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Abstract—Meta-learning is a powerful learning paradigm in
which solving a new task can benefit from similar tasks for
faster adaption (few shot learning). Stochastic gradient descent
(SGD) based meta learning has emerged as an attractive solution
in the few-shot learning. However, this approach suffers from
significant computational complexity due to the double loop and
matrix inversion operations which incurs a significant amount of
uncertainty and poor generalization. To achieve lower complexity
and better generalization, in this paper, we propose MetaBayes, a
novel framework that views the original meta learning problem
from a Bayesian perspective where the meta-model is cast as
the prior distribution and the task-specific models are viewed
as task-specific posterior distributions. The objective amounts
to jointly optimizing the prior and the posterior distributions.
With this, we obtain a closed-form expression to update the
distributions at every iteration, to avoid the high computation
cost issue of SGD based meta learning, and produce a more
robust and generalized meta-model. Our simulations show that
tasks with few training samples achieves higher accuracy when
MetaBayes prior distribution is used as an initializer compared
to the commonly-used Gaussian prior distribution.

I. INTRODUCTION.

Humans are capable of inferring new information from very
limited samples [1] owing to the innate ability of extracting
related knowledge from previous tasks for faster learning on
novel tasks. This methodology is known as learning to learn
or meta-learning [2]. Meta-learning has recently received great
attention as a powerful solution to few-shot learning problem
[3]. This is mainly due to the fact that learning from limited
data with zero prior knowledge results in poor performance,
unlike the case when a learning algorithm is able to reuse
previously acquired related knowledge. Specifically, model-
agnostic meta-learning (MAML) algorithm [4] has made great
strides in this regard. MAML is a few-shot learning algorithm
which formulates the meta-learning problem as a bilevel op-
timization problem where both meta and task-specific models
are optimized. The objective is to find a meta-model that
minimizes the average validation loss over N tasks while
maintaining K SGD steps to each task-specific model which is
in the direction of the minimum training loss. Both inner and
outer level problems are solved using SGD which introduces
high computation cost in the step of updating the meta model
where matrix manipulation is required. Although, MAML can
achieve fast adaptation to a new task with a few samples,
it incurs significant computations, and ignores uncertainty
quantification, which makes it brittle.

Uncertainty quantification presents a critical component for
enabling mission-critical applications such as healthcare and
autonomous vehicles. In this regard, existing meta-learning
algorithms overlook model uncertainty since they train a meta-
model in a deterministic fashion which may not generalize
well to new coming tasks. Moreover, starting from a deter-
ministic model and running a few shot learning with very
limited samples per task may further increase uncertainty.
For example, the authors in [5] showed that existing few-
shot learning algorithms tend to overfit. Therefore, a robust
meta-learning algorithm that is able to intrinsically deal with
such uncertainty is needed. To this end, Bayesian learning is
a promising technique to obviate this issue [6]–[8]. Not only
it offers robustness towards overfitting and uncertainty esti-
mation, but it also enables efficient learning in the small data
regime. [6], [9]. Hence, a Bayesian view of few-shot meta-
learning approach presents a logical step towards achieving
robustness.

Motivated by the above, in this paper we propose,
MetaBayes, a Bayesian meta-learning framework in which
each agent learns a task-specific posterior distribution for its
own task, and where all tasks collaborate to jointly optimize
a global prior distribution to produce a meta-prior distribu-
tion that can be used by new tasks for faster learning. In
fact, MetaBayes serves not only as a generalization and a
robust approach for meta-learning but it also serves as a
promising solution for learning informative Bayesian priors.
Generally, Bayesian learning encounters challenges related to
the intractability of estimating the posterior distributions, and
choosing an informative prior. Variational inference is intended
to address the first challenge [9]–[11], nevertheless, limited
work has addressed the problem of inferring a suitable prior
distribution [12]. Hence, most works in Bayesian learning
assume a naive zero-centered Gaussian distribution which re-
sults in bad generalization and inaccurate uncertainty etimates,
when training over scarce data [13]. In contrast to this prior art,
MetaBayes framework extracts the shared knowledge from the
set of existing tasks to form an informative prior to be used by
new tasks, offering a principled approach to learn informative
Bayesian priors.

Specifically, we propose a joint objective function with
respect to tasks’ posterior distributions and the meta-prior
distribution. The intution behind the objective is to find the
optimal posterior and prior distributions that minimize the
Kullback-Leibler (KL) divergence between the true generating
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likelihood functions and the tasks’ likelihood function. The
problem is solved analytically using alternating minimization,
in which tasks optimize their own task-specific posterior inde-
pendently over their own training datasets. Subsequently, tasks
collaborate to learn a shared informative prior distribution. In
our work, we derive a novel closed-form formula for updating
the global prior distribution.

The rest of the paper is organized as follows. In section II,
we introduce the system model and problem formulation. In
section III, we describe our alternating minimization based
algorithm to solve the proposed optimization problem. In
section IV, we introduce and discuss our simulation results.
Lastly, we conclude the paper in section V.

Notation: We use boldface lowercase symbol for vectors
s, and boldface uppercase symbol for matrices S. In addi-
tion, we refer to the KL divergence between two probability
distributions as DKL(Pr||P ′r) such that (Pr, P

′
r) ∈ ∆R where

∆R denotes a set of prabability distributions. Moreover, for
simplicity, and without loss of generality, we discretize the
parameter space Θ with K representative points. Lastly, if a
probability distribution is denoted as p, then [p]k and p(θk)
denote interchangeably the probability at θk.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a set M = {1, 2, ...,M} of M tasks where each
task i ∈ M holds a local dataset Di = {(x, y)|x ∈ Xi, y ∈
Yi} of cardinality Di where Xi is the local instance space at
task i, and Yi is the local set of all possible labels. Each task
i generates input-label samples according to a probabilistic
model with distribution Pi(x)fi(y|x). Task i’s local samples,
Xi = {x(1)

i ,x
(2)
i , ...,x

(Di)
i }, are assumed to be independent

and identically distributed (i.i.d).
Each task i ∈ M aims to learn the true parameter for its

own dataset; i.e. to learn θ∗i ∈ Θ where Θ = {θ1, θ2, . . . , θK}
denotes a finite set of possible states. It is also assumed that
each task i holds a set of local likelihood functions of the
labels {li(y|x, θk)|y ∈ Yi,x ∈ Xi, θk ∈ Θ}. Furthermore, we
denote the posterior distribution of task i over parameter θ at
time t ≥ 0 by µti ∈ ∆Θ where ∆Θ is a probability distribution
over the set Θ.

Assumption 1. All tasks i ∈M start with a prior distribution
µ0 such that at time t = 0, [µ0

0]k > 0, ∀θk ∈ Θ.

Assumption 1 is necessary to rule out the degenerate case
where zero Bayesian prior prevents learning.

Definition 1. Let [µti]∗ denotes task’s i posterior distribution
at time t at task’s i true parameter θ∗i . Under Assumption
1, task i ∈ M asymptotically learns the true parameter for
its dataset θ∗i on a path (X

(t)
i ,y

(t)
i )
∞
t=1 if along that path

limt→∞[µti]∗ = 1.

In other words, tasks assign probability one to their true
parameters θ∗i [14]. Definition 1 implies that the true labeling
function fi(y|x) is equivalent to li(y|x, θ∗i ) since the op-
timal posterior distribution takes value one at θ∗i and zero

elsewhere. The goal of each task i is to learn a parame-
ter θk that makes its likelihood distribution li(y|x, θk) as
close as possible to its true likelihood function li(y|x, θ∗i ).
To measure the divergence between both distributions, we
use DKL (li(y|x, θ∗i )||li(y|x, θk)) which represents the tasks’
local relative entropy. To this end, we cast the following
optimization problem,

minimize
{θk}∈Θ

M∑
i=1

Ex∼Pi(x)DKL

(
li(y|x, θ∗i )||li(y|x, θk)

)
(1)

The above objective is convex with respect to θk.

Lemma 1. The problem of minimizing the KL divergence DKL

between two distributions w.r.t θ is equivalent to the problem of
maximizing the expectation of the logarithm of one distribution
with respect to the other one. i.e.,

min
θk∈Θ

DKL (l∗i ||li) = min
θ∈Θ
{Ey∼l∗i (log l∗i )− Ey∼l∗i (log li)}

(2)
= max

θ∈Θ
Ey∼l∗i (log li) , (3)

where li = li(y|x, θk) and l∗i = li(y|x, θ∗i ). The term
Ey∼l∗i (log l∗i ) in (2) is ignored since it is not a function of
the estimated parameter θ.

Using Lemma 1, equation (1) can be recast in terms of the
model parameter as follows:

maximize
{θk}∈Θ

M∑
i=1

Ex∼Pi(x) Ey∼l∗i
(

log(li(y|x, θk)
)
. (4)

The Maximum Likelihood Estimation (MLE) problem pre-
sented above can be casted as an optimization problem over
the prior and posterior distributions by reformulating it as an
inner product of the posterior vector µi

1 and expectation of
log likelihood [14] as follows:

maximize
{µi}∈∆Θ,µ0∈∆Θ

M∑
i=1

µi
T (µ0)Ex∼Pi(x) Ey∼l∗i

(
log(li(y|x)

)
,

(5)
where li(y|x) = [li(y|x, θ1), · · · , li(y|x, θK)]T . Problem (5)
jointly optimizes the prior distribution and each task’s pos-
terior distribution. The equivalence of (4) and (5) follows
immediately from Definition 1. In detail, the goal of problem
(4) is to find θk for each task i ∈ M that maximizes the
scalar log-likelihood log

(
li(y|x, θk)

)
; i.e. θ∗i for all i ∈ M.

Whereas the goal of problem (5) is to find the optimal posterior
distribution vector µi for all i ∈ M that maximizes the
inner product with the log-likeihood vector; i.e. the posterior
distribution µi that gives value one at θ∗i and zero elsewhere
for all i ∈M. Next, we introduce our alternating minimization
algorithm to solve the proposed optimization problem defined
in (5).

1The posterior distribution µi is in terms of the prior distribution µ0.
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III. META LEARNING VIA ALTERNATING MINIMIZATION

In this section we describe our alternating minimization
based approach to solve the proposed problem defined in (5).
We alternate between updating the tasks’ posterior distribu-
tions given the current prior distribution and updating the prior
distribution given the current posterior distributions.

A. Bayesian Posterior Distribution Estimation

Here, we optimize the objective in (5) with respect to
tasks’ posterior distributions µi given the prior distribution
µ0. However, the major challenge in optimizing this objective
lies in the fact that Ey∼l∗i (·) is unknown which means that
the true gradient of the objective cannot be computed. A
common approach to tackle the objective in (5) is to consider
the empirical average as the cost function, and solve the online
stochastic learning problem [14] as follows.

At iteration t − 1, each task i draws a mini-batch of
observations (Xt−1

i ,yt−1
i ) of cardinality B from its local

dataset Di. Hence, gt−1
i , the task i’s stochastic gradient of the

objective presented in (5) with respect to the posterior vector
µi at time t− 1 is computed as follows:

gt−1
i = log(γi(y

t−1
i |X

t−1
i )), (6)

where

γi(y
t−1
i |Xt−1

i ) =
1

B

B∑
e=1

li(y
t−1
e |xt−1

e ), (xt−1
e , yt−1

e ) ∈ {(Xt−1
i ,yt−1

i )},

(7)
represents an approximation for the likelihood in equation (5)

at time t − 1. We then employ a regularized dual averaging
scheme generating zti and µti where

zti = zt−1
i + gt−1

i , (8)

and
µti = argmin

bi∈∆Θ

{
− 〈zti, bi〉+

1

αt
ψ(bi)

}
. (9)

Note that 〈·, ·〉 represents the standard inner product. The
dual update zti, essentially integrates the stochastic gradients,
and the update in (9) projects the integration on the feasible
set while regularizing the projection using a so called proximal
function ψ(bi). To derive the Bayesian parameter estimation
from this setup at iteration t, the proximal function needs to
be the KL-divergence from the prior distribution defined as
follows [15]:

ψ(bi) = DKL(bi||µt−1
i ) =

K∑
k=1

[bi]k log
[bi]k

[µt−1
0 ]k

. (10)

By letting αt = 1 for all t, the optimization problem in (9)
can be recast as follows:

µti = argmin
bi∈∆Θ

{
−bTi zti +

∑K
k=1[bi]k log [bi]k

[µt−1
0 ]k

}
subject to [bi]k ≥ 0,

K∑
k=1

[bi]k = 1.

(11)

This optimization problem can be solved optimally and that
is formally stated in the following theorem.

Theorem 1. The optimal solution to problem (11) is given by:

[µti]k =
[µt−1

0 ]k
∏t−1
τ=0[γi(y

τ
i |X

τ
i )]k∑

θq∈Θ

[µt−1
0 ]q

∏t−1
τ=0[γi(yτi |X

τ
i )]q

. (12)

Proof. Leaving the positivity constraint implicit, we can write
(11) as the maximization of the following Lagrangian,

Li(b, λ) =bTi z
t
i −

K∑
k=1

[bi]k log
[bi]k

[µt−1
0 ]k

+ λ(bTi 1− 1)

(13)

where 1 is vector of all ones. By differentiating equation (13),
we get the following:

∂

∂[bi]k
Li(b, λ) = [zti ]k −

[
1 + log[bi]k

− log[µt−1
0 ]k

]
+ λ

= [zti ]k − log[bi]k

+ log[µt−1
0 ]k + λ− 1

= [zti ]k − log[bi]k + log[µt−1
0 ]k

+ λ− 1

∂

∂λ
Li(b, λ) = bTi 1− 1

(14)

The condition for the stationary point is,

[µti]k =
[µt−1

0 ]k
∏t−1
τ=0[γi(y

τ
i |X

τ
i )]k∑

θq∈Θ

[µt−1
0 ]q

∏t−1
τ=0[γi(yτi |X

τ
i )]q

. (15)

and this concludes the proof.

It is worthy to highlight that the denominator in equation
(15) reflects a normalization constant that does not depend on
θ which we refer to as Cti . A major challenge of calculating
the posterior distribution in (15) is the intractability of the
normalization constant Cti due to the large search space or
intractable integrals in case of continuous variables. Thus, in
these cases, we seek to approximate the posterior distribution
in (15) via variational inference. This will be discussed in
details in subsection III-C.

B. Prior Belief Optimization
In this section, we optimize the objective in (5) with respect

to the prior distribution µ0 given the current tasks’ updated
posterior distributions µti for all i ∈ M. Following the same
analysis provided in III-A, we let gt0 to be the stochastic
gradient of objective presented in (5) at time t with respect to
prior distribution µ0 as follows:

gt0 =

M∑
i=1

[
1

Cti

t−1∏
τ=0

γi(y
τ
i |X

τ
i ) log(γi(y

τ
i |X

τ
i ))

]
(16)

Then, µt0 is updated by solving the following optimization
problem:

µt0 = argmin
b0∈∆Θ

{−〈gt0, b0〉+
1

αt
ψ(b0)}, (17)
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where

ψ(b0) =

M∑
k=1

[b0]k log
[b0]k

[µt−1
0 ]k

. (18)

Setting αt = 1 for all t, we get the following:

µt0 = argmin
b0∈∆Θ

{
−bT0 gt0 +

K∑
k=1

[b0]k log
[b0]k

[µt−1
0 ]k

}

subject to [b0]k ≥ 0,

K∑
k=1

[b0]k = 1

(19)

Theorem 2. The optimal solution for problem (19) is given
by:

[µt0]k =

[µt−1
0 ]k exp

(
T∑
i=1

[
1

Cti

t−1∏
τ=0

[γτi ]k log([γτi ]k)

])
∑
θq∈Θ

(
[µt−1

0 ]q exp

(
T∑
i=1

[
1

Cti

t−1∏
τ=0

[γτi ]q log([γτi ]q)

])) ,
(20)

where
[γτi ]β = [γi(y

τ |Xτ )]β . (21)

Proof. Leaving the positivity constraint implicit, we recast
equation (19) as the maximization of the following lagrangian:

L(b0, λ) =bT0 g
t
0 −

K∑
k=1

[b0]k log
[b0]k

[µt−1
0 ]k

+ λ(bT0 1− 1).

(22)

Differentiating equation (22), we get the following:

∂

∂[b0]k
L(b0, λ) = [gt0]k −

[
1 + log[b0]k

− log[µt−1
0 ]k

]
+ λ

= [gt0]k − log[b0]k + log[µt−1
0 ]k

+ λ− 1

∂

∂λ
L(b0, λ) = bT0 1− 1.

(23)

Setting the derivatives to zero, we get

[µt0]k =

[µt−1
0 ]k exp

(
T∑
i=1

[
1

Cti

t−1∏
τ=0

[γτi ]k log([γτi ]k)

])
∑
θq∈Θ

(
[µt−1

0 ]q exp

(
T∑
i=1

[
1

Cti

t−1∏
τ=0

[γτi ]q log([γτi ]q)

])) ,
(24)

where
[γτi ]β = [γi(y

τ |Xτ )]β . (25)

and this concludes the proof.

The prior update rule in equation (24) may not produce a
closed-form distribution, so we also seek to approximate the
resulted prior distribution via variational inference.

C. Probability Distribution Approximation via Variational In-
ference

At first, we would like to point out that both µti and µt0 are
implicitly conditioned on tasks’ datasets. Hereafter, we denote
the intractable distribution by µt(θ | D) which represents both
µti in equation (15) and µt0 in equation (24). Note that

µt(θ | D) =
µt(D | θ)µt(θ)

µt(D)
. (26)

In variational inference, we approximate this intractable dis-
tribution µt(θ | D) by a variational distribution πt(θ), where
πt(θ) is restricted to belong to a family of distributions Q of
tractable form (as in Gaussian distributions), chosen with the
goal of making πt(θ) as close as possible to the true posterior
distribution µt(θ | D). The similiarity between the two distri-
butions is measured in terms of KL-divergence; hence, the
variational inference is performed by finding the distribution
πt(θ) that minimizes the KL-divergence as follows:

πt(θ) = argmin
ξ∈Q

DKL(ξ(θ)||µt(θ | D)) (27a)

= argmin
ξ∈Q

DKL(ξ(θ)||µt(θ))− Eξ(θ)
(
logµt(D | θ)

)
(27b)

The resulting cost function in (27b) is known as the variational
free energy [8] [16]. which can be minimized using gradient
descent and other various approximations. For instance, if we
let Q to be the family of Gaussian mean-field approximate
distributions, then a Gaussian variational distribution can be
approximated by employing a simple Monte Carlo to compute
the gradients using Bayes by Backprop [16].

IV. NUMERICAL EVALUATION

A. Simulation settings

In this section, we evaluate our MetaBayes framework on
a multitask linear regression scenario. We use the bodyfat
database [17] where tasks have observations of abdomen
feature x to predict bodyfat percentage. Nevertheless, different
tasks have different spectrums of abdomen feature; and each
task aims to find the best line that fits its spectrum of observa-
tions. We assume that only two tasks have sufficient observa-
tions on which we trained our initializer (meta-model) using
MetaBayes. Then, we draw 45 random tasks that only have few
training samples. We train these statistically-insufficient tasks
starting from the met-model generated by MetaBayes prior. We
also considered zero-centered Gaussian prior with an identity
covariance matrix for the comparison. In Figure 1, we plot
the Mean Squared Error (MSE) of predictions of one random
task over its test dataset under the two scenarios. Moreover,
in Figure 2, we plot the empirical cumulative distribution
function (CDF) of MSE values for the whole 45 tasks under
the two cases. Next we describe the results

B. Result discussion

In Figure 1, we compare the two scenarios of few-shot
learning for a randomly-drawn task. In the first scenario,
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the few-shot learning task starts from a MetaBayes-optimized
prior, while in the other scenario, it starts from the commonly-
used zero-centered Gaussian distribution. The figure clearly
shows that the performance of the few-shot learning task with
MetaBayes prior outperforms the performance of the same
task trained with a zero-centered Gaussian prior in terms of
accuracy and convergence speed. That is, the MetaBayes prior
gives the few-shot learning task an informative start which is
indeed needed especially when training with few samples.

This behavior is further shown in Figure 2 where we plot
the empirical CDF of the MSE values for 45 randomly-drawn
tasks trained in one experiment under a MetaBayes prior and
in the other experiment under zero-centered Gaussian prior.
This figure shows that the behavior observed in Figure 1 can
be generalized for a much larger pool of few-shot learning

tasks showing that for 80% of the tasks MetaBayes-optimized
prior achieves a loss equal or less than 15.5 while the naive
zero-centered Gaussian achieves a loss equal or less than 18.5.

V. CONCLUSION

In this paper, we proposed MetaBayes, a novel meta-
learning framework from a Bayesian perspective where we
jointly optimize a meta-prior distribution along with task-
specific posterior distributions. The proposed framework is
based on alternating minimization where two subproblems are
optimized in an alternating fashion. We propose a closed-
form expression to update the meta-prior and posterior dis-
tributions at every iteration. Our numerical evaluation shows
that tasks with few training samples achieve higher accuracy
and faster convergence when leveraging a MetaBayes learned
prior distribution compared to the zero-mean Gaussian prior
distribution.
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