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Introduction
Multi-robot systems are of great interest in many applica-
tions, such as exploration, surveillance or rescue robotics. In
those applications, a single robot is not able to acquire all the
required information and the cooperation among multiple
robots is essential. However, real scenarios present uncertain
and potentially hazardous environments in which robots can
experience communication constraints regarding connectiv-
ity, bandwidth and delays. Mapping the overall task into ro-
bust plans for each robot is a challenging problem.

In general, planning under uncertainty faces a scalabil-
ity problem when considering multi-robot teams, as the in-
formation space scales exponentially with the number of
robots. We propose to decentralize multi-robot Partially
Observable Markov Decision Processes (POMDPs) while
maintaining cooperation between robots by using POMDP
policy auctions. The idea is to exploit the power of decision-
theoretic planning methods such as POMDPs, while mit-
igating their complexity by lowering the dependence be-
tween individual plans. In particular, the approach solves
independent POMDPs for each robot, but still fosters on-
line cooperation during the execution phase by distributing
the individual policies using auctions. Auction algorithms
have been widely used for optimal multi-robot task allo-
cation, and have also been explored in conjunction with
POMDPs (Spaan, Gonçalves, and Sequeira 2010).

In addition, communication models in the multi-agent
POMDP literature (Pynadath and Tambe 2002; Nair et al.
2004; Roth, Simmons, and Veloso 2005) severely mismatch
with real inter-robot communication. We address this issue
by exploiting a decentralized data fusion method in order to
efficiently maintain a joint belief state among the robots.

This paper is an extended abstract that summarizes the
main contributions of our previous work (Capitan et al.
2013). The first contribution is to emulate a multi-robot
POMDP by combining individual behaviors or roles that
can be represented by single-robot POMDPs. We general-
ize a centralized POMDP auction to assign never-ending
policies (behaviors) to different robots at every step. In this
novel decentralized auction, instead of tasks, POMDP poli-
cies that describe a behavior towards a common goal are dis-
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tributed; robots can switch between these behaviors dynam-
ically at each decision step. The auction determines continu-
ously which behavior is best for each robot to cooperatively
attain the goal. Since local POMDPs are solved for each
robot, the inter-connection between the models is low and
the approach can scale well with the number of robots.

The second key component is to efficiently maintain a
joint belief state among the robots, which can serve as co-
ordination signal. We use an existing Decentralized Data
Fusion approach (Capitan et al. 2011), but in conjunction
with POMDP policies for a multi-robot system. Unlike most
work on POMDPs, the belief update here is separated from
the decision-making process during the execution phase.
This decoupling between both processes increases the ro-
bustness and reliability of real-time robotic teams.

Multi-agent Planning under Uncertainty
In the literature a wide variety of decision-theoretic mod-
els exist to deal with multi-agent systems (Seuken and Zil-
berstein 2008), e.g., Multi-agent POMDPs and Decentral-
ized POMDPs. However, many of these models have severe
drawbacks if applied to multi-robot scenarios. Before pre-
senting our solution, we analyze the models available in the
literature by comparing them in terms of agent interdepen-
dence and communication assumptions.

The level of interdependence between agents is deter-
mined by 1) the amount of information that an agent needs
to know about other agents and 2) how coupled the final
policies are. We call a system highly interdependent if a
change in one of the agents’ model requires re-computing
policies for the others. Many models from the literature
are highly interdependent, for instance Multi-agent MDPs
(MMDP) (Boutilier 1996), MPOMDPs, Dec-POMDPs, and
ND-POMDPs (Nair et al. 2005), and I-POMDPs (Gmy-
trasiewicz and Doshi 2005). Figure 1 presents a classifica-
tion of existing models with respect to their interdependence
and the grade of communication that is assumed.

The simplest approach is to map the global task as well as
possible into a set of individual tasks, and model these as in-
dependent POMDPs (Fig. 1, bottom left). Thus, each agent
can solve its own POMDP and execute its own policy with-
out any communication. In this case, the interdependence
between agents is very low, but since each agent ignores the
others, the level of cooperation or even coordination is low
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Figure 1: Classification of multi-agent POMDP approaches
according to interdependence and level of communication
between the agents. “Auctioned POMDPs” refers to our pro-
posed approach.

too. Many interesting multi-agent planning problems can-
not be tackled with such a loosely coupled approach. The
advantage of such an approach is its relatively low computa-
tional complexity, since it only requires solving single-agent
POMDPs, each of which is defined over individual action
and observation spaces. Hence, scalability in the number of
agents is linear, which is very low compared to other models.

On the other end of the spectrum, MPOMDPs and Dec-
POMDPs solve a single decision-theoretic model for the
whole team reasoning about all the actions and observations
of each agent (Fig. 1, right column).

The MPOMDP model assumes perfect communication
and each agent has access to joint actions and observations
at every moment, whereas the Dec-POMDP model assumes
no communication at all. Such models allow for tight co-
ordination, but they present a high interdependence, since
any small change in one of the agents entails a recalcula-
tion of the policy for the whole team. Furthermore, if due
to imperfect communication agents do not have access to
other agents’ observations, the behavior of the MPOMDP
model is not defined. Regarding computational complexity,
an MPOMDP is a POMDP defined over the joint action and
observation spaces, whose sizes grow exponentially with the
number of agents.

The Dec-POMDP model, on the other hand, does not ex-
ploit communication at all, which in many scenarios could
be beneficial to improve team performance. For instance, in
a cooperative tracking application, it is easy to see that if a
pursuer robot detects the target and informs its teammates
about the target’s approximate location, the other pursuers
can close in on the target. Without communication, each pur-
suer might need to find the target by itself, which is clearly
less time-efficient. Solving Dec-POMDPs optimally takes
doubly-exponential time in the worst case, which severely
restricts their applicability in multi-robot scenarios.

In between MPOMDPs and Dec-POMDPs there are sev-

eral models in which some communication is assumed (Nair
et al. 2004; Roth, Simmons, and Veloso 2005; Spaan,
Oliehoek, and Vlassis 2008; Oliehoek and Spaan 2012)
(Fig. 1, middle right). These models try to exploit the fact
that agents actually share information, but just partially and
at certain instants. Furthermore, most of them assume that
communication arrives instantly.

By looking at the current state of the literature, we can
conclude existing multi-agent decision-theoretic models do
not take into account the requirements that multi-robot mis-
sions pose. First, a critical dependence on communication
is to be avoided, but it should be exploited when available.
Second, a strong coupling between individual robots is un-
desirable, as tightly coordinated joint actions are often hard
to execute with a low probability of success.

Role-based Multi-robot POMDP
In order to address the shortcoming of existing multi-agent
planning models for multi-robot scenarios, as discussed
above, we present a new model that specifically takes into
account multi-robot issues. In a sense, we aim to reach mid-
dle ground on both axes of Figure 1.

Many multi-robot missions can be modeled as POMDPs.
If all the robots have access to joint information (actions and
observations from the whole team), the problem can be mod-
eled as a MPOMDP. The objective of the team can be en-
coded in a reward function that, in general, depends on joint
states and joint actions, and can be seen as the addition of
the local rewards for each of the n robots:

R(s, a) = R1(s, a) + · · ·+Rn(s, a). (1)

Without losing generality, the reward can be decomposed
into two parts: one based only on local information Rlocal

i
from each robot i; and one based on joint information
Rjoint. The local information for a robot i means its action
ai and its state si. In case of a factored state, each local state
si would include the local factors that can be controlled by
local actions, and the factors that are common for all the
robots. Thus, the global reward can be expressed as:

R(s, a) =

Rlocal
1 (s1, a1) + · · ·+Rlocal

n (sn, an) +Rjoint(s, a) (2)

Apart from the local rewards (i.e., the rewards that robots
would get if there were no others), there is the coupled term
Rjoint(s, a), which models cooperation among the robots.
Indeed, actions from different robots need to be considered
in order to compute this reward. Even though the design of
this cooperative term is very dependent on the application,
in many cases, due to efficiency issues, it is common to pe-
nalize different robots repeating similar tasks. For instance,
in many surveillance applications the robots should get less
reward for surveying an area that is already being surveyed
by another.

The previous idea is useful for many applications in which
there are either limited resources that cannot be accessed si-
multaneously by the robots, or different roles/tasks that must
be covered. Thus, the team objective in many missions (e.g.,
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detecting a target or alarm) can be achieved with robots fol-
lowing different roles (e.g., patrol a certain area, approach
the target, etc.). For instance, in smart energy grids there
are providers and consumers (van der Sluis 2011); and in
robotic soccer strikers and defenders (Kok, Spaan, and Vlas-
sis 2005). Also, in active perception applications (Maza et al.
2011), where the team needs to maximize its information, it
is positive to have robots following non-overlapping behav-
iors in order to provide richer information to the team.

We are interested in these role-based applications, but we
make the following assumptions: (i) there is a finite set of
non-overlapping roles/behaviors (i.e., each robot can only
be playing one role at a moment); (ii) each role is a single-
robot behavior that can be represented by a reward function
depending on the local state of that robot. The local rewards
in (2) depend on the behaviors chosen by each robot. These
rewards Rlocal

i are the ones that each robot would get by
acting on its own. Moreover, the cooperative term Rjoint

also depends on the assignment of the behaviors.
The idea in our role-based model is that, at each time

step, the robots should select their behaviors optimally (apart
from their actions) in order to maximize the expected re-
ward of the whole team. Note that the role assignments from
one step to the next one are not correlated. In the next sec-
tion, we propose an approximate method to solve the role-
based MPOMDP in which the policies are sub-optimal, but
the computational complexity of the solution is reduced dra-
matically.

Decentralized Auction with POMDPs
The proposed approach builds on two mechanisms: a decen-
tralized data fusion filter and a POMDP auction. The former
allows the robots to share information and build a joint be-
lief like in a MPOMDP, the latter is used to assign the dif-
ferent behaviors to the robots in a cooperative manner. In
Fig. 1, our approach can be seen as in between “independent
POMDPs” and MPOMDP/Dec-POMDP in terms of agent
interdependence. In terms of communication requirements,
our approach does not require the high-quality guarantees of
other methods.

The objective is to approximate the multi-robot reward in
the previous section. For that, a set of reward functions are
designed to define single-robot POMDPs, which are solved
separately offline. These behaviors are run online simulta-
neously and combined optimally to produce a joint behavior
similar to the one desired for the whole team initially. In the
execution phase, the best behavior for each robot is selected
online with an auction algorithm where the cost or bid of
assigning a policy to a robot is related to the value func-
tion of the corresponding individual POMDP. Thus, policies
with a greater expected reward are more likely to be selected
for each robot, which helps to maximize the global expected
reward for the whole team. As explained above, the assign-
ment of the behaviors can vary from one time step to the
following in an uncorrelated manner. Note that these behav-
iors are not finite tasks that the robots must select and solve,
but different policies to follow given the current belief. As
the belief changes, the robots are allowed to switch their be-
haviors in order to pursue the optimal solution.
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Figure 2: Average results (±3σ) for simulations on environ-
mental monitoring with two UAVs and three critical areas.
Auctioned polices are compared to a joint policy. (a) En-
tropies of the beliefs on the contamination levels. (b) Per-
centages of occupancy for each critical area.

Experimental Results
Our previous work (Capitan et al. 2013) presented results for
two different applications: environmental monitoring with
Unmanned Aerial Vehicles (UAVs); and cooperative track-
ing, in which several robots have to jointly track a moving
target of interest.

In the first case study there is a team of UAVs whose mis-
sion is to fly over a certain terrain in order to monitor a po-
tential contamination that may appear. It is assumed that this
contamination can only appear and propagate through a net-
work of water flows on the terrain. Therefore, instead of sur-
veying the whole scenario, a set of key points (areas) within
that network can be extracted to evaluate the level of con-
tamination. These points are inter-connected through water
flows and the contamination can propagate among them.

We tested our approach (behaviors were based on moni-
toring each of the individual areas) against a joint policy for
a multi-robot POMDP. The multi-robot POMDP is far from
scalable, so we were only able to solve it for a simple case
with 2 UAVs and 3 areas (Areas 1, 2 and 3). Actually, any
variation of this small scenario considering more UAVs or
areas, caused the computer to run out of memory.

We computed a single-robot policy for each behavior (5
minutes each) and a joint policy for the 2-UAV MPOMDP
(14 hours). Then, we ran 1000 simulations of 100 steps (with
random starting positions and no initial contamination) for
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Figure 3: Average results on cooperative tracking to show
scalability with multiple robots. In particular, average time
spent to solve a role assignment at each robot.

our approach, and the same with the joint policy. The av-
erage values for the belief entropies and the percentage of
occupancy (times visited) of each area are shown in Fig. 2.
Despite the huge difference in computation time for both ap-
proaches, the results are still remarkably similar.

In the second case study, the objective is that a group of
robots track a moving target estimating its position with their
sensors. The idea is to obtain an estimation as accurate as
possible. The robots carry bearing-only sensors, so the indi-
vidual behaviors consist of pointing at the target from dif-
ferent angles. This fosters configurations where the robots
surround the target, reducing the uncertainty on its estimated
position.

Some simulations were run in order to provide empirical
results about scalability. We ran our approach in the same
scenario but increasing the number of robots in the team.
For each experiment, 100 runs of 100 steps were carried out
with the robots and the target starting at random positions.
In Fig. 3, the average time spent at each robot (per iteration)
to solve the role assignment is plotted. In this case, all the
robots were considered within communication range in or-
der to evaluate the worst possible case (auctions needed to
be solved for the complete team). It can be seen that the ex-
ecution time scales polynomially with the number of robots,
but in general, our approach will only depend on the number
of neighbors, which should be lower than the team size for
larger scenarios. Nonetheless, even in this worst case, execu-
tion times stay at quite reasonable levels for real-time appli-
cations. Results with real multi-robot teams are also shown
in (Capitan et al. 2013).
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