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Abstract—This paper addresses the problem of joint user iden-
tification and channel estimation (JUICE) for grant-free access in
massive machine-type communications (mMTC). We consider the
JUICE under a spatially correlated fading channel model as that
reflects the main characteristics of the practical multiple-input
multiple-output channels. We formulate the JUICE as a sparse
recovery problem in a multiple measurement vector setup and
present a solution based on the approximate message passing
(AMP) algorithm that takes into account the channel spatial
correlation. Using the state evolution, we provide a detailed
theoretical analysis on the activity detection performance of
AMP-based JUICE by deriving closed-from expressions for the
probabilities of miss detection and false alarm. The simulation
experiments show that the performance predicted by the theoret-
ical analysis matches the one obtained by the numerical results.

Index Terms—mMTC, activity detection, AMP, spatial corre-
lation.

I. INTRODUCTION

Grant-free access is as a key enabler for massive machine-
type communications (mMTC) in order to support connec-
tivity to a large number of users with sporadic activity and
small signalling overhead requirements [1]. In contrast to the
conventional scheduled access, mMTC with grant-free access
allows the active users, referred to herein as user equipments
(UEs), to directly transmit information along with their unique
signatures to the base station (BS) without prior scheduling,
thus, resulting in collisions which is solved at the BS through
joint user identification and channel estimation (JUICE).

Motivated by the sparse user activity pattern, several sparse
recovery algorithms have been proposed to solve the JUICE
such as, approximate message passing (AMP) [2]–[6], sparse
Bayesian learning (SBL) [7], mixed-norm minimization [8]–
[10], and deep learning [11]. In particular, AMP has been
widely investigated in the context of JUICE for mMTC with
grant-free access. For instance, Chen et al. [2] analyzed analyt-
ically the user activity detection performance for AMP-based
JUICE solution in both single measurement vector (SMV)
and multiple measurement vector (MMV) setups. Liu and Yu
[3], [4] extended the analysis presented in [2] and derived
an asymptotic performance analysis for JUICE in terms of
activity detection, channel estimation, and the achievable rate.
Senel and Larsson [5] proposed a “non-coherent” detection
scheme for very short packet transmission based on a modified

version of AMP in order to jointly detect the active users along
with their transmitted information bits. Ke et al. [6] addressed
the JUICE problem in an enhanced mobile broadband system
and proposed a generalized AMP algorithm that exploits the
sparsity in both the spatial and the angular domains.

The vast majority of AMP-based JUICE works assume that
the multiple-input multiple-output (MIMO) channels follow an
uncorrelated channel model. Although this assumption leads to
derive analytically tractable solutions [2], [3], it is not always
practical as the MIMO channels are almost always spatially
correlated [12]. Therefore, the performance analysis presented
in the aforementioned works may not be suitable for practical
scenarios [11]. Recently, few works addressed the JUICE in
spatially correlated MIMO channels. For instance, several
mixed-norm minimization formulations using different levels
of prior knowledge of the channel distribution information
(CDI) have been proposed in [8]–[10], whereas, Chen et al.
[13] presented an orthogonal AMP algorithm to exploit both
the spatial and the temporal channel correlation in mMTC
systems. While these works have investigated a more practical
JUICE setup, they did not provide any theoretical analysis on
the user activity detection performance for the JUICE problem.

This paper aims to provide more insights on the JUICE
performance under a more practical channel model. In par-
ticular, we utilize a Bayesian AMP algorithm to solve the
JUICE in spatially correlated MIMO channels. Furthermore,
the paper provides a detailed analytical study for user activity
detection performance by deriving closed-form expressions
for the probabilities of miss detection and false alarm. The
simulation experiments show that the predicted theoretical
analysis matches the numerical results.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a single-cell uplink mMTC network consisting
of a set N = {1, . . . , N} of uniformly distributed single-
antenna UEs communicating with a BS equipped with a uni-
form linear array (ULA) containing M antennas. We consider
a block fading channel response over each coherence period
Tc. Let hi ∈ CM denotes the channel response from the ith



UE to the BS. We consider that the channel hi follows a
correlated Rayleigh fading channel model given as

hi = R
1
2
i h̄i, ∀i ∈ N , (1)

where Ri = E[hih
H
i ] ∈ CM×M is the channel covariance

matrix and h̄i ∼ CN (0, IM ). Note that the vast majority of
JUICE-related works consider independent Rayleigh fading
channel with Ri = βiIM , which is a simplified version of
(1). However, since the channels are typically correlated, we
consider the more practical scenario with dense covariance
matrices in order to characterize the channel spatial correlation
and the average path-loss in different spatial directions [12].

The channel realizations hi, ∀i ∈ N , are assumed to be
independent between different Tc. Furthermore, we consider
UEs with low mobility, which is justified in the context
of mMTC [14]. Hence, we adopt the common assumption
that the channels are wide-sense stationary. Thus, the set of
channel covariance matrices {Ri}Ni=1 vary in a slower time-
scale compared to the channel realizations [12]. Furthermore,
{Ri}Ni=1 are assumed to be known to the BS [13].

In order to deploy a grant-free access scheme, we assume
that all the UEs and the BS are synchronized. As the number of
UEs in a typical mMTC network is very large, the BS cannot
assign the UEs with orthogonal pilot sequences, because it
would require a pilot sequence length of the same order as
the number of UEs. Therefore, the BS assigns to the UEs non-
orthogonal pilot sequences. More precisely, the BS generates
first a pool of random pilot sequences that are drawn, for
instance, from an independent identically distributed (i.i.d.)
Gaussian or an i.i.d. Bernoulli distribution. Then, the BS
assigns to each UE i ∈ N a unit-norm pilot sequence
φi ∈ Cτp . This paper considers that the pilot sequences are
generated from a complex symmetric Bernoulli distribution.
This setup is motivated by the fact that: 1) pilot sequences
generated from a complex symmetric Bernoulli distribution
are practical as they can be deployed using quadratic phase
shift keying (QPSK) modulation, 2) matrices drawn from a
Bernoulli distribution are well suited for AMP-based support
and signal recovery [5], [15] as we will discuss later.

Due to the sporadic nature of mMTC, only a small subset
of UEs are active at each Tc. At each Tc, the active UEs
first transmit their pilot sequences to the BS followed by
transmitting the information data. The BS uses the received
pilot sequences to identify the active UEs and estimate their
channels in order to perform coherent data detection. Accord-
ingly, the received signal associated with the transmitted pilots
at the BS, denoted by Y ∈ Cτp×M , is given by

Y =
∑N
i=1 γiφih

T
i + W, (2)

where W ∼ CN (0, σ2IM ) ∈ Cτp×M is additive white
Gaussian noise, and γi ∈ B is the ith element of the binary
user activity indicator vector γ = [γ1, γ2, . . . , γN ]T.

The activity indicator γi is statistically modeled as
a Bernoulli random variable with Pr(γi = 1) = ε and
Pr(γi = 0) = 1− ε. Subsequently, we define the effective

channel of the ith UE as xi = γihi. Thus, effective channel
xi has a mixed Gaussian-Bernoulli distribution, given as

pxi = (1− ε)δ(hi) + εphi (3)

where phi ∼ CN (0,Ri) and δ(·) is the Dirac delta
function. We define the effective channel matrix as
X = [x1,x2, . . . ,xN ] ∈ CM×N and the pilot sequence matrix
as Φ = [φ1,φ2, . . . ,φN ] ∈ Cτp×N . Accordingly, we can
rewrite the received pilot signals in (2) as

Y = ΦXT + W. (4)

B. Problem Formulation

The objective of JUICE is to identify the active UEs
and estimate their channel responses. Therefore, the JUICE
reduces to identifying the locations of the non-zero columns
of the effective channel matrix X and estimating their coef-
ficients. Since XT is a row-sparse matrix, the JUICE can be
modelled as joint support and signal recovery from an MMV
setup. Subsequently, the canonical form of the JUICE can be
presented as

min
X

1

2
‖ΦXT −Y‖2F + β1‖XT‖2,0, (5)

where ‖XT‖2,0 =
∑N
i=1 1(‖xi‖2 6= 0) is the sparsity promot-

ing penalty and β1 is a regularizer that controls the sparsity
of the solution. Since the `0-“norm” minimization is an
intractable combinatorial NP-hard problem, several algorithms
have been proposed to relax (5). The existing recovery algo-
rithms can be categorized into two classes depending on the
required prior information on the sparse signal. The first class
includes mixed-norm minimization and greedy algorithms,
where the recovery exploits only the sparse structure of the
signal. The second class consists of algorithms that require
prior information on the distributions of a signal, for instance,
AMP and SBL. Such prior information often renders the
second class of algorithms to have superior sparse support
and signal recovery performances.

This paper exploits the assumption that the CDI is known
to the BS and presents an AMP-based solution for the JUICE
problem. In particular, we first provide a detailed description
of AMP-based JUICE in spatially correlated channels. Second,
we evaluate analytically the activity detection performance and
we derive closed-form expressions for the probability of miss
detection and the probability of false alarm.

III. AMP FOR JUICE WITH SPATIALLY CORRELATED
CHANNELS

AMP is an iterative sparse recovery algorithm that has been
proposed originally in [16] for the general sparse recovery
problem in an SMV setup and extended to MMV setup in [17].
Subsequently, AMP has been deployed to solve the JUICE in
[2]–[6]. In this paper, we adopt a Bayesian AMP originally
proposed in [18] for solving an MMV sparse recovery prob-
lem. This section provides a description on the design of AMP
for solving the JUICE in spatially correlated channels.



The AMP algorithm for sparse signal recovery from an
MMV setup can be expressed by the following iterations [18]:

x̂
(t+1)
i = η

(
Z(t)T

φ∗i + x̂
(t)
i ; Σ(t)

)
, (6)

Z(t+1) = Y −ΦX(t+1)T
+
N

τp

∑N
i=1

η′
(
Z(t)Tφ∗i+x

(t)
i

)
N , (7)

where t = 1, 2, . . . is the iteration index, X̂t = [x̂
(t)
1 , . . . , x̂

(t)
N ]

is the estimate of X at iteration (t), Z(t) ∈ Cτp×M is the
residual matrix initialized with Z(1) = Y, and Σ(t) ∈ CM×M
denotes a covariance matrix that can be tracked using the
state evolution as we discuss later. Function η(·) represents
the denoising function that operates on each row of XT

individually, and η′(·) is the first-order derivative of η(·). The
third term in (7) is called the Onsager term and it is the key
component in determining the performance of AMP [16].

For the matrix Φ drawn from a Bernoulli distribution and
under the assumption that N, τp →∞ with a fixed ratio τp

N , the
term θ

(t)
i = Z(t)T

φ∗i + x
(t)
i , ∀i ∈ N , is statistically equivalent

to the sum of the true effective channel xi and a colored noise
term e(t) ∼ CN (0,Σ(t)) as follows

θ
(t)
i = xi + e(t), ∀i ∈ N . (8)

Given the linear signal model (8) and by exploiting the fact
that the CDI is known to the BS, a minimum mean square error
(MMSE) based denoiser function η(θ

(t)
i ; Σ(t)) is calculated as

η(θ
(t)
i ; Σ(t))= E[xi|θ(t)

i ]

= ψ(θ
(t)
i ; Σ(t))Ri(Ri + Σ(t))−1θ

(t)
i ,∀i ∈ N ,

(9)
where

ψ(θ
(t)
i ; Σ(t)) =

(
1 +

1− ε
ε

exp
(
u

(t)
i − w

(t)
i

))−1

, (10)

with w
(t)
i = θ

(t)H

i Ξ
(t)
i θ

(t)
i , Ξ

(t)
i = Σ(t)−1 − (Ri + Σ(t))−1,

and u(t)
i = log( |Ri+Σ(t)|

|Σ(t)| ).
The covariance matrix of the noise term Σ(t) can be

tracked in the asymptotic regime via the state evolution. More
precisely, the matrix Σ(t) is updated at each iteration (t) using
the following update rules [18]

Σ(1) = σ2IM + E[XXH]

Σ(t+1) = σ2IM + N
τp

1
N

∑N
i=1(ψ

(t)
i − ψ

(t)2

i )q
(t)
i q

(t)H

i

+ψ
(t)
i Σ(t)Ri(Ri + Σ(t))−1,

(11)

where ψ(t)
i = ψ(θ

(t)
i ; Σ(t)), and q

(t)
i = Ri(Ri+Σ(t))−1θ

(t)
i .

IV. ACTIVITY DETECTION PERFORMANCE

In this section, we derive closed-form expressions for the
probabilities of miss detection and false alarm achieved by
AMP in spatially correlated fading channels. The derivation
hinges mainly on the equivalent system model (8) and the state
evolution matrix (11). While the Gaussian system model in (8)
holds in the asymptotic regime, it can provide useful insight
on the performance of the AMP for the practical mMTC setup
where the number of connected UEs N is large, yet finite.

A. Decision Threshold

Here, we discuss the decision rule for the user activity
detector on the AMP output. Let us examine the denois-
ing function η(·) given in (9). Note that for any finite ε,
ψ(θ

(t)
i ; Σ(t)) ∈ [0, 1]. Thus, by a closer look, one can see that

the denoising function η(·, ·) consists of an activity indicator
estimate ψ(θ

(t)
i ; Σ(t)) ∈ [0, 1] and a conventional MMSE

estimate term Ri(Ri + Σ(t))−1θ
(t)
i , ∀i ∈ N . Therefore, in

order to set the decision rule for the user activity detector,
one can use ψ(· ; ·) to determine the activity status of each
UE. More precisely, if ψ(t)

i → 1, the ith UE is declared
active, and if ψ(t)

i → 0, the ith UE is declared not active.
While the activity detection performance can be characterized
at each iteration (t), it is typically more interesting to discuss
performance upon AMP convergence. Thus, we omit the
iteration index (t) in the following derivations for brevity.

In a practical scenario, one would use a vector of pre-
defined threshold values l = [l1, . . . , lN ]T, such that li ∈ [0, 1],
∀i ∈ N . The activity detector will declare the ith UE to be
active if ψi ≥ li, and inactive otherwise. The values of li,
∀i ∈ N , can be selected based on the cost of miss detection
and the cost of false alarm for each UE. This paper proposes
the following decision rule on the UEs activity:

γ̂i=

{
1, θH

i Ξiθi≥ αi = ui − log
( ε(1−li)
li(1−ε)

)
0, θH

i Ξiθi< αi = ui − log
( ε(1−li)
li(1−ε)

) ,∀i ∈ N . (12)

B. Probabilities of Miss Detection and False Alarm

The activity detection performance is quantified using two
types of error probabilities. First, the probability of false alarm,
which represents the probability of declaring an inactive UE
to be active. Second, the probability of miss detection, which
represents the probability of declaring an active UE as inactive.

The equivalent signal model (8) suggests that the term θi,
∀i ∈ N , follows a zero-mean complex Gaussian distribution,
i.e., θi ∼ CN (0,Ci). The covariance matrix Ci depends on
the value of the true γi, and it is given as

Ci =

{
Σ + Ri, γi = 1

Σ, γi = 0
,∀i ∈ N . (13)

In order characterize the activity detection performance,
we refer to (12) and define two complex quadratic Gaussian
random variables Q1,i and Q0,i, ∀i ∈ N , as

Q1,i= (θH
i Ξiθi|γi = 1)

Q0,i= (θH
i Ξθi|γi = 0)

,∀i ∈ N . (14)

Next, by using the decision rule in (12) and the random
variables in (14), the probabilities of the miss detection and
false alarm for each UE i are defined, respectively, as

PMD
i = Pr(γ̂i = 0|γi = 1) = Pr(Q1,i ≤ αi

)
,∀i ∈ N . (15)

PFA
i = Pr(γ̂i = 1|γi = 0) = Pr(Q0,i > αi

)
,∀i ∈ N . (16)

Now, let us consider a general complex Gaussian quadratic
form Q = θHΞθ for a random variable θ ∼ CN (0,C) ∈ CM .



By using some algebraic transformations, Q can be expressed
as a linear combination of chi-squared random variables, as
we show next. First, we write θ as

Q = zHC
1
2

H
ΞC

1
2 z, (17)

where θ = C
1
2 z for z ∼ CN (0, IM ). Let U and

Λ = diag(λ1, . . . , λM ) denote the eigenvectors and the
eigenvalues, respectively, associated with C

1
2

H
ΞC

1
2 . Thus,

we can further express Q as

Q = zHUΛUHz = vHΛv =
∑M
m=1 λm|vm|2, (18)

where v = [v1, . . . , vM ]T = UHz. Note that since U is a
unitary matrix, v follows the same distribution as z, i.e.,
v ∼ CN (0, IM ). We can rewrite vm = 1√

2
(am + jbm) where

am, bm ∼ N (0, 1), for m = 1, . . . ,M . Therefore, Q can
be finally expressed by a linear combination of zero-mean
independent squared Gaussian random variables as

Q =
∑M
m=1

1
2λm(a2

m + b2m) =
∑M
m=1

1
2λmVm, (19)

where Vm = a2
m + b2m, m = 1, . . . ,M . Note that Q can

be viewed as a linear combination of M independent chi-
squared random variables Vm ∼ χ2

2(1) with two degrees
of freedom. Subsequently, a closed-form expression for the
cumulative distribution function (CDF) of Q in (19) is given
as [19, Sect. 4.3]

FQ(α) = Pr(Q ≤ α) =
∑M
m=1 g(λ;m)

γ̄(1, 2α
λm

)

Γ(1) (20)

where

g(λ;m) =

M∏
j=1

(−1

λj

)
λm lim

k→ 1
λm

((
k− 1

λm

) M∏
j=1

(
k− 1

λj

)−1
)
,

(21)
with Γ(·) denoting the gamma function, and γ̄(· ; ·) denoting
the lower incomplete gamma function.

Now after providing a closed-form expression for the CDF
of a general complex quadratic form Q given in (17), we
present Proposition 1 which characterizes the activity detection
performance based on the state evolution matrix Σ.

Proposition 1. Consider user activity detection by the
Bayesian AMP for mMTC in spatially correlated channels with
finite N

τp
and largely enough N and τp so that the equivalent

signal model (8) holds. Using the CDF expression (20), the
probabilities of miss detection and false alarm per UE are
given, respectively, as

PMD
i =

∑M
m=1 g(λ̂i;m)

γ̄
(

1,2αiλ̂i,m

)
Γ(1) (22)

PFA
i = 1−

∑M
m=1 g(λ̄i;m)

γ
(

1,2αi/λ̄i,m

)
Γ(1) , (23)

where λ̂i = [λ̂i,1, . . . , λ̂i,M ]T and λ̄i = [λ̄i,1, . . . , λ̄i,M ]T are
the eigenvalues associated with (Ri + Σ)

1
2

H
Ξi(Ri + Σ)

1
2

and Σ
1
2

H
ΞiΣ

1
2 , respectively.

V. SIMULATION RESULTS

We consider a single cell of radius of 100 m with a BS
equipped with M antennas and surrounded by N = 1000
uniformly distributed single-antenna UEs. We consider an
activity level ε = 0.05 at each Tc. The channel responses hi,
for i ∈ N , are generated using a local scattering model for
the channel covariance matrices [20, Sect. 2.2]. To mitigate
the channel gain differences between the UEs, we assume that
each UE has a unit average channel gain, i.e., 1

M Tr(Ri) = 1,
∀i ∈ N . Furthermore, each UE is assigned with a normalized
QPSK sequence φi drawn from an i.i.d. complex Bernoulli
distribution.

The activity detection performance is quantified in terms of
the average miss detection PMD = 1

N

∑N
i=1 P

MD
i and false

alarm PFA = 1
N

∑N
i=1 P

FA
i probabilities. Fig. 1 compares the

the simulated and the predicted PMD and PFA. The simulated
performance is obtained by running the AMP algorithm and
deploying the decision rule (12) to detect the active UEs,
whereas the predicted performance is obtained from the ana-
lytical expressions (22) and (23). Fig. 1(a) shows the activity
detection performance versus the pilot sequence length τp
with M = 32 and a signal-to-noise ratio (SNR) = 10 dB. The
obtained results suggest that increasing τp results in continual
improvement in the activity detection performance. More
interestingly, the results show clearly that the probabilities of
miss detection and false alarm derived in (22) and (23) match
the simulation results obtained by AMP. Fig. 1(b) shows the
same activity detection performance but with respect to the
number of BS antennas M . As expected, the activity detec-
tion performance improves significantly with increasing M .
Furthermore, similar to the results in Fig. 1(a), the simulated
results provide the same performance as the theoretical ones.

Fig. 2 illustrates the channel estimation performance in
terms of normalized average square error (NASE), defined as
E[‖XS−X̂S‖2F]

E[‖XS‖2F]
, where the expectation is computed via Monte-

Carlo averaging over all sources of randomness and S denotes
the set of true active UEs. Fig. 2 compares AMP with two
algorithms: 1) the oracle MMSE estimator, which is provided
“oracle” knowledge on S, and 2) IRW-ADMM proposed in
[8], where the JUICE is formulated as an iterative reweighted
`2,1-norm minimization and solved via the alternating direc-
tion method of multipliers. Fig. 2 shows that AMP outperforms
significantly IRW-ADMM and it provides near-optimal NASE
performance as it approaches the lower bound obtained by
the oracle MMSE estimator. This result highlights the gain
obtained by using rich side information at the BS: while IRW-
ADMM operates only on the mere fact that the effective chan-
nel is sparse, AMP utilizes both channel and noise statistics,
leading to better channel estimation performance.

VI. CONCLUSION

This paper presented an AMP-based solution for the JUICE
problem in mMTC under spatially correlated fading channels.
By utilizing the properties of the state evolution of the AMP
algorithm, the paper derived closed-form expression for both
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Fig. 1: Probabilities of miss detection and false alarm obtained by the AMP algorithm (simulation) and the derived theoretical
results (predicted) versus: a) pilot length τp, b) number of BS antennas M .
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Fig. 2: Channel estimation performance in terms of NASE
versus pilot length τp for M = 32, and SNR = 10 dB.

the miss detection and false alarm probabilities. The simulation
experiments showed that the theoretical analysis provided in
this paper matched the numerical results.
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