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Abstract—With the significant improvement of the intelligent
capabilities of smart devices accompanied by the increasingly
high requirements. Edge computing is regarded as an effective
solution to achieve rapid response by deploying applications
and tasks close to users. However, many studies only consider
complete offloading, or offload tasks to edge servers in any
proportion when designing the allocation strategies, ignoring the
dependencies between subtasks. To deal with the dynamic envi-
ronment, some learning-based task allocation methods generally
adopt a centralized training way, which leads to the excessive
network transmission resource consumption, especially in the
smart grid scenario. To tackle the aforementioned challenges,
we investigate the collaborative task allocation (CTA) problem
by jointly considering the difference between the benefit of the
tasks execution under a certain allocation strategy and when
all tasks are executed locally. In this paper, the objective is to
maximize the system gain, and we propose an attention-aided
federated learning algorithm to deal with the CTA problem,
named AteFL, by learning a shared model and extracting the
system context for better representing the network information.
The simulation results also show the superiority of the proposed
AteFL algorithm.

I. INTRODUCTION

Recently, with the exceptional growth of smart devices
and to pave the way for 5G or beyond 5G communication
systems, promotes huge various of high-demanding services
and applications, e.g., face recognition [1], sustainable energy
supply of smart grid [2] and 3D games [3]. These applications
and services have high requirement for data privacy, and
are computation and latency sensitive constrained. To cope
with the challenges mentioned above, some studies [4], [5]
deploy the applications in cloud servers with the beneficial
of rapid elasticity and on-demand resource pooling. However,
transmitting massive data for application deployment from
devices to the remote cloud center usually produce unpre-
dictable latency and excessive network resource consumption.
Currently, some studies [6], [7] elaborate data desensitization
sharing mechanism, group feature sharing mode, etc. methods
to solve the problem of “data island” in the smart grid
scenario. However, the data desensitization sharing mechanism

has security risks such as difficulty in matching users, easy
derivation and backtracking, and even brings legal risks, and
does not meet the requirements of external sharing of power
data; while the group feature sharing model has slightly better
privacy protection, but the features are limited and cannot
match other data usage, the coverage and effectiveness of
sharing are poor, and the application effect of data sharing is
not desire for the system. Therefore, how to ensure the privacy
and security of data and users in the multi-party data sharing
of various units within the company, and on this basis to
achieve data collaborative training, improve the effectiveness
and accuracy of the data model, and achieve the effect of data
security sharing, is an urgent need to solve question.

Federated learning (FL) [8] is a promising learning method
which is collaborative training by multiple decentralized par-
ticipants and share the training parameters rather than complet-
ing the whole training process at the central point. It enables to
protect data security and user privacy as well as make full use
of decentralized data to improve the performance of models
without sharing the raw data.
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Fig. 1. Architecture Overview

Typically, an application is usually decoupled into multiple



tasks (e.g., electricity inspection or usage) that are deployed
in smart grid network with the characteristics of low cost,
flexibility and scalability, to achieve the fast response and
dynamic deployment of various of and applications [9], [10].
Be aware of the dependencies between tasks, system can know
where they are running, whether on a local user equipment
(e.g., electricity meters), on edge servers (e.g., power station,
PB), or on a remote cloud server. Generally, the dependency
of tasks is model by directed acyclic graph (DAG), reflecting
the order in which tasks are executed. For instance, the
literature [11] discusses the dependent task offloading problem
with constrains of limited predetermined task caching, the
proposed DAG based model outperforms the other alternatives
in term of applications’ completion time. However, the stud-
ies mentioned above only conduct the deployment strategies
under the homogeneous or single edge server environment.
Furthermore, transfer a huge number of data to the centralized
orchestrator for offline/online training which may lead to the
privacy issue and overhead network transmission pressure.
Particularly, in the smart grid scenario, the electricity data is
sensitive, if the data is adopted to the centralized training way,
the smart grid system may be maliciously attacked.

We explore how to design an efficient federated learning
framework to protect user privacy while fully solving the
unbalanced problem of the amount of local power data and
sample feature distribution in smart grids. In this paper, we
investigate an efficient decentralized collaborative task alloca-
tion strategy for edge computing, where a three-layer network
architecture is considered, and the tasks are partitioned into
different subtasks according to their inner-dependencies. As
illustrated in Fig. 1, the arrow directions indicate that com-
pleting the former task is a prerequisite for starting the latter.
Particularly, we model the inner-dependencies between the
subtasks as DAG, and the attention mechanism is carried out
to extract the information of both power UE and PB. Finally,
we model the collaborative task allocation problem (CTA) as
a Markov Decision Process (MDP), and the attention-aided
federated learning algorithm is proposed to derive the optimal
decision making. We summarize the main contributions of this
paper in the following:

« We introduce the dependency of task as directed acyclic
graph (DAG) making it more practical for deployment,
the collaborative tasks deployment (CTA) problem is
model by jointly considering the optimization of overall
task accomplish latency and the energy consumption of
UEs, which is proved as NP-hard.

o We extract the comprehensive network information by
using an attention based task representation method,
where system context of both infrastructure and task
features is embedded by multi-head attention mechanism.

o We model the CTA problem as a Markov decision process
(MDP) and propose an attention-aided federated learning
algorithm, named AteFL, to subsequently solve the above
problem. Simulation results also show the priorities of the
proposed algorithms.

The rest of this article is organized as follows: Section II
introduces the system mode and the optimization problem,

the proposed algorithm is derived in Section III and the
experimental simulation is conducted in Section IV. Finally,
we conclude the article in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider M = {1,2,...,m} user equipment consisting
of electricity meters in the UE layer connect with K =
{1,2,...,k} edge servers deployed in the power stations (PSs)
in Edge layer via cellular links, and a cloud center is deployed
to orchestrate the system scheduling. Assume that there are
S = {51, 52,...,5,} applications in the network given by
the UEs, each application elaborates a partitioned task DAG,
denoted as SP = {V,,,E,}, where V,, = {vi|i = 1,2,...,1}
and &, = {e%i,j € {1,2,...,1},i # j} represents the set of
dependencies of tasks, i.e., the precedence relation such that
task v is completed before v starts.

Specifically, we define the entry task vy when it has no
precursor and the task without a successor is called exit task
vI+1l Each v}, € S, is associated with the two-tuples (c?,, d?,),
where ¢!, is the required CPU cycles to finish v¢ and d,
denotes the size of input task. Thus, we have ¢ = c/+1 =0
ensuring the place where task .S,, starts and ends.

We employ an allocation variable o’ = {0,1}, | €
{M,K}, e.g., when | = k means that v} is deployed on
edge server k, a’! = 1 means that v} is deployed, O is
otherwise. Recall that a%! = al+1:! = 1 ensures the beginning
and ending allocation of task .5, respectively. To model the
time and energy consumption of task execution, we have the
following definitions:

Definition 1 (Ready Time): The time that the task ms?, has
all the prerequisites Let RT!, | € Z denote the ready time of
task ms!, executed at UE Layer and Edge Layer, respectively.

Definition 2 (Finish Time): The time that the task ms!,
accomplishes all the workload C!. We define FT:!, | € T
as the finish time of task ms! executed at UE Layer and
Edge Layer, respectively.

Definition 3 (Wireless Receiving Time): Accordingly, we
define RT>"H!, FTwt! | € T as the ready time and finish
time of the task ms’, when receiving the wireless channel from
the Edge Layer.

A. Local Execution Model

If the task v’ is executed locally, then it is computed
by the local CPU of UE with the computation capable of
cYF frequency. Accordingly, we have the local processing
time as T)™ = C%;E. Thus, the finish time of task v! at
UE Layer is FTi™ = RT™ 4 Ti™ The corresponding
energy consumption of task  at local execution can be
obtained as €&™ = k,,C!(fUF)2 [12], where k., is the
coefficient related on chip types.

B. Edge Layer Execution Model

When the task v!, is decided to execute on Edge layer, it is
first transmitted to a edge server k via cellular link, then the
computation process is carried out.

Denote the transmission time by T5%* = d& /i ks fim.k
is the uplink transmission rate [13]. In this paper, we set



the channel gain as ¢"™* = —4th power of the distance
between UE m and the edge server k. In this case, the energy
consumption of UE m is €& = g™:¥ x Tw:* Thus, the ready
time on Edge Layer is RT % = Tiwk,

Suppose that each edge server equips the computation abil-
1ty with the c¥, CPU frequency, then the execution time of task

vy, can be calculated as To% = Z». Consequently, the finish

time of task v?, on Edge Layer is FTl k = RTHF + T8, The
energy of task execution in edge server k is ;¥ =k, C? ()2

C. Problem Formulation

Our objective is to maximize the system gain in terms
of the latency and energy consumption, which indicates the
difference between the benefit of the tasks execution under a
scheduling strategy and when all tasks are executed locally.

Recall that the allocation variable o' = {0, 1}, we calcu-
late the overall Finish Time FT*" as the sum of all the Finish
Time of tasks in the system, shown as follows:

Z Z aZlFTZl (1)

vi €V, le{M,K}

Tall

Besides, the overall energy consumption for executing all

tasks: Z Z

vi eV, le{M,K}

Eall _ 7,l z l. (2)

We hereafter define the latency gain and energy consump-

tion gain as:
FTGain = F7T™ — FTall
EGain — Fm _ Eall ’ (3)

where the local operations are expressed as:

FT™ = Z Z Oé;’lFT,riL’l 4)
vk €V lEM
and
Er= Y Y aite, ®
vi €V, lEM

Note that the F'T™ and E™ are intuitive bigger than FT! and
E due to the lower computation abilities of UEs, resulting to
the higher latency and energy consumptions. Then the system

gain function G is derived as:
G =wFTY" + (1 —w)E““™, (6)

Finally, the objective of collaborative task allocation prob-
lem (CTA) is to maximize the system gain G:

mar G
st. wptwe=1 7
vfl eV,
ae{0,1}

Due to the terms %! € {0,1} in the objective (7), the
problem can be regarded as a mixed binary integer linearly
constrained programming (MBILP). The similarly problem is
proved as NP-hard [14], thereby it is not feasible to solve

the problem by heuristic algorithm or dynamic programming
because of its high computational and spatial complexity and
large scale. Thus, we carry out a DRL-based method to solve
the aforementioned problem. Before introducing the proposed
DRL framework, it is necessary to embed the representation
of nodes and tasks in the network to cope with the excessive
state and action space.

ITI. ATTENTION-AIDED FEDERATED LEARNING DESIGN

The implementation process is shown as Fig.2, we first
introduce the task representation to extract the system features
by using multi-head attention mechanism, to overcome the
problem of feature differentiation among various data hold-
ers. Then, a decentralized attention-aided federated learning
algorithm (AteFL) is proposed to solve the CTA problem.

A. System Features Embedding

We extract the system features from two aspect, i.e., the
infrastructure and task. The infrastructure features f, =
{fm, fx}, © € T is based on the calculation of task and energy
overhead, related to the features of user devices f,, and edge
server fi, respectively.

Aiming to learn the embedding of the infrastructure status,
the features extracted from the infrastructures are fed into
the MLP (multilayer perceptron) with 2 hidden layers and
1 output layer, containing 512 neurons on each layer. we
have the embedding w, = H - f,, where the transformation
matrix H is used to map the features of the infrastructure
status f,. In order to capture the overall structure of the
allocation of task and make the optimal policy for each task
ms!, € MS,. Considering the dependencies, we mainly
embed the information of the CPU requirement C? and the
input size of subtask P’ by employing the same transformation

matrix H to map the subtasks’ features f, = { fyc " f; ’ll},
y € v’ . Similarly, we can obtain the corresponding embedding
aswy =H- f,.

Furthermore, we consider that the infrastructure and the
allocated subtask on that forms a structure, and there ex-
ists a meta-chain O of subtask DAG which indicates the
information and allocation process passing by along with
the system execution. Moreover, the structure self-attention

g?y’k([wz,wy],O) is used to indicates the importance of
the subtask embedding y to the infrastructure embedding x
on the meta-chain orchestrated by edge server k. Note that
it can be shared by the infrastructure-task pairs when they
are in the same meta-chain, since the mapping patterns is
similar to each other under a certain meta-chain. Thus, the
masked attention mechanism is deployed to inject the graph
structure information. In this way, we have the local self-
attention expression as:

(WO wal|wy)
ZheN,? exp(p(wO - [wy|[wp]))’
®)
where w© indicates the chain-attention vector for the task
meta-chain O, N© is the set neighbor tasks of infrastructure
h on the task meta-chain O, and () denotes the LeakyReLU
function with the concatenation operation [-||].

Pk

o
Toyk = softmax( oy k
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Fig. 2. Implementation of AteFL scheme

B. Task Allocation Markov Decision Process

We consider the subtask allocation learning is in the contin-
uous action spaces, and an infinite-horizon Markov Decision
Process (MDP) is deployed as follows:

1) System State: The system state at time lot ¢ can be
described with two-tuple as S' = {s'}, (o) = {s,s)
indicating the system infrastructure state and task placement
state, respectively.

2) System Action: The system decides which task is ex-
ecuted in which infrastructure. We define the system action
space as At = {al }«s, = {ai'},Vn,i € msi,l € L.

3) System Reward: 1t is calculated as the welghted sum of
current reward r, we formulate the system reward according
to the optimization objective, expressed as R!(S?, A!) =
wFTGain + (1 W)EGain'

C. DRL-based Local Task Allocation Training Process

In this paper, we focus on maximize the system gain
function under a certain allocation policy, the allocation policy
mw(atlst) : S* — A is designed for mapping from the
system state under the dynamic environment to the action. We
consider the stochastic policy by augmenting the cumulative
system reward in the finite-horizon scenario. The objective is
to find the optimal allocation policy 7* with a discount rate
v €10,1) as:

T
™ = arg maz, ZE(St’at)Nﬂ- [ -r(sha")],
t=0

Accordingly, the optimal action-value function Q*(s?, a?) =
maz,E[rt|(s',a’), 7] is defined as the maximum expected
reward by the allocation strategy after realizing the system
state s! and taking the action a’. In this way, the Q-function
iteration formula can be derived according to Bellman operator
in the following if the optimal Q*(s‘*! a’™!) can satisfy for
all possible action a®*!:

Q*(s,a) al™) | (s,a)]. (10)

We use the DQN [15] to realize the local task allocation
training process. The training process is shown in Fig. xxx. An
approximator orchestrated by local edge server k for updating
the parameter w’, of the MLP is used to estimate the action-
value function, Q(s,a;w) =~ Q*(s,a). Then a Q-network is

= E[r + ymazg 1 Q* (s,

trained by minimizing the following loss function at each
iteration ¢:

F(w}) = E[(r+ymaza:Q (s',a';w}~ 1) | (st=1,at 1)
—Q( t— 1’at 1. wi 1))2}7

(11)
we can obtain the following gradient by differentiating the
above function:

Vit F(wp) = E[(r +ymazai+1Q (st attwi )
_Q (Sta at; w]tc))vwiQ (Sta atv wk)]
12)
Then the local update of parameter of wy, is:
witt = wi — 'V (w}), (13)

where 7! is the step size.

D. Attention-Aided Federated Aggregation Process

Generally, the federated aggregation process employ a sub-
set of the participants from the local training devices, then
averages the parameters. However, due to the heterogeneity of
local training capabilities in terms of different allocated task
DAG, computing abilities, and model qualities. It is unpractical
to treat the contributions equally of all local models, to this
end, we propose a weighted aggregation process to measure
the different contributions of local model to global model
by considering the local system representation via attention
mechanism. In this way, the global aggregation process is

expressed as:
N=> 0 Fu(w})
keK

(14)

where 7',? ' is the obtained from system features embedding
process, indicating the importance of the local model by jointly
considering both infrastructure and task features.

The process of the proposed AteFL is shown in Algorithm.1.
Input the system state {s’},(,,) and action {a’}.s, (Line
3), compute the current reward and next system state at each
episode (Line 4-9). The parameters are updated afterwards
in the local edge server k£ by Eq. (13) and then sent to
cloud center for aggregation operation (Line 10-15). Then
parameters are weighted aggregated by considering the system
representation via Eq.(14) (Line 16-20), finally the updated
parameters are sent back to each edge server (Line 21). The



Algorithm 1 AteFL Algorithm
1: Initialize: System features f,, fy;
Number of iterations 77
Step size 7.
2. fort=0,1,2,...,7 do
3:  Obtain the system state {s’}(, ) and action {af, } s, ;
4:  for each episode do

5: Get system action a® according to input system state
st in actor network, holding a’ ~ 7, (a’ | s?).

6: Obtain current reward r’ and next system state s'*1.

7: Store the quadruplet into replay memory

D «+ {(st,al,rt,s'TH U D.
Randomly sample a batch of N samples from D.

: end for
10:  for each edge server k do
11: Obtain the local self-attention by Eq.(8) and the local
parameters by Eq.(12).
12: Set witt = wt — 'V E(w}).
13: Return w,i,“.
14:  end for
15:  Send wi™ to cloud center.
16:  for Cloud center C' do
17: Receive w?‘l from each local edge server k.
18: Update the global model according to Eq.(14).
19: Input the global model: w,tjl = wtth

20:  end for
21:  Cloud C disperses wit
22: end for

to each edge server k.

complexity is derived hereafter, there are T iterations in the
outer loop, A/ samples in one episode in the first inner loop, the
local update occurs in K edge servers in the second inner loop,
and 1 global aggregation operation in cloud in the last inner
loop, thus, the complexity of AteFL is O(T - max{/N, K}).

IV. EXPERIMENT
A. Simulation Settings

In this section, we conduct the experimental simulations
in the python environment, the main parameter values of
computation ability of UE layer f™ and edge layer fX are
uniformly set as 1.0-1.2GHz and 2.4-2.5GHz, respectively.
The discount rate v is 0.85 and batch size is 128. Other
parameters of simulations in this work are similar to [13]. The
comparisons of system reward under different learning rate is
shown in Fig. 3. It can be seen that when the learning rate is
set as le-4 and 5e-5, the performance increases sharply at first
and sudden drops down after 125 episodes, finally converges to
34. while when learning rate is le-5, the performance shows
a stable increasing and convergence trend, thus we choose
this value for the simulation to guarantee the stability of the
proposed AteFL.

B. Simulation Results

We demonstrate the simulation results in terms of the
performance of average system cost and the system reward.
All the results are obtained by the average values for 20 times.
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Fig. 3. System reward performance under different learning rate.

To evaluate the proposed AteFL, some state-of-the-art schemes
are deployed for comparison as follows:

e FedAvg: The federated learning algorithm elaborates an
average-sum operation in global aggregation process [16].

o Centralized DRL: The task allocation is orchestrated
in the centralized cloud by deploying the DQN algo-
rithm [15].

We first demonstrate the system reward under different
episodes, shown as 4(a). The proposed AteFL shows a rpaid
growth when the system starts and converges to 35 at last. It
is observed that it improves the performance of 10% and 15%,
compared to the FedAvg and the centralized DRL algorithms,
respectively. The main reason is that the utilization of the
decentralized manner reduces the latency of data transmission
in the network compared to the centralized DRL. Besides, we
use the attention mechanism to quantify the contribution of
local training parameters, which effectively improves system
training process. Then, the performance under different edge
server number is illustrated in Fig. 4(b), the proposed AteFL
outperforms the FedAvg and centralized DRL with up to 5%
and 45%, respectively. From Fig. 4(c), it can be seen that
the proposed AteFL and FedAvg show a continuous growth
trend, while the centralized DRL tends to converge after 10
tasks. From Fig. 4(d), the proposed shows a fast convergence
trend, and improves the performance with up to 7.5% and 15%
compared to FedAvg and contralized DRL, respectively.

V. CONCLUSION

We have proposed an attention-aided federated learning
algorithm (AteFL) to deal with the collaborative task allo-
cation (CTA) problem. The dependency of task has been
modeled by directed acyclic graph (DAG), and the multi-
head attention mechanism has been used to extract the system
context, which indicated the weight of the contributions in the
global aggregation process. Then the decentralized federated
learning has been employed to solve the CTA problem. The
experimental simulation results showed the priorities of the
proposed algorithm.
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