi-directional varifold has several appealing properties. First, it 

captures complex shape patterns through exploring its local neighborhood in comparison to 

conventional cortical measures (e.g., cortical thickness) used in [4, 5]. Second, it allows to 

perform shape matching without the need to establish point-to-point correspondence 

between two shapes. Last, it embeds shapes into a vector space, where operations on shapes 

(e.g., addition, substraction) can be easily performed.

Since each shape is measured longitudinally at different timepoints t ∈ [0, T], we estimate 

its evolution trajectory through deforming the baseline multidirectional varifold S0
k onto a set 

of target multidirectional varifolds { S1
k, …, ST

k } respectively observed at different timepoints. 

To do so, we model this longitudinal shape deformation from baseline as a minimization 
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problem [17]: J
W∗ = 1

2∫ 0
1‖vt‖V

2 dt + γ∑ j ∈ {1, …, T}‖St j
k − ϕ(S0

k, t j)‖
W∗
2

, where γ represents a 

trade-off between the deformation smoothness energy and the similarity between ground-

truth and deformed shapes. ϕ(x, t), t ∈ [0, 1] represents a smooth invertible deformation (i.e., 

diffeomorphism), fully defined by a set of Nz control points zi and their attached initial 

deformation momenta αi. vt denotes the estimated smooth shape deformation velocity field, 

which belongs to a reproducing kernel Hilbert space V, spanned by Gaussian kernel KV with 

standard deviation σV, and is defined at a location x and timepoint t as: 

v(x, t) = ∑i = 1
Nz KV(x, zi(t))αi(t).

Shape and growth brain networks estimation for each subject

To compare two cortical ROIs Ri and Rj in morphology, we compute the multidirectional 

varifold distance between them: dW*(Ri, Rj) = ||Ri − Rj||W*, where Mi is the number of 

meshes for Ri and accordingly Mj for Rj. Through computing multidirectional varifold 

similarity between pairs of ROIs, we generate the shape brain network (Fig. 1–B). To build 

the growth brain network that captures the relationship between cortical ROI-based 

developmental trajectories over a specific time-window t ∈ [0, T], we first compute the mean 

spatiotemporal velocity ṽ(x, t), t ∈ [0, T] over all vertices in each cortical region of interest. 

Next, to quantify the similarity in growth patterns between two cortical ROIs, we compute 

Pearson correlation coefficient between the mean spatiotemporal velocity signals of both 

ROIs.

The morphome and the kinectome

To generate the morphome for a set of individuals, we integrate their shape brain networks 

using the recently developed nonlinear similarity network fusion (SNF) method by [16]. 

Since SNF well captures shared traits between networks and is also robust to noise and data 

heterogeneity [16]. On the other hand, to generate the kinectome, we simply average the 

growth brain networks of different individuals in the population. Note that for merging 

growth networks we did not use the non-linear fusion method which inherently computes the 

correlation between subjects since growth networks are computed using Pearson correlation. 

To further identify strong ‘morphological’ connections between ROIs at a fixed common 

timepoint, we sparsify the morphome at Ps%. Hence, the morphome is transformed into a 

weighted sparse network. Analogously, by sparsifying the kinectome at Ps%, we highlight 

strong positive kinetic correlations between different ROIs. This identifies anatomical 

regions that dynamically develop similarly. Notably, unlike the morphome, which captures 

shape characteristics at a fixed timepoint, the kinectome is estimated based on shape 

evolution trajectories across successive observation timepoints. Hence, the kinectome 

encodes dynamic shape information.

Investigating shape-growth connectional relationship

To explore the relationship between shape and growth trends in a specific population of Ns 

individuals, we first compute Pearson correlation between Ns growth and shape networks, 

then identify statistically significant differences using paired t-test.
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3. EXPERIMENTS AND DISCUSSION

Dataset and Parameter Setting

We evaluated our proposed shape and growth connectomic tools on Ns = 23 infants, each 

with longitudinal reconstructed left and right cortical surfaces at around birth, 3, 6, 9 and 12 

months of age. Each cortical surface was parcellated into 35 cortical regions. For 

multidirectional varifold surface representation, we set σW = 5 for the shape kernel KW, σV 

= 25 for the deformation kernel KV, and γ = 0.001 for the energy JW* [15]. To estimate 

sparse morphome and kinectome, we set the sparsification threshold to Ps = 15% as 

suggested in the field of connectomics [18].

Insights into connectomic brain development

To analyze both estimated neonatal morphome and postnatal kinectome, we sparsified both 

network atlases at 15%. The outputted sparse connectivity matrices are displayed in Fig. 2 

for both left and right hemispheres. While the morphome pinpoints pairwise cortical 

connections between ROIs with strongly similar morphology (Fig. 2–A and C), the 

kinectome identifies connections between ROIs with strongly correlated kinetic evolution 

patterns (Fig. 2–B and D). Further, for each cortical region in the right hemisphere, we 

summed its corresponding row and column values in the morphome matrix, thereby 

revealing in both hemispheres hubs or highly connected nodes of cortical regions that 

densely ‘wired’ to morphologically most similar cortical regions such as the inferior parietal 

cortex, postcentral gyrus, precentral gyrus, rostral middle frontal gyrus, superior frontal 

gyrus and superior parietal cortex. The left morphome additionnally included the lateral 

occipital cortex. Most of these were located in the back of the frontal lobe such as the 

precentral gyrus and the parietal lobe such as the inferior and superior parietal cortices. 

Interestingly, it was reported in [19] that the structural regional co-variance within the 

frontal-parietal network is particularly strongly determined by genetic factors. This may 

explain the dense morphological ‘wiring’ of these hubs that ‘influence’ the morphology of 

different cortical regions.

Similarly, for both left and right kinectomes, we identified cortical regions with more kinetic 

connections with other cortical regions that elicit similar developmental trajectories, such as 

the entorhinal cortex, lateral occipital cortex, lateral orbitofrontal cortex and pars orbitalis. 

Additionally, the right kinectome also included the lingual gyrus, superior temporal gyrus 

and insula cortex, which indicates that more cortical regions in the right kinectome develop 

more similarly. The present data support heterochronic development in human cerebral 

cortex where the speed of growth varies with time across different regions as shown in Fig. 

1–A and demonstrated using the growth brain network. The disparity in the identified 

cortical regions between the left and the right kinectomes (Fig. 2) may be attributed to 

developmental asynchronies of two hemispheres. Indeed, the left hemisphere matures more 

slowly than the right hemisphere [20]. This can also be interpreted in the light of the 

dynamics of signaling from one developing tissue to another or receiving the simultaneous 

signaling from multiple cortical regions, which can also explain the synchronized maturation 

of different cortical regions (i.e., their developmental trajectories are highly correlated) [19]. 

Unlike the morphome, which involved regions in primarily the frontal lobe and was quite 
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consistent between hemispheres, the kinectome exhibited sparser connections linking 

regions in different lobes, which largely differed between both hemispheres.

Insights into neonatal shape and postnatal growth relationship

Fig. 3 plots Pearson correlation coefficient between shape and growth networks in 35 

cortical regions. For both left and right hemispheres, ~ 20% of the cortical regions had a 

statistically significant high correlation between their shape and growth networks in our 

cohort (r > 0.4, p ≪ 0.001). These included bilateral superior temporal sulcus, caudal middle 

frontal gyrus, fusiform gyrus, inferior parietal cortex, inferior temporal gyrus and isthmus 

cingulate cortex, along with the right anterior cingulate cortex –mainly belonging to the 

temporal, frontal and limbic lobes. This might indicate that similar cortical regions develop 

similar growth trends during the first year of postnatal development. Clearly, both cortical 

hemispheric developments are marked by correlated and anti-correlated shape-velocity 

behaviors largely consistent across cortical regions, where distinctive cortical areas exhibited 

highly significant correlation values.

We would like to point out that although our analysis identified similar cortical regions that 

displayed coherent similar growth across subjects, these need to be validated in larger 

neonatal longitudinal datasets, which highlights the need to amass more MRI infant data. 

Moreover, our findings motivate new theories with regard to neonatal shape-growth 

characteristics and compel researcher to further explore our observations in large neonate 

and infant neurodevelopmental datasets with a denser distribution of acquisition timepoints. 

The model presented here is a highly promising starting point, given that it can be 

generalized to different complex shapes and allows to examine the spatiotemporal dynamics 

of shapes as well as quantifying their high-dimensional (here 3D) morphology. Besides, it 

will be more intriguing to interpret our findings in the light of multiple covariates such as 

stress during development [21], and also cortical genomic networks since brain shapes are 

heritable [22].

4. CONCLUSION

We proposed novel connectomic tools to examine shape and growth brain connectivity using 

longitudinal MRI T1-w/T2-w sequence. We applied our tools to developing cortical surfaces 

from birth till 12 months of age, which gave us compelling insights into cortical shape, 

growth, and their relationship. Our tools are generic and can be utilized to examine any 

anatomical shape development (e.g., hippocampus atrophy in dementia). The proposed 

morphome and kinectome can be easily aggregated with functional and structural 

connectivity networks to get a more comprehensive understanding of brain development as 

well as to detect, model and classify anatomical shape abnormalities in future works.
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Fig. 1. Construction of shape and growth brain network atlases: the morphome and the 
kinectome
(A) Estimating the deformation of the left hemisphere using the varifold-based regression 

model from birth till 12 months of age (right hemisphere at 12-month kept static for 

comparison). (B) For each neonate, we generate a shape brain network that encodes 

similarity in shape between pairs of cortical regions using the multi-directional varifold 

metric [15], then we integrate all shape networks using non-linear similarity network fusion 

[16] into a shape network atlas or a morphome. (C) For each infant, we generate a growth 

brain network that quantifies the correlation between developmental trajectories (from birth 

to 1 year-old) of pairs of cortical regions using the multi-directional varifold regression 

model, then we average all growth networks into a growth network atlas or a kinectome.
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Fig. 2. The estimated neonatal morphome and postnatal kinectome sparsified at 15% for both 
left and right hemispheres
Each node in the circular graph denotes a cortical region. Region names are included in Fig. 

3.
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Fig. 3. Exploring the relationship between shape and growth brain networks
We compute Pearson correlation coefficient between shape and growth networks in 35 

cortical regions in our cohort. * denotes p < 0.05 and ** denotes p ≪ 0.001.
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