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Abstract
Understanding the way in which groups of cortical neurons change their individual and mutual
firing activity during the induction of general anesthesia may improve the safe usage of many
anesthetic agents. Assessing neuronal interactions within cell assemblies during anesthesia may be
useful for understanding the neural mechanisms of general anesthesia. Here, a point process
generalized linear model (PPGLM) was applied to infer the functional connectivity of neuronal
ensembles during both baseline and anesthesia, in which neuronal firing rates and network
connectivity might change dramatically. A hierarchical Bayesian modeling approach combined
with a variational Bayes (VB) algorithm is used for statistical inference. The effectiveness of our
approach is evaluated with synthetic spike train data drawn from small and medium-size networks
(consisting of up to 200 neurons), which are simulated using biophysical voltage-gated
conductance models. We further apply the analysis to experimental spike train data recorded from
rats’ barrel cortex during both active behavior and isoflurane anesthesia conditions. Our results
suggest that that neuronal interactions of both putative excitatory and inhibitory connections are
reduced after the induction of isoflurane anesthesia.
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I. Introduction
General anesthesia is a drug-induced state of reversible coma that is essential for performing
most surgeries and many medical procedures [3]. In the United States, nearly 60,000
patients receive general anesthesia each day for surgical and medical procedures [1].
However, despite its ubiquity, the mechanisms by which anesthetic drugs induce the state of
general anesthesia remains largely unknown. Developing a detailed understanding of these
mechanisms may have significant functional implications for improved anesthesia practice,
such as the design of safer drugs, or alternate methods of drug-delivery [3]. The study of
general anesthesia from a systems neuroscience perspective is an approach that holds
promise, using in vivo brain recordings to identify and assess alterations in neuronal
circuitry during different conscious states. Previous investigations have used either non-
invasive EEG or fMRI recordings to analyze the neural responses during general anesthesia
(e.g., [7], [8], [13]).

Here, we focus on the problem of assessing functional connectivity of cell assemblies before
or during general anesthesia using invasive spike train recordings. For this purpose, we
apply a previously proposed point process generalized linear model (PPGLM) and
variational Bayes (VB) algorithm [5], [6] to infer the neural interactions between population
of neurons in a simulated network of size up to 100 neurons. The accuracy of our estimation
results is validated on multivariate spike train data generated from a biophysical neuronal
model under the baseline and anesthesia-like conditions. We further extend our analysis to
experimental spike train data recorded from rats’ barrel cortex during both active behavior
and isoflurane (inhalational) anesthesia conditions.

II. Methods
A. A Point Process Network Likelihood Model

A point process is a stochastic process with 0 and 1 observations. For the cth point process,

let  denote the observed response variables during a (discretized) time
interval [1, T], where  is an indicator variable that equals to 1 if there is a spike at time t
and 0 otherwise. Therefore, multiple neural spike train data are completely characterized by

a multivariate point process . To model the spike train point process data, we used
the following logistic regression model with the logit link function. Specifically, let c be the
index of target neuron, and let i = 1, … C be the indices of trigger neurons. The Bernoulli
(binomial) logistic regression PPGLM is given by

(1)

where dim(βc) = d + 1 (where d = C × K) denotes total number of parameters in the

augmented parameter vector , and x(t) = {x0, xi, t−k}. Here, x0 ≡ 1 and xi, t−k
denotes the spike count from neuron i at the kth time-lag history window. Since the spike
count is nonnegative, therefore xi, t−k ≥ 0. Alternatively, we can rewrite (1) as

(2)

which yields the probability of a spiking event at time t. It is seen from (2) that the spiking
probability πt is a logistic sigmoid function of βcx(t); when the linear regressor βcx(t) = 0, πt
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= 0.5. Note that βcx (t) = 0 defines a (d + 1)-dimensional hyperplane that determines the
decision favoring either πt > 0.5 or πt < 0.5.

Equation (1) essentially defines a spiking probability model for neuron c based on its own
spiking history, and that of the other neurons in the ensemble. It has been shown that such a
simple spiking model is powerful in inferring the functional connectivity among neuronal
ensembles [4], [12], and in predicting single neuronal spikes from humans and primates
based on collective population neuronal dynamics [15]. Here,  can be interpreted as
the baseline firing probability of neuron c. Depending on the algebraic (positive or negative)

sign of the coefficient ,  can be viewed as a “gain” factor (dimensionless, > 1 or
< 1) that influences the current firing probability of neuron c from another neuron i at the

previous kth time lag. A negative value of  will strengthen the inhibitory effect and move

πt towards the negative side of the hyperplane; a positive value of  will enhance the
excitatory effect, thereby moving πt towards the positive side of the hyperplance. Using this
method, two neurons are said to be functionally connected if any of their pairwise
connections is nonzero (or the statistical estimate is significantly nonzero).

Let θ = {β1, …, βC} be the ensemble parameter vector, where dim(θ) = C(1 + d). By
assuming that the ensemble neuronal spike trains are mutually conditionally independent,
the network log-likelihood of C-dimensional spike train data is given by [12]:

(3)

Note that the index c is uncoupled from each other in the network log-likelihood function,
which implies that we can optimize the function L(βc) separately for individual spike train

observations . For simplicity, from now on we will drop off the index c at notations 
and βc when no confusion occurs.

B. Hierarchical Bayesian Modeling and VB Inference
It is known that maximum likelihood inference is prone to over-fitting by using a complex
model. To address this issue, instead of maximizing the log-likelihood log p(y|x, β), we aim
to maximize the marginal log-likelihood log p(y|x) or its lower bound L̃

(4)

where p(β|α) denotes the prior distribution of β, specified by the hyperparameter α. The
variational distribution has a factorial form such that q(β, α) = q(β)q(α), which attempts to
approximate the posterior p(β, α|y). This approximation leads to an analytical posterior form
if the distributions are conjugate-exponential. The use of hyperparameters within the
hierarchical Bayesian estimation framework employs a fully Bayesian inference procedure
that makes the parameter estimate less sensitive to the fixed prior (unlike the empirical
Bayesian approach) [14]. In our previous study [6], it was found that the VB approach
produced excellent performance while dealing with sparse spiking data.

Specifically, we assume the following hierarchical Bayesian structure for the PPGLM [5],
[6]:
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where  and A = diag {α} ≡ diag {α0, …, αd}.
Here, we fix the hyperparameter as μ0 = 0 to favor a sparse solution.

Let ξ = {ξt} denote the data-dependent variational parameters (that are dependent on the
input variables {xt}). In light of the variational approximation principle [10], one can derive
a tight lower bound for the logistic regression likelihood, which will be used in the VB
inference. Specifically, applying the VB inference yields the variational posteriors q(β|y) and
q(α|y):

(5)

(6)

which follow from updates from conjugate priors and posteriors for the exponential family
(Gaussian and Gamma distributions). The derivations of {μT, ΣT} and {aT, bj, T} in
equations (5) and (6) are given in [5]. The term p̃(β, ξ) appearing in (5) denotes the
variational likelihood bound for logistic regression:

(7)

where σ(·) is a logistic sigmoid function. The variational likelihood bound at the right-hand
side of (7) has a quadratic form in terms of β, and therefore it can be approximated by a
Gaussian likelihood. We can also further derive the variational lower bound of marginal log-
likelihood L̃. (see [5]). The VB inference alternately updates (5) and (6) to monotonically
increase L̃. The criterion for algorithmic convergence is set until the consecutive change of
L̃ is sufficiently small. Upon completing the VB inference, the confidence bounds of the
estimates can be derived from the posterior mean and the posterior variance.

C. Measuring Goodness-of-fit of the Model
The goodness-of-fit of the point process models estimated from all algorithms is evaluated
based on the Kolmogorov-Smirnov (KS) test [6]. The KS statistics are used to measure the
maximum deviance between the empirical cumulative distribution function (cdf) of the time-
rescaled data and the theoretical uniform cdf. If the curve falls within the 95% of the
confidence intervals (CIs) of the KS plot, it suggests that the model has a sufficiently
accurate characterization of the spike train data. In simulation studies, in addition to the KS
test, we also compute the mis-identification error rate, which is the sum of the the false
positive (FP) and false negative (FN) rates.

III. Data And Results
A. Simulations

In simulating a neuronal network with excitatory pyramidal cells and inhibitory
interneurons, we used the single-compartment voltage-gated conductance models of the
Hodgkin-Huxley type [9]. Specifically, the membrane potential of each cell is governed by a
system of nonlinear differential equations of the form [11]:

(8)
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where Iion, Isyn and Iapp denote, respectively, the ionic, synaptic and external applied
currents specific to each cell, and cm is the membrane capacitance. Ionic currents are
induced by the flow of charged particles across the cell membrane and are described by the
equation

(9)

where  and . The parameters g̅x and Ex are constant, while p
and q are non-negative integers. The term g̅xmphq is the ionic conductance and determines
the behavior of the current as the voltage deviates from equilibrium. The most common
ionic currents are related to the flow of sodium and potassium, which are responsible for
generating action potentials (i.e., spikes). In addition, connectivity between neurons is
established through the synaptic currents Isyn. Two such currents are considered herein: the
excitatory AMPA current (IAMPA) and the inhibitory GABAA current (IGABA). Both are
described by an equation of the form

(10)

where s is an activation variable that depends on the voltage of the presynaptic cell υpre, and
Es is a constant. Since the simulated network is of limited size, each cell receives a current
Iapp that mimics the exogenous excitatory background drive that would be present in vivo. It
is assumed that each pyramidal cell excites some subset of interneurons, and each
interneuron makes reciprocal inhibitory synapses onto a subset of pyramidal cells (see Fig. 1
right panel and Fig. 2b and 2c for the synaptic connectivity maps).

Two networks were constructed as follows. The first network was simulated at only a
baseline state, while the second network was simulated at both baseline and anesthesia
states. To simulate the anesthesia-like state we made parametric changes that are consistent
with the molecular targets of well-known drugs. For instance, the general anesthetic drug
propofol acts by potentiating the GABAA synaptic current [2]. In our simulation, we
accounted for this effect by making a threefold increase in the synaptic conductance g̅ in the
decay dynamics of s(υpre) in equation (10) [7], [11].

Setup-1: The first simulation is a small network of 14 cells, with 10 pyramidal neurons (i.e.,
regular-spiking, or RS cells) and 4 interneurons (i.e., fast-spiking, or FS cells). The
simulation length is 2 minutes, with sampling rate 1 kHz. The mean±SD firing rates of the
pyramidal neurons and interneurons are 3.86±0.18 Hz and 20.31±0.41 Hz, respectively. The
spike rasters and the synaptic connectivity map are shown in Fig. 1.

Setup-2: The second simulation is a medium network of 200 cells (180 RS cells and 20 FS
cells). In order to imitate a realistic recording condition where only a small portion of
population neurons can be accessed, we randomly selected 25 cells (i.e., 1/8 of the
population) that consist of 20 RS cells and 5 FS cells. A total of 5-min data were generated,
with sampling rate 1 kHz. Specifically, the averaged firing rates during baseline (anesthesia)
are 3.3 (2.1) Hz and 15.5 (3.9) Hz for the RS and FS cells, respectively. Summary of
neurons’ firing rates and synaptic connectivity maps from two states are shown in Fig. 2.

In modeling the spike train data in these simulation studies, the spikes were binned with 1-
ms resolution. We selected six firing history temporal windows that consist of the spike
counts in the past 1–3, 4–8, 9–15, 16–25, 26–40, 41–60 ms. As a general rule, we set the
hyperprior parameters to a0 = 10−3, b0 = 10−3 for FS cells, and a0 = 10−2, b0 = 10−4 for RS
cells. Because neuronal spiking activity was assumed to be conditionally independent,
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individual neurons were fit with separate PPGLMs, followed by a KS test. To create a
functional map of inferred neuronal interactions, two cells are said to be interacting if there
is a nonzero (in the statistically significant sense) spiking dependent coefficient (at any time
lag) between a trigger cell and the target cell. To determine the “functional” connection
being excitatory or inhibitory, we counted the majority of the nonzero coefficients at all six
time lags—if the majority of the coefficients are greater than 0, or there are more positive
connections than negative connections, then the trigger cell is concluded to have an
excitatory connection to the the target cell. A similar rule holds for the inhibitory
connection.

In the experiment setup-1, The estimation accuracy of the inferred connection map is 94.9%.
Checking the estimation errors showed that most errors were induced by FP: a few weak
connections between some pyramidal cell pairs were mistakenly identified.

In the experiment setup-2, we first investigated the baseline condition. We have tested the
impact of the data length to the estimation accuracy. Using 1-min, 2-min, and 5-min
recordings, it was found that the mis-identification (FP+FN) error rates were 16.5%
(99/600), 14.7% (88/600), 12.5% (75/600), respectively (the cell self-interactions were
excluded). Hence, increasing the length of the recordings improved the estimation accuracy,
but there was still a fundamental bottleneck because of the overall sparsity of the spiking
data and the limit of the statistical model. It was also found that most of (either FP or FN)
errors occurred in the RS→FS connections. By examining the results, we suspected that it
was probably due to the imbalance of the firing rates between the RS and FS cells, since a
low-spiking RS cell would likely be mistakenly estimated with an inhibitory effect on the FS
cell (which causes FP). The FN error might be either because of the lack of sufficient
spiking data, or because of the insufficient detectability of the model (in terms of the
window size and length) or the inaccurate assumption of statistical model. Next, the
simulated anesthesia-like condition are investigated. Using the full 5-min recordings
(Anesthesia-1), the obtained mis-identification error rate was 18.9% (113/600). Therefore,
the reduction of ensemble firing rates increased the sparsity level of the spiking data and
consequently caused an increase of the FP/FN error (even the KS plot still falls within the
95% CIs). To further investigate the impact of the firing rate on the estimation accuracy, we
fixed the network connectivity and data length, and further reduced the cell firing rates
(~20% reduction at the population level; Anesthesia-2). In this case, we observed an
increased mis-identification error rate (23.3%, 140/600). See Table I for a summary of the
results.

B. Experimental Data
The spike train data were recorded from the barrel cortices of two rats during active
behavior (maze running) and during the administration of isoflurane anesthesia.
Experimental protocol details are referred to [16]. Recordings from two rats at two days
were used here, each with about 25–30 min recording time during run or anesthesia. For
consistency, we used 20-min recordings for each rat for both run and induction of anesthesia
(excluding the first 5 min data) conditions. The depth of anesthesia was assessed by
breathing rate and the hindpaw withdrawal reflex. When the depth of anesthesia was
reached, the delivery of isoflurane was stopped. The same cells were tracked through the
active behavior and anesthesia. Classification of cell types (RS vs. FS) were determined by
the firing rate and the peak-to-trough width [16]. Snapshots of spike train recordings from
one rat are shown in Fig. 3. Summary statistics of the experimental data are shown in Table
II.

The spike trains were binned with 2-ms resolution. Considering the large variability of firing
rates and inter-spike intervals (ISIs) across all neurons, to account for low firing rates we
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used five firing history windows that consist of the spike counts in the past 1–100, 101–200,
201–500, 501–1000 ms. No extra sensory or behavior covariate was used for fitting the
spike train data during active behavior or induction of anesthesia. The hyperprior parameters
a0 = 10−3, b0 = 10−4 are chosen for PPGLM fitting (but the results are insensitive to these
hyperprior values). Due to imbalance of firing rates and high irregularity of ISIs, none of
PPGLM fit fell within the 95% CIs of the KS plots. This might also be due to the
insufficiency of the covariates used in our PPGLM, given the potentially non-stationary
nature of the spike dynamics (e.g., large chunks of burst suppression periods) within the 20-
min timescale. Based on the similar methodology in simulations, we inferred the functional
connectivity of the cell assemblies. Results are shown in Fig. 4. As seen, the neuronal
interactions (mostly RS-RS connections) among cell assemblies reduced from the active
behavior to the induction of anesthesia. Specifically in Rat 2, the dominant inhibitory effect
of one FS cell (#6 in Fig. 4c) was suppressed by the isoflurane, which further induced some
excitatory or inhibitory interactions among other cells (Fig. 4d). Note that based on our
experimental data, the inferred functional connectivity of neuronal ensembles during active
behavior was rather low in both animals (Fig. 4a,c). This might be due to the fact that many
recorded neurons were indeed physically far apart (resulting in a decreasing chance of
connectivity) because of the placement of electrodes at different layers of the barrel cortex.

IV. Discussion and Future Work
In this paper, we have used a PPGLM to assess the neuronal interactions of cell assemblies
during baseline and anesthesia. By first testing on the synthetic data generated by
biophysical neuronal models, our statistical model shows reasonably good estimation results
on the neuronal interactions among cell assemblies. In the simulation study, it is observed
that the reduction of neuronal firing rates pose a challenge in accurately estimating the
network functional connectivity. Therefore, improving the detection accuracy and
robustness in the presence of sparse spiking data requires more research effort in future
investigation. In the real data analysis, it is observed that the interactions of RS-RS and FS-
RS cells decreased after the induction of isoflurane anesthesia. As a future goal, we will
apply the methods developed here to more experimental spike train data recorded from
animals under different anesthetic drugs. Our approach suggests a way to characterize the
effects of anesthestic drugs on single neurons and neuronal ensembles.
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Fig. 1.
The 5-s snapshot of spike rasters of 14 cells and their synaptic connectivity map. Cells #1–
10 are pyramidal cells, and Cells #11–14 are interneurons. Red/blue color at (i, j)-entry
implies the presence of an excitatory/inhibitory synaptic connection from Cell i to Cell j.
Green color denotes null connection.

Chen et al. Page 9

Conf Proc IEEE Eng Med Biol Soc. Author manuscript; available in PMC 2013 November 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
The average firing rates of selected 25 cells (a) and the synaptic connectivity maps that were
used to generate spike trains during baseline (b) and general anesthesia (c). Cells #1–20 are
pyramidal cells, and Cells #21–25 are interneurons. Anesthesia-1 and Anesthesia-2 are two
simulated conditions with the same network connectivity but different firing rates.
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Fig. 3.
Snapshots of 1-min raster plots of 13 RS cells recorded from barrel, cortex (Rat 1) during
maze running (left) and induction of anesthesia (right).
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Fig. 4.
Inferred functional connectivity maps for two rats during active, behavior (a,c) and
induction of anesthesia (b,d).
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TABLE I

Summary of Setup-2 results based on 5-min simulated data.

Condition Ave. firing rate (RS/FS) Error rate

Baseline 3.3/15.5 Hz 12.5% (75/600)

Anesthesia-1 2.1/3.9 Hz 18.9% (113/600)

Anesthesia-2 1.6/3.1 Hz 23.3% (140/600)
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TABLE II

Summary statistics of real spike train data.

Median of ave. firing rate (Hz) of all cells

# cells (RS/FS) maze running isoflurane anesthesia

Rat 1 13 (13/0) 2.68 0.49

Rat 2 8 (7/1) 5.40 2.27
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