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Abstract

Most of current image captioning models heavily rely
on paired image-caption datasets. However, getting large
scale image-caption paired data is labor-intensive and
time-consuming. In this paper, we present a scene graph-
based approach for unpaired image captioning. Our frame-
work comprises an image scene graph generator, a sentence
scene graph generator, a scene graph encoder, and a sen-
tence decoder. Specifically, we first train the scene graph
encoder and the sentence decoder on the text modality.
To align the scene graphs between images and sentences,
we propose an unsupervised feature alignment method that
maps the scene graph features from the image to the sen-
tence modality. Experimental results show that our pro-
posed model can generate quite promising results without
using any image-caption training pairs, outperforming ex-
isting methods by a wide margin.

1. Introduction
Today’s image captioning models heavily depend on

paired image-caption datasets. Most of them employ an
encoder-decoder framework [34, 9, 13, 12, 39], which uses
a convolutional neural network (CNN) [16] to encode an
image into a feature vector and then a recurrent neural net-
work (RNN) to decode it into a text sequence. However,
it is worthwhile noticing that the overwhelming majority of
image captioning studies are conducted in English [1]. The
bottleneck is the lack of large scale image-caption paired
datasets in other languages, and getting such paired data for
each target language requires human expertise in a time-
consuming and labor-intensive process.

Several encoder-decoder models have been proposed in
recent years for unsupervised neural machine translation
[23, 4]. The key idea of these methods mainly relies
on training denoising auto-encoders for language modeling
and on sharing latent representations across the source and
target languages for the encoder and the decoder. Despite
the promising results achieved by the unsupervised neural

Figure 1: Illustration of our graph-based learning method.
Our model consists of one visual scene graph detector (Top-
Left), one fixed off-the-shelf scene graph language parser
(Bottom-Left), a scene graph encoder GSEnc, a sentence de-
coder GSDec, and a feature mapping module.

machine translation, unpaired image-to-sentence translation
is far from mature.

Recently, there have been few attempts at relaxing the
requirement of paired image-caption data for this task.
The first work in this direction is the pivot-based semi-
supervised solution proposed by Gu et al. [14], where they
take a pivot language as a bridge to connect the source
image and the target language caption. Their method re-
quires an image-text paired data for the pivot language (Chi-
nese), and a parallel corpus for the pivot to target transla-
tion. Feng et al. [10] move a step further, where they con-
duct purely unsupervised image captioning without relying
on any labeled image-caption pairs. Their method uses a
sentence discriminator along with a visual concept detector
to connect the image and the text modalities through adver-
sarial training. Although promising, the results of the ex-
isting methods are still far below compared to their paired
counterparts.

Unlike unsupervised neural machine translation where
the encoders can be shared across the source and target lan-
guages, due to the different structures and characteristics of
image and text modalities, the encoders of image and sen-
tence cannot be shared to connect the two modalities. The
critical challenge in unpaired image captioning is, there-
fore, the gap of information misalignment in images and
sentences, so as to fit the encoder-decoder framework.
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Fortunately, with recent breakthroughs in deep learning
and image recognition, higher-level visual understanding
tasks such as scene graph construction have become pop-
ular research topics with significant advancements [43, 6, 8,
7, 42, 37, 17]. Scene graph, as an abstraction of objects and
their complex relationships, provide rich semantic informa-
tion of an image. The value of scene graph representation
has been proven in a wide range of vision-language tasks,
such as visual question answering [32] and paired image
captioning [37].

Considering the significant challenges that unpaired im-
age captioning problem poses in terms of different charac-
teristics between visual and textual modalities, in this pa-
per, we propose a scene graph-based method that exploits
the rich semantic information captured by scene graphs.
Our framework comprises an image scene graph generator,
a sentence scene graph generator, a scene graph encoder,
a sentence decoder, and a feature alignment module that
maps the features from image to sentence modality. Fig-
ure 1 sketches our solution. We first extract the sentence
scene graphs from the sentence corpus and train the scene
graph encoder and the sentence decoder on the text modal-
ity. To align the scene graphs between images and sen-
tences, we use CycleGAN [44] to build the data correspon-
dence between the two modalities. Specifically, given the
unrelated image and sentence scene graphs, we first encode
them with the scene graph encoder trained on the sentence
corpus. Then, we perform unsupervised cross-modal map-
ping for feature level alignments with CycleGAN. By map-
ping the features, the encoded image scene graph is pushed
close to the sentence modality, which is then used effec-
tively as input to the sentence decoder to generate meaning-
ful sentences.

The main contributions of this work include: (1) a novel
scene graph-based framework for unpaired image caption-
ing; (2) an unsupervised feature alignment method that
learns the cross-modal mapping without any paired data.
Our experimental results demonstrate the effectiveness of
our proposed model in producing quite promising image
captions. The comparison with recent unpaired image cap-
tioning methods validates the superiority of our method.

2. Background
Paired Image Captioning. Image captioning has been ex-
tensively studied in the past few years. Most of the exist-
ing approaches are under the paired setting, that is, input
images come with their corresponding ground-truth cap-
tions [34, 19, 40, 13, 12, 38]. One classic work in this set-
ting is [34], in which an image is encoded with a CNN,
and the sentence is decoded with a Long Short-Term Mem-
ory (LSTM) network. Following this, many methods have
been proposed to improve this encoder-decoder method.
One of the notable improvements is the attention mecha-

nism [36, 13, 3], which allows the sentence decoder to dy-
namically focus on some related image regions during the
caption generation process. Some other works explore other
architectures for language modeling [15, 31]. For exam-
ple, Gu et al. [15] introduce a CNN-based language model
for image captioning. Another theme of improvements is
to use reinforcement learning (RL) to address the exposure
bias and loss-evaluation mismatch problems for sequence
prediction [29, 13]. The self-critical learning approach pro-
posed in [29] is a pioneering work, which well addresses
the above two problems.

Our work in this paper is closely related to [37], which
uses scene graph to connect images and sentences to incor-
porate inductive language bias. The key difference is that
the framework in [37] is based on the paired setting, while
in this work, we learn the scene graph-based network under
the unsupervised training setting.
Unpaired Image Captioning. More recently, some re-
searchers started looking into the problem of image caption-
ing in the unpaired setting [14, 10], where there is no cor-
respondence between images and sentences during training.
The first work on this task is the pivot-based solution pro-
posed by Gu et al. [14]. In their setting, although they do not
have any correspondence between images and sentences in
the target language, they do require a paired image-caption
dataset in the pivot language and another machine transla-
tion dataset which consists of sentences in the pivot lan-
guage and the paired sentences in the target language. They
connect the pivot language sentences in different domains
by shared word embeddings. The most recent work on un-
paired image captioning is proposed by Fang et al. [10].
They generate pseudo image-sentence pairs by feeding the
visual concepts of images to a concept-to-sentence model
and performing the alignment between image features and
sentence features in an adversarial manner.

While several attempts have been made for the un-
paired image captioning problem, this challenging task is
far from mature. Arguably, compared to unpaired sentence-
to-sentence [23] and image-to-image [44] translations, un-
paired image-to-sentence translation is more challenging
because of the significantly different characteristics of the
two modalities. In contrast to the existing unpaired image
captioning methods [14, 10], our proposed method adopts
scene graph as an explicit representation to bridge the gap
between image and sentence domains.

3. Method
In this section, we describe our unpaired image caption-

ing framework. We first revisit the paired captioning setting.

3.1. Paired Image Captioning Revisited

In the paired captioning setting, our training goal is to
generate a caption S from an image I such that S is similar



to its ground-truth caption. The popular encoder-decoder
framework for image captioning can be formulated as:

P (S|I) = P (V |I)︸ ︷︷ ︸
Encoder

P (S|V )︸ ︷︷ ︸
Decoder

(1)

where the encoder P (V |I) encodes the image I into the
image features V with a CNN model [16], and the de-
coder P (S|V ) predicts the image description S from the
image features V . The most common training objective
is to maximize the probability of the ground-truth caption
words given the image:

∑
t log pθI→S

(St|S0:t−1, I), where
pθI→S

(St|S0:t−1, I) corresponds to the Softmax output at
time step t. During inference, the word St is drawn from
the dictionary DS according to the Softmax distribution.

3.2. Unpaired Image Captioning

In the unpaired image captioning setting, we have a
dataset of images I = {I1, . . . , INI}, and a dataset of sen-
tences S = {S1, . . . , SNS}, where NI and NS are the total
numbers of images and sentences, respectively. In this set-
ting, there is no alignment between I and S. In fact, I and
S can be completely unrelated coming from two different
domains. Our goal is to train an image captioning model in
a completely unsupervised way. In our setup, we assume
that we have access to an off-the-shelf image scene graph
detector and a sentence (or text) scene graph parser.

As shown in Figure 1, our proposed image captioning
model consists of one image scene graph generator, one sen-
tence scene graph generator, one scene graph encoder GSEnc,
one attention-based decoder for sentence generation GSDec,
and a cycle-consistent feature alignment module. Given an
image I as input, our method first extracts an image scene
graph GI using the scene graph generator. It then maps GI
to the sentence scene graph GS from which the RNN-based
decoder generates a sentence S. More formally, the im-
age captioner P (S|I) in the unpaired setting can be decom-
posed into the following submodels,

I → GI (2)

P (S|I) = P (GS |GI)︸ ︷︷ ︸
Unpaired Mapping

P (S|GS)︸ ︷︷ ︸
Decoder

(3)

where GI and GS are the image scene graph and the sen-
tence scene graph, respectively. The most crucial compo-
nent in Eq. (3) is the unpaired mapping of image and text
scene graphs. In our approach, this mapping is done in the
feature space. In particular, we encode the image and sen-
tence scene graphs into feature vectors and learn to map the
feature vectors across the two modalities. We reformulate
Eq. (3) as follows:

P (S|I) = P (GS |GI)P (S|GS)
≈ P (f I |GI)P (fS |f I)P (S|fS) (4)

where P (f I |GI) is a graph encoder, P (S|fS) is an RNN-
based sentence decoder, and P (fS |f I) is a cross-modal
feature mapper in the unpaired setting. In our implementa-
tion, we learn the scene graph encoder and the RNN-based
decoder on the text modality first, and then we try to map
the image scene graph into a common feature space (i.e., the
text space) so that the same sentence decoder can be used to
decode the sentence from the mapped image features.

The sentence encoding and decoding processes can be
formulated as the following two steps:

S → GS (5)

Ŝ = argmax
S

P (S|fS)P (fS |GS) (6)

where Ŝ is the reconstructed sentence. We train the model
to enforce Ŝ to be close to the original sentence S.

In the following, we describe the scene graph generator
in Sec. 3.2.1, the scene graph encoder in Sec. 3.2.2, the sen-
tence decoder in Sec. 3.2.3, and our unpaired feature map-
ping process in Sec. 3.2.4.

3.2.1 Scene Graph Generator

Formally, a scene graph is a graph G = (V, E) containing a
set of nodes V and a set of edges E . As exemplified in Figure
1, the nodes can be of three types: object node, attribute
node, and relationship node. We denote oi as the i-th object,
ri,j as the relation between object oi and oj , and ali as the
l-th attribute of object oi.

An image scene graph generator contains an object de-
tector, an attribute classifier, and a relationship classifier.
We use Faster-RCNN [28] as the object detector, MOTIFS
[41] as the relationship detector, and an additional classifier
for attribute identification [37].

To generate the sentence scene graph GS for a sentence,
we first parse the sentence into a syntactic tree using the
parser provided by [2], which uses a syntactic dependency
tree built by [21]. Then, we transform the tree into a scene
graph with a rule-based method [30].

3.2.2 Scene Graph Encoder

We follow [37] to encode a scene graph. Specifically, we
represent each node as a de-dimensional feature vector, and
use three different spatial graph convolutional encoders to
encode the three kinds of nodes by considering their neigh-
borhood information in the scene graph.

Encoding objects. In a scene graph (image or sentence),
an object oi can play either a subject or an object role in a re-
lation triplet depending on the direction of the edge. There-
fore, for encoding objects, we consider what relations they
are associated with and what roles they play in that relation.
Let 〈oi, oj , ri,j〉 denote the triplet for relation ri,j , where oi



plays a subject role and oj plays an object role. The encod-
ing for object oi, that is xoi ∈ Rdx is computed by

xoi =
1

Nri

∑
oj

gs(eoi , eoj , eri,j )

+
1

Nri

∑
ok

go(eok , eoi , erk,i) (7)

where eoi ∈ Rde and eri,j ∈ Rde are the embeddings (ran-
domly initialized) representing the object oi and the relation
ri,j , respectively; gs(·) and go(·) are the spatial graph con-
volution operations for objects as a subject and as an object,
respectively; and Nri is the total number of relation triplets
that oi is associated with in the scene graph.

Encoding attributes. An object oi may have multiple at-
tributes in the scene graph. The encoding of an object based
on its attributes, i.e., xai ∈ Rdx is computed by:

xai =
1

Nai

∑
l

ga(eoi , eali) (8)

where Nai is the total number of attributes that object oi
has, and ga(·) is the spatial convolutional operation for at-
tribute based encoding.

Encoding relations. Each relation ri,j is encoded into
xri,j ∈ Rdx by considering the objects that the relation con-
nects in the relation triplet,

xri,j = gr(eoi , eoj , eri,j ) (9)

where gr(·) is the associated convolutional operation.
After graph encoding, for each image scene graph or

sentence scene graph, we have three sets of embeddings:

X ko =[xko1 , · · · ,x
k
o
Nko

]

X kr =[xkr1 , · · · ,x
k
r
Nkr

]

X ka =[xka1 , · · · ,x
k
a
Nka

]

, k ∈ {I, S} (10)

where Nk
o , Nk

r , and Nk
a can be different from each other.

Figure 2 illustrates the encoding process.

3.2.3 Sentence Decoder

The goal of the sentence decoder is to generate a sentence Ŝ
from the encoded embeddings, X ko , X kr , and X ka . However,
these three sets of embeddings are of different lengths and
contain different information. Therefore, their importance
for the sentence decoding task also vary. In order to com-
pute a relevant context for the decoding task effectively, we
use three attention modules, one for each type of embed-
dings. The attention module goAtt over X ko is defined as:

fko =

Nko∑
i=1

αix
k
oi ; αi =

exp(wT
o x

k
oi)∑

m exp(wT
o x

k
om)

(11)

Figure 2: The architectures for scene graph encoding, atten-
tion, and sentence decoding; goAtt, g

r
Att, and gaAtt are attention

modules for each kind of features, respectively.

where wo is the associated (learnable) weight vector. The
attentions over X kr , and X ka are similarly defined to get the
respective attention vectors, fkr ∈ Rdf and fka ∈ Rdf .

The attention vectors are then combined to get a triplet
level embedding, which is then fed into an RNN-based de-
coder to generate the sentence Ŝ. The following sequence
of operations formally describes the process.

fkora = gora([f
k
o ,f

k
r ,f

k
a]) (12)

ot,ht = RNNDec(f
k
ora,ht−1, Ŝt−1) (13)

Ŝt ≈ softmax(Woot) (14)

where gora(·) is a neural network that generates a triplet level
embedding, and ot is the cell output of the decoder at time
step t.

3.2.4 Training and Inference

We first train the graph encoder and the sentence decoder in
the text modality (Eq. (6)), and then perform a feature level
alignments for cross-modal unsupervised mapping.
Training in Text Modality. The graph convolutional en-
coding of a sentence scene graph GS into a feature repre-
sentation fSora, and reconstructing the original sentence S
from it are shown at the bottom part of Figure 1, where
the encoder and the decoder are denoted as GSEnc and GSDec,
respectively. We first train GSEnc and GSDec models by mini-
mizing the cross-entropy (XE) loss:

LXE(θG→S) = −
∑
t

log pθG→S
(St|S0:t−1) (15)

where θG→S are the parameters of GSEnc and GSDec,
pθG→S

(St|S0:t−1) is the output probability of t-th word in
the sentence given by the sentence decoder.

We further employ a reinforcement learning (RL) loss
that takes the entire sequence into account. Specifically, we
take the CIDEr [33] score as the reward and optimize θG→S



Figure 3: Conceptual illustration of our unpaired feature
mapping. For each kind of embedding p, there are two map-
ping functions F pI→S and F pS→I , and two associated adver-
sarial discriminators Dp

I and Dp
S .

by minimizing the negative expected rewards as follows:

LRL(θG→S) = −ES̃∼PθG→S
[r(S̃)] (16)

where r(S̃) is the reward calculated by comparing the sam-
pled sentence S̃ with the ground-truth sentence S using the
CIDEr metric. In our model, we follow the RL approach
proposed in [29, 13].
Unsupervised Mapping of Scene Graph Features. To
adapt the learned model from sentence modality to the im-
age modality, we need to translate the scene graph from the
image to the sentence modality. We take the discrepancy in
the modality of scene graphs directly into account by align-
ing the representation of the image scene graph with the
sentence scene graph. We propose to use CycleGAN [44]
to learn the feature alignment across domains.

Figure 3 illustrates our idea. Given two sets of unpaired
features f Ip and fSp , where p ∈ {o, r, a}, we have two map-
ping functions F pI→S(·) and F pS→I(·), and two discrimina-
tors Dp

S and Dp
I . F pI→S(·) maps the image features to the

sentence features, and F pS→I(·) maps the sentence features
to the image features. The discriminators are trained to dis-
tinguish the real (original modality) features from the fake
(mapped) features. The mappers are trained to fool the re-
spective discriminators through adversarial training.

For image to text mapping, the adversarial loss is

LGAN(F
p
I→S , D

p
S) = ES [logDp

S(f
S
p,Real)]

+EI [log(1−Dp
S(F

p
I→S(f

I
p,Real))] (17)

Similarly, for sentence to image mapping, we have the sim-
ilar adversarial loss,

LGAN(F
p
S→I , D

p
I ) = EI [logDp

I (f
I
p,Real)]

+ES [log(1−Dp
I (F

p
S→I(f

S
p,Real))] (18)

Due to the unpaired setting, the mapping from the source
to the target modality is highly under-constrained. To make
the mapping functions cycle-consistent, CycleGAN intro-

duces a cycle consistency loss to regularize the training,

Lcyc(F
p
S→I , F

p
I→S) =EI [‖f Ip,Rec − f Ip,Real‖1]

+ES [‖fSp,Rec − fSp,Real‖1] (19)

where f Ip,Rec and fSp,Rec are the reconstructed features in the
image and text modalities, respectively.

Formally, our overall objective for unpaired feature map-
ping is to optimize the following loss:

LAdv(θI↔S) =
∑

p∈{o,r,a}

LAdv(θ
p
I↔S) (20)

LAdv(θ
p
I↔S) = LGAN(F

p
S→I , D

p
I ) + LGAN(F

p
I→S , D

p
S)

+ λLcyc(F
p
S→I , F

p
I→S) (21)

where θpI↔S are the parameters of the two mapping func-
tions and the discriminators for each kind of embedding p,
and λ is a hyperparameter to control the regularization.
Cross-modal Inference. During inference, given an im-
age I , we generate its corresponding scene graph GI using
a pre-trained image scene graph generator, use the scene
graph encoder to get the image features f Ip, which are
then mapped through the image-to-text mapper F pI→S . The
mapped features are then used for sentence generation using
the sentence decoder. The cross-modal inference process
can be formally expressed as:

Ŝ =argmax
S

P (S|f Iora)P (f
I
r ,f

I
o,f

I
a|GI) (22)

f Iora =gora([F
o
I→S(f

I
o), F

r
I→S(f

I
r ), F

a
I→S(f

I
a )]) (23)

where gora(·) is the same module as Eq. (12).

4. Experiments
In this section, we evaluate the effectiveness of our pro-

posed method. We first introduce the datasets and the exper-
imental settings. Then, we present the performance compar-
isons as well as ablation studies to understand the impact of
different components of our framework.

4.1. Datasets and Setting

Table 1 shows the statistics of the training datasets used
in our experiments. We use Visual Genome (VG) dataset
[22] to train our image scene graph generator. We filter the
object, attribute, and relation annotations by keeping those
that appear more than 2,000 times in the training set. The
resulting dataset contains 305 objects, 103 attributes, and
64 relations (a total of 472 items).

We collect the image descriptions from the training split
of MSCOCO [24] and use them as our sentence corpus to
train the scene graph encoder and the sentence decoder. In
pre-processing, we tokenize the sentences and convert all
the tokens to lowercase. The tokens that appear less than



five times are treated as 〈UNK〉 tokens. The maximum cap-
tion length is fixed to 16, and all the captions longer than
16 are truncated. This results in a base vocabulary of 9,487
words. For sentence scene graph generation, we generate
the scene graph using the language parser in [2, 37]. We
perform a filtering process by removing objects, relations,
and attributes which appear less than 10 times in all the
parsed scene graphs. After this filtering, we obtain 5,364
objects, 1,308 relations, and 3,430 attributes. This gives an
extended vocabulary where the previous 9,487 words are
consistent with the base vocabulary. The embeddings for
the vocabulary items are randomly initialized.

Table 1: Statistics of the training datasets.

Scene Graph Vocabulary Size
#Object #Attribute #Relation

Image (VG) 305 103 64
Sentence (MSCOCO) 5,364 3,430 1,308

For learning the mapping between the modalities, the un-
paired training data is intentionally collected by shuffling
the images and the sentences from MSCOCO randomly. We
validate the effectiveness our method on the same test splits
as used in [14, 10] for a fair comparison. The widely used
CIDEr-D [33], BLEU [27], METEOR [5], and SPICE [2]
are used to measure the quality of the generated captions.

4.2. Implementation Details

We follow [37] to train our image scene graph generator
on VG. We first train a Faster-RCNN and use it to iden-
tify the objects in each image. We select at least 10 and
at most 100 objects for an image. The object features ex-
tracted by RoI pooling are used as input to the object de-
tector, the relation classifier, and the attribute classifier. We
adopt the LSTM-based relation classifier from [41]. Our at-
tribute classifier is a single hidden layer network with ReLU
activation (i.e., fc-ReLU-fc-Softmax), and we keep only the
three most probable attributes for each object. For scene
graph encoding, we set de = dx = df = 1000. We im-
plement gs, go, gr, ga, and gora (Eq. (7) - (12)) as fully-
connected layers with ReLU activations. The two mapping
functions in Eq. (17) and Eq. (18) are implemented as fully-
connected layers with leaky ReLU activations.

The sentence decoder has two LSTM layers. The input
to the first LSTM is the word embeddings and its previous
hidden state. The input to the second LSTM is the concate-
nation of three terms: the triplet embedding f ora, the output
from the first LSTM, and its previous hidden state. We set
the number of hidden units in each LSTM to 1,000.

During training, we first train the network with the cross-
entropy loss (Eq. (15)) for 20 epochs and then fine-tune it
with RL loss in Eq. (16). The learning rate is initialized to
4× 10−4 for all parameters and decayed by 0.8 after every
5 epoch. We use Adam [20] for optimization with a batch

size of 50. During the (unpaired) alignment learning, we
freeze the parameters of the scene graph encoder and the
sentence decoder, and only learn the mapping functions and
the discriminators. For all the experiments, we empirically
set λ to 10 in Eq. (21). During inference, we use beam
search with a beam size of 5.

For quantifying the efficacy of the proposed framework,
we use several baselines for performance comparison.
Graph-Enc-Dec (Avg). This baseline learns the graph en-
coder GSEnc and the sentence decoder GSDec only on sentence
corpus. It takes the average operation (as opposed to at-
tention) over the three sets of features: X ko , X kr , and X ka .
During testing, we directly feed the image scene graph GI
to this model and get the image description.
Graph-Enc-Dec (Att∗). This model shares the same setting
with Graph-Enc-Dec (Avg) but replaces the average oper-
ation with a shared attention mechanism for all three sets
(i.e., same attention for object, attribution, and relation).
Graph-Enc-Dec (Att). This model modifies the Graph-
Enc-Dec (Att∗) with an independent attention mechanism
for each set of features.
Graph-Align. This is our final model. It is initialized with
the trained parameters from Graph-Enc-Dec (Att) that uses
separate attentions, and then it also learns the feature map-
ping functions using adversarial training.

4.3. Quantitative Results

Investigation on Sentence Decoding. In this experiment,
we first train the network with Eq. (15), and then fine-tune
it with Eq. (16) on the sentence corpus. Table 2 compares
the results of three baseline models on the sentence cor-
pus. It can be seen that the attention-based model performs
better than the average-based model in all metrics, which
demonstrates that weighting over features can better model
the global dependency of features. Note that separate atten-
tion model for each set of features can significantly improve
the performance. The inconsistent alignment of three kinds
of features in Figure 4 also supports that we should treat
these sets of features separately.
Table 2: Results for different sentence scene graph decoders
on MSCOCO test split, where B@n refers to BLEU-n, M
refers to METEOR, and C refers to CIDEr. All values are
reported in percentage (bold numbers are the best results).
Methods B@1 B@2 B@3 B@4 M C
Graph-Enc-Dec(Avg) 84.3 71.8 58.8 47.1 31.0 129.4
Graph-Enc-Dec(Att∗) 91.8 80.3 67.5 55.5 34.3 151.4
Graph-Enc-Dec(Att) 94.1 84.6 72.9 61.5 36.3 168.8

Table 3: Results for different baselines without GAN train-
ing on the test split of the MSCOCO.

Methods B@1 B@2 B@3 B@4 M C
Graph-Enc-Dec(Avg) 52.1 34.1 23.8 17.6 14.9 41.4
Graph-Enc-Dec(Att∗) 54.3 37.0 26.8 20.3 15.9 47.2
Graph-Enc-Dec(Att) 56.0 33.6 20.1 11.9 17.0 48.5



(a) Object Features (Raw) (b) Relation Features (Raw) (c) Attribute Features (Raw) (d) Triplet Features (Raw)

(e) Object Features (Aligned) (f) Relation Features (Aligned) (g) Attribute Features (Aligned) (h) Triplet Features (Aligned)

Figure 4: Visualization of features in 2D space by t-SNE [25]. We plot the scatter diagrams for 1,500 samples.

Investigation on Unpaired Setting without GAN. Table 3
shows the comparisons among different baselines when no
explicit cross-modal mapping of the features is done. By
feeding the image scene graph directly to the trained scene
graph encoder and the sentence decoder, we can achieve
promising performance on the test set. Graph-Enc-Dec
(Att) still achieves the best performance in all metrics. This
is reasonable since both scene graphs and captions are high-
level understandings of the image, and by capturing rich
semantic information about objects and their relationships,
scene graphs provide an effective way to connect an im-
age to its natural language description. This finding also
validates the feasibility of our approach to unpaired image
captioning through the use of scene graphs. However, com-
pared to the paired setup (see Table 6), these results are still
inferior, meaning that only scene graph is not enough to
achieve comparable performance.
Investigation on Unpaired Setting with GAN. To align
the features from the image modality to the text modality,
we use CycleGAN with our Graph-Enc-Dec(Att) model.
Table 4 shows the comparisons of three kinds of GAN loss:
binary cross-entropy (BCE) loss with logits (the vanilla
GAN loss [11]), mean squared error (MSE) loss, and gradi-
ent penalty (GP) [18]. We also compare the results for using
different output dimensions in the discriminator.1

We can see that most of the CycleGAN variants im-
prove the performance substantially compared to the results
in Table 3. The GP with 64-dimension discriminator out-
put achieves the best performance. Note that, when we set
the output dimension to 1, the performance drops. This in-

1For example, for a dimension of 64, the output is a 64-dimensional
vector, which is compared against an all-one vector of length 64 for a
‘Real’ input, and with an all-zero vector of length 64 for a ‘Fake’ input.

Table 4: Ablation studies of different GAN losses for
Graph-Align model.

GAN Loss Discriminator B@1 B@2 B@3 B@4 C

BCE

df → df 64.9 44.2 28.6 18.1 63.0
df → 64 66.0 46.0 30.3 19.7 65.5
df → 1 65.5 45.4 29.6 18.8 65.2

MSE

df → df 65.3 44.8 28.9 18.3 62.9
df → 64 66.0 45.9 29.7 18.8 63.8
df → 1 58.4 36.3 21.7 12.6 46.7

GP

df → df 66.1 46.1 30.3 19.5 65.5
df → 64 67.1 47.8 32.3 21.5 69.5
df → 1 64.5 44.2 28.5 17.9 61.1

Table 5: The performances of using different feature map-
pings on MSCOCO test split. Shared GAN learns a shared
feature mapping for three sets of features with CycleGAN.
Single GAN concatenates the three kinds of embeddings to-
gether and learns a mapping with CycleGAN.

Methods B@1 B@2 B@3 B@4 M C
Shared GAN 60.7 41.3 26.9 17.6 20.0 60.1
Single GAN 61.8 42.1 27.3 17.7 20.1 61.2
Graph-Align 67.1 47.8 32.3 21.5 20.9 69.5

dicates that a strong discriminator is crucial for unpaired
feature alignments. From the bottom row of Figure 4, we
can see that with the help of the mapping module, the three
kinds of embeddings are aligned very well, especially the
attribute embedding (Figure 4g). It is also worth noting that
the triplet features in Figure 4h are better aligned compared
to the raw triplet features in Figure 4d.

To further demonstrate the effectiveness of the proposed
three feature mapping functions, we conduct additional ex-
periments in Table 5. It can be seen that treating the three
set of embeddings (X ko , X kr , and X ka ) without distinction
performs worse than Graph-Align.



Figure 5: Qualitative examples of different methods. In each example, the left image is the original input image; the middle
is the image scene graph; the right image is the ground-truth sentence scene graph for compassion.

Table 6: Performance comparisons on the test split of the MSCOCO dataset.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE CIDEr SPICE
Paired Setting

Soft-Attention [36] 71.8 50.4 35.7 25.0 23.0 – 90.0 –
Stack-Cap [13] 78.6 62.5 47.9 36.1 27.4 56.9 120.4 20.9
SGAE (base) [38] 79.9 – – 36.8 27.7 57.0 120.6 20.9

Unpaired Setting
Language Pivoting [14] 46.2 24.0 11.2 5.4 13.2 – 17.7
Adversarial+Reconstruction [10] 58.9 40.3 27.0 18.6 17.9 43.1 54.9 11.1
Graph-Align 67.1 47.8 32.3 21.5 20.9 47.2 69.5 15.0

Finally, Table 6 compares the results of the Graph-Align
model with those of the existing unpaired image caption-
ing methods [14, 10] on the MSCOCO test split. We can
notice that our proposed Graph-Align achieves the best per-
formance in all metrics. This demonstrates the effectiveness
of our scene graph-based unpaired image captioning model.

Figure 6: Examples of unpaired image captioning fail-
ure cases. Although the accuracy of image scene graph
highly influences the performance of captioning results, our
Graph-Align can still generate relevant image captions.

4.4. Qualitative Results

Figure 5 visualizes some examples of our models. We
show the generated image descriptions using different mod-
els along with the ground-truth captions (bottom part). In
the generated image and sentence scene graphs, we mark
object, relation, attribute nodes in orange, blue, and green,
respectively. From these exemplary results, we observe that
our method can generate reasonable image descriptions by
aligning the unpaired visual-textual modalities with the help

of scene graphs. Also, we observe that the number of at-
tributes (words in green) in the sentence scene graph is less
than that in the image scene graph. This observation poten-
tially explains why there is a huge feature embedding gap
between image and text in Figure 4c.

Figure 6 presents some failure cases of our Graph-Align
model. We can see that the image scene graphs mainly fo-
cus on local regions/objects, while sentence scene graphs
convey more information about the images. Such informa-
tion misalignment leads to generating different captions.

5. Conclusions
In this paper, we have proposed a novel framework to

train an image captioning model in an unsupervised manner
without using any paired image-sentence data. Our method
uses scene graph as an intermediate representation of the
image and the sentence, and maps the scene graphs in their
feature space through cycle-consistent adversarial training.
We used graph convolution and attention methods to encode
the objects, their attributes, their relationships in a scene
graph. Our experimental results based on quantitative and
qualitative evaluations show the effectiveness of our method
in generating meaningful captions, which also outperforms
existing methods by a good margin. In future, we would
like to evaluate our method on other datasets and explore
other mapping methods such as optimal transport.
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