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Abstract—In this paper, the cooperative edge caching problem
in fog radio access networks (F-RANSs) is investigated. To mini-
mize the content transmission delay, we formulate the cooperative
caching optimization problem to find the globally optimal caching
strategy.By considering the non-deterministic polynomial hard
(NP-hard) property of this problem, a Multi Agent Reinforce-
ment Learning (MARL)-based cooperative caching scheme is
proposed.Our proposed scheme applies double deep Q-network
(DDQN) in every fog access point (F-AP), and introduces
the communication process in multi-agent system. Every F-AP
records the historical caching strategies of its associated F-APs
as the observations of communication procedure.By exchanging
the observations, F-APs can leverage the cooperation and make
the globally optimal caching strategy.Simulation results show
that the proposed MARL-based cooperative caching scheme has
remarkable performance compared with the benchmark schemes
in minimizing the content transmission delay.

Index Terms—Fog radio access networks, cooperative edge
caching, multi agent reinforcement learning, double deep Q-
network.

I. INTRODUCTION

With the rapid advancement of wireless network tech-
nologies and the tremendous amount of data information,
the global mobile data traffic generated by portable devices
grows continuously in these years. Fog radio access network
(F-RAN) has been proposed as a promising paradigm for
improving spectral efficiency and optimizing legacy networks
for mobile cellular communications systems [1] [2]. In F-
RANS, edge caching can be regarded as a key component to
relax the traffic burden at backhaul links by edge devices,
e.g., fog access points (F-APs) [3]]. Due to the finite cache
capacity and communications resources of F-APs, the caching
strategy should be designed comprehensively. In this regard,
cooperative edge caching has become an efficient way to
alleviate data traffic and decrease transmission delay.

There is a variety of research works focused on cooperative
edge caching. In [4]], an improved pigeon inspired optimization
based cooperative edge caching scheme was proposed, which
utilized Cauchy perturbation and self-adaptive factor to avoid
premature convergence and achieve a better search perfor-
mance. In [5]], the authors proposed a brain storm optimization
approach which utilized the penalty-based fitness function in

individuals evaluation to meet the storage capacity constraint
and the genetic algorithm in new individuals generation to
meet the integer constraint, respectively. Specifically, with the
maturation of reinforcement learning (RL), extensive works
take RL into the optimization of cooperative edge caching.
In [6]], the authors deployed a distributed Q-learning based
content replacement strategy, which created a Q-table to store
the Q-value of every action. In [7]], a learning automata based
Q-learning algorithm for cooperative caching was proposed,
which was invoked to obtain an optimal action selection
at a random and stationary environment. In [8]], a delay-
aware cache update policy was proposed in F-RANs with the
dueling deep Q-network (DQN). In [9]], the authors proposed
a double DQN based distributed edge caching algorithm to
find the optimal caching policy with content recommendation.
In [10], the cooperative caching problem was formulated by
two potential recurrent neural networks, i.e., the echo state
network and long short-term memory network, to determine
which content to cache and where to cache. By considering
the leakage of sensitive users’ data and additive waste of
resources in training process, a cooperative caching method
based on federated deep reinforcement learning framework
was proposed to find the optimal caching policy in [L1].
In [[12], the authors extended Q-learning into multi-agent
learning to solve the content transmission delay problem,
which generally required complex computation for finding
Nash-Q equilibrium. Most of the aforementioned methods
utilize RL to find the optimal caching strategy. However,
these RL-based methods generally neglect the influence of
environment by other agents when a particular agent learns
from the environment independently.

According to the above discussions, a cooperative edge
caching scheme based on Multi Agent Reinforcement Learn-
ing (MARL) is proposed in F-RANs to find the globally
optimal caching strategy. Firstly, the cooperative edge caching
optimization problem is formulated to minimize the average
transmission delay under the cache capacity and integer con-
straints. Then, double deep Q-network (DDQN) is utilized by
each F-AP to learn how to coordinate their caching strategies
in the multi-agent system. Finally, every F-AP keeps its his-
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Fig. 1: The cooperative caching scenario in F-RANSs.

torical caching strategy as the observation of communication
procedure. Through the iterative communications among F-
APs, the average transmission delay can be reduced and the
optimization problem is tackled dynamically.

The rest of this paper is organized as follows. Section
IT introduces our system model and problem formulation.
Section III describes the proposed MARL-based cooperative
caching scheme. The simulation results are shown in Section
IV. Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

The cooperative caching scenario in F-RANs is illustrated
in Fig. 1, where a cloud server is connected with multiple
F-APs via backhaul links and multiple users are under the
serving region of each F-AP. The continuous time is divided
into discrete time slots 7={1,2,...,¢t,...,T}. The set of F-
APs is denoted by N={1,2,...,n,..., N} and the set of all
the considered users is denoted by U4={1,2,...,u,...,U}. The
set of users in the serving region of F-AP n is denoted by
U={1,2,....,upn,...,U,}. We assume that user wu, is only
served by F-AP n during time slot £.

Suppose that the library, denoted by F={1,2, ..., f, ..., F'},
is located at the cloud server far away from users, which can
be accessed by F-APs via backhaul links. Furthermore, we
assume that every file has the same size ). The content pop-
ularity distribution in the serving region of F-AP n is denoted
by Pt= {Pfl’l,Pfl’Q,...,Péyf,...,
file preference of user u for file f, which can be viewed as
content popularity indicator and predicted via some learning
procedure [[13]]. We assume that the user’s file preference pfb f
satisfies the Mandelbrot-Zipf distribution [14] as follows:
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@®! is a random permutation of content library JF for user u
during time slot ¢, and 7; is the time-varying skewness factor.
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The content popularity in F-AP n generally depends on the
file preference of its serving users u, € U,, and it can be

calculated by:
Pnt/,f=]Eu[ Z pz,f]7
u€EUy,
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where E [-] denotes the operation of mathematical expectation.
We also assume that all F-APs have the same cache capacity
S. Let the binary variable x,, s indicate whether F-AP n has
cached file f. x, y=1 if file f has been cached at F-AP n,
and otherwise x,, y=0. The caching variable x, ; should be
determined collaboratively by all F-APs and the cooperative
caching strategy, denoted by X = [z, ]y, . should be
designed carefully to make file requests from all users respond
quickly and accurately.

B. Transmission Mode

At the network edge, some F-APs can deliver the requested
file via backhaul links [15]. The connectivity among F-APs
can be denoted by an N x N matrix Y, where every bi-
nary element y, ,, indicates whether F-AP n can associate
with F-AP m. y, ,»,=1 if F-AP n can establish connection
with F-AP m, and otherwise y,, ,,=0. Therefore, the set
of the associated F-APs for F-AP n can be denoted by
No={m|Vm € N, y,, m=1,m # n}.

When user u,, requests file f, the serving F-AP n checks its
own caching strategy [, 1,...,Zn, f,..., Tn, r] to decide how
to transmit the requested file f to user u,. Some specific
transmission modes are applied to deliver the file for the
requesting user. In the following, we discuss the transmission
delay with different transmission modes, when the requested
file is cached in the serving F-AP, its associated F-APs or the
cloud server.

1) F-AP-to-User: If the requested file is cached in the
serving F-AP, it can directly deliver the file to the requesting
user. Let Rfuu, 7 denote the delivery rate of file f from F-AP n
to user u,, during time slot . Assume that efficient interference
management schemes are applied and interference power is
constrained by a fixed value P; [13|]. Then, the file delivery

rate in wireless transmission stage can be expressed as:

R;,u,f=B log (1 + |h;’uzl;u1\foégj-PI> ) (3)
where B is the channel bandwidth, P is the transmit power,
Ny is the power spectral density of noise, hfhu denotes the
channel coefficient between F-AP n and user v during time
slot ¢, and lfw is the distance between F-AP n and user u
during time slot £. Thus, the corresponding transmission delay
can be defined as:

Z{,n,u,f:Q/RfL,u,f' (4)

2) F-AP-to-F-AP: If the requested file is not cached in the
serving F-AP, the requesting user can obtain the requested
file from the associated F-APs that have cached the file.
And the transmission process can be divided into two parts:
the transmission delay from F-AP to the requesting user,



ie., Z1 o f and the transmission delay between F-APs, i.e.,
Zé’nf Then we have:
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where Rf 7 1s the transmit rate between F-APs. When there
exist multiple associated F-APs that have stored the requested
file, these associated F-APs can transmit the requested file

cooperatlvely to improve the transmission performance [J5]].
3) Cloud-Server-to-F-AP: 1f the requested file is cac ed

neither in the serving F-AP nor in its associated F-APs, the
requested file can only be fetched from the cloud server. And
the transmission process can also be divided into two parts:
the transmission delay from F-AP to the requesting user, i.e.,
Z{ .. and the transmission delay from the cloud server to

F-AP, 1 e., Z§7n7 - And the transmission delay in backhaul link
can be defined as:

Zg,n,fzo/sz,O,f7 (6)

where R} , , is the transmit rate from the cloud server to

F-AP.
Based on the above discussions, the transmission delay

for the requested file f in three transmission modes can be
expressed as:

dn f (X) =$7L7fZin,u,f
+ (1 - xmf) <1 - H (1 - xm,f)) (Zin,u,f + Zé,n,f)
meN,

+ (1 - In,f) H (1 - ImJ) (Zin,u,f + Zg,n,f) :
meN,
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Without loss of generality, Z1 o f < 22 nf <K Z3 n,f 18 as-
sumed. If z, =1, the requested file can be dlrectly fetched

from the serving F-AP. If z,, ;=0 and [] (1 — 2y ) =0,

meN,
the requested file can be fetched from the associated F-APs.

And if z, ;=0 and T[] (1 — =z, ) = 1, the requested file
meN,
can be fetched from the cloud server.

C. Problem Formulation

By considering time-varying channel state, diverse content
preference of user and cooperation among F-APs, our work
aims at finding the globally optimal caching strategy X*
to minimize the average transmission delay of the entire
system. According to the transmission delay given by (7), the
cooperative caching problem can be formulated as follows:
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s.t. f=1 X
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where the constraint (8a) implies that each F-AP is allowed
to cache at most S files, and the constraint (8b) implies that
the caching strategy variable is binary.

III. PROPOSED MARL-BASED COOPERATIVE CACHING
SCHEME

The optimization problem in (8) is a constrained integer
programming problem and non-deterministic polynomial hard
(NP-hard), which generally requires exponential computa-
tional complexity for traditional simple searching approaches
to obtain the globally optimal solution [5]. To solve the
problem with low computational complexity, we propose an
MARL-based cooperative caching scheme. We briefly in-
troduce the DDQN in every F-AP to minimize the local
transmission delay. However, individual training in the DDQN
neglects the interaction among F-APs and cannot guarantee the
minimum average transmission delay of the entire system. We
then resort to MARL to build a communication procedure to
leverage the cooperation among F-APs. By the joint learning
of agents, the maximum global reward function is achieved
and the average transmission delay of the entire system is
minimized.

A. Reinforcement Learning Framework

We model the local transmission process in single F-AP as a
Markov Decision Process (MDP) with state space, action space
and reward function. In detail, agent n observes a state sﬁL from
the environment and executes an action a!, during time slot .
Then, the environment feeds back a reward rl,=r (s}, al,) and

the new state s to the agent. To employ the RL framework,
the critical elements in MDP are identified as follows:

1) State Space: The state s, € S, indicates the cache
status information of the n-th agent during time slot ¢ and
the cache status can be denoted by s!={q’, f!}. The for-
mer element g,={q’, 1,4/, 5, ...,q", g} collects the indexes of
cached files in agent n, which corresponds to the local caching
strategy of F-AP n. The latter element f% € F is the requested
file from the requesting user in the region of F-AP n.

2) Action Space: The objective of an agent is to map the
space of states to the space of actions. The action of agent n is
denoted by a!, € A,. Let al,=0,1, ..., S, where a’=s(s # 0)
means that the s-th cached content in F-AP n will be replaced
by the requested file f, and a!,=0 means that the requested

file f! should not be cached. Then, the agent can update its
own caching strategy according to the selected action.

3) Reward Function: When agent n selects an action af,
under the state sf, a reward function r! is determined. The
objective of RL is to obtain the minimum local transmission
delay of F-AP n and to achieve the maximum reward. Thus,

the reward function is designed as follows:

ZPtfe

where the exponentlal function is used to keep the reward
function bigger than 0, and A (0 < A < 1) guarantees that the
reward function is normalized.

dy, 7 (X)— Zlnuf) 9)



Besides, the optimal action-value function Q! (s!,,al,
agent n can be defined as follows:

Qh(sh:ar,) + Qu(sy,,ap) +afry
+'ymath( t+1 t+1)

) in

Qt ( t )]’ (10)
where « and v denote learning rate and reward decay respec-
tively.

B. Double Deep Q-Network

RL techniques such as DQN and DDQN are applied as
the effective approaches to tackle the curse of dimensionality
and achieve the maximum reward. In addition, compared with
DQN algorithm, DDQN can decouple the action selection
from the calculation in (10) to prevent the overoptimistic
value estimates [[16]. Correspondingly, DDQN based on RL
is utilized to find the optimal strategy. In the architecture
of DDQN, there are two separate neural networks, a current
Q-network and a target Q-network. The current Q-network

t(sttt alt16,,) with the network parameter 6,, is utilized
for appr0x1mat1ng Q, (s}, al,) in (10). And the target Q-
network Q! (s, al|,) with the network parameter 6, is
utilized for computing the target Q-value. It can be expressed
as follows:

QL (s, al|0,)=rt +4Qt (s, (11)

where o/ = argmax ¢+1 Q}, (s, t+1|9) is an action chosen
from the current Q-network to maintain the current Q-value
under the state stt!, and 6, is the weight of the n-th target
Q-network.

a/6,),

Instead of updating the network parameters of the target
Q-network iteratively, they are copied from the current Q-
network at intervals, i.e., delayed update, which reduces the
correlation between the target Q-value and the current Q-value.
The loss function in the network is updated via a gradient
descent approach as follows [[11]]:

L(0)=(Q}, (7, ahl0n) — Qh(sh,, all00)),

where the current Q-network parameters ¢,, can be obtained
according to (12), and the target Q-network parameter 0,, will
copy 6,, from the current Q-network Q! (st ,a’ |0,,) every v
steps.

12)
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C. Proposed MARL-based Cooperative Caching Scheme

In the above work, we have utilized the DDQN in single
F-AP. In order to leverage the cooperation among F-APs,
we extend DDQN to multi-agent system and introduce the
communication procedure among F-APs, which is illustrated
in Fig. 2.

The global caching strategy can be formulated as Stochas-
tic Game (SG) [12]. The SG model can be defined as
{N,S1 x ... x Sy, A1 X ... x An, R}, where S,, is the state
space of the n-th agent, A,, is the action space of the n-
th agent, and R’ is the global reward function. So the joint
action space is A = A; X ... X Ay and the joint state space is

{ Communication }

C‘_Lf\ ‘ Ciy

Current Q-net

Cyy C s

Current Q-net

Replay Memory 1
[s%, al, R, si1, ¢yl

Replay Memory N

¢ sttt
Updatd Updad [sh ay, R, sy, Clyy

Target Q-net Target Q-net

Agent 1
t ot+l
‘R , 81

Agent N
ool | [ # s

[ Environment }

t ot
S1, 49

Fig. 2: Schematic of the MARL framework.

S =57 x ... x Sy. Since every agent’s action has an impact
both on the local reward as well as on the global reward,
all agents are expected to work cooperatively to find the
globally optimal strategy that maximizes the global reward.
By considering the reward function 7!, (X)), the global reward
function R? can be defined as:

N
= m(X)

n=1

13)

The maximum reward function in (9) only indicates the
minimum local transmission delay in single agent. To further
optimize the caching strategy, we employ the global reward

function in (13) instead of the local reward function in (9).
Next, we will use the joint learning of all agents to find the

globally optimal caching strategy X *. Every agent updates its
target Q-values according to the observation from communi-
cation procedure. Then, every agent and its associated agents
jointly update their DDQNs by sampling from experience

replies.
1) Communication Procedure: As the global reward func-

tion in (13) depends on the caching strategies of all agents,
every agent should observe the historical caching strategies of
its associated agents to adjust its own caching strategy. Thus,
MARL introduces a communication procedure among agents.
Each agent n € N caches files in accordance with the current
caching strategy of its associated agent m € N,,. We assume
that agent n treats the relative observation of its associated
agent m as the indicator of agent n’s caching strategy. Let
C}, ; denote the number of times that the requested file
f has been cached in agent n until time slot t. Agent n
records C! f accordrng to 1ts chosen action a!,. Then, we
have C* ., = E,| g/:\/ t..¢)/t. In the communication
m

procedure, agent n collects the relative observation C* n, and

stores in the experience reply D for u}lg1 dating its DDQN
2) Update Target Q-values: When file f 1s requested in

agent n, agent n observes the historical caching strategies of its
associated agents and updates its own DDQN. For maximizing
the global reward function, we rewrite the target Q-value in
(11) as follows:

A —

- t
Ctnf+1(R (X

a/|én))7
(14)
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Algorithm 1 The MARL based cooperative caching scheme

1: Initialize the reply memories Dy, ..., Dy;
Initialize the current Q-network () with the weight 6, and

the target Q-network () with the weight 6 = 0;

»

3: Initialize the count C,, 17 0,neN,feF;

4: for time slot t =1,2,...,T do

5: forFAPn712 .,Ndo

6: Collect the requested file f from users in U,

7: Observe the state s!, = {qz,l, Q25 Qs s

8 Choose an action a!, = argmax,Q" (s,a) using

the e- greedy policy under the current state st;

9: if action af, # 0 then

10: Update Chn,y= C’n gL

11 Update C’n at, =0;

12: Execute the action afl, and replace the
at -th stored file in F-AP n with file f;

13: end if

14: Compute C*,, , =E,[ > Cf, /t;

’ meN, '

15: Save [s;,a;,Rt,sﬁl,Ct_n f} in D,;

16: while F-AP m € M, U {n} do

17: Obtain the reward R! (X)) according to (13);

18: Randomly sample a mini-batch of experiences
from D,,; A A

19: Update the target Q-values Q! (st,,at, |0m)
according to (14);

20: Update the weight 60,, by the loss function
L(0,,) according to (12);

21: Reset 0,, = 0,, every v time slots;

22: end while

23: end for

24: Obtain the caching strategy X™* according to the joint
state space S = 57 X ... X Sn;
25: end for

where C*,  is an observation from which agent n observes
the historical caching strategies of its associated agents during
time slot ¢.

3) Joint Learning: Every agent and its associated
agents jointly update their own DDQNs. Single agent n
chooses the optimal action and stores the experience data

sh.al, R, st C* .| in reply memory D,. Based on
MARL, agent n and its associated agents select randomly
small batches of data from their own reply memories for
updating their own DDQNs.

During each time slot, every agent learns from the inter-
actions with environment and observes the historical caching
strategies of its associated agents to choose the optimal action.
After the joint learning, we can collect the joint caching space
to obtain the globally optimal caching strategy. The detail
of the proposed MARL based cooperative caching scheme is
presented in Algorithm 1.

IV. SIMULATION RESULTS

The performance of the proposed MARL-based cooperative
caching scheme is evaluated via simulations. The users’ file
preference follows the Mandelbrot-Zipf distribution with the
skewness factor 7, = 1.1. The small-scale channel gain |/, ,|?
follows standard exponential distribution. The bandwidth B
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Fig. 3: Transmission delay versus different caching and dif-
ferent user preference.

is set to 100MHz [[13]. Each F-AP serves the users in a
circular cell with a radius of 100m. Assume that no inter-
cell interference is induced. The file size is set to 1Mbits.
For simplification, the transmission rate in backhaul link is
set to R =100Mbps. The learning rate « is set to 0.001 and
the reward decay ~ is set to 0.9. Unless otherwise stated,
we set U = 50,F = 500,N = 5. In the simulations,
the traditional scheme (Least Recently Used (LRU)) and the
learning schemes (DQN and Independent Q-learning (IQL))
are chosen as the benchmark schemes.

In Fig. 3, we show the delay performance of different
caching and different user preference! based on MARL. It can
be observed that the four schemes can approach their stable
transmission delay as time slot increases. The noncooperative
caching schemes have higher transmission delay than the
cooperative caching schemes. The reason is that F-APs need
to fetch more files from the cloud server in noncooperative
caching schemes. It can also be observed that the transmis-
sion delay has the lowest value in the cooperative caching
and consistent user preference scheme. That is because our
proposed scheme can learn the user preference and get the
content popularity of every F-AP.

In Fig. 4, we show the convergence performance of our
proposed scheme in comparison with the three benchmark
schemes. It can be observed that our proposed scheme con-
verges to a relatively stable value when time slot ¢ is larger
than 2000. Compared with the benchmark schemes, our pro-
posed scheme has lower convergence speed and better delay
performance. The reason is that our proposed scheme has few
records about the historical caching strategies at the begin-
ning of the training. With the continuous caching updates,
our proposed scheme can gradually leverage the cooperation
among F-APs and find the globally optimal caching scheme.
Meanwhile, LRU has the highest transmission delay as no
learning is adopted. IQL and DQN have the close delay
performances since they neglect the interactions among agents.

IFor consistent user preference, we set the random permutation @, as a
constant. And for inconsistent user preference, we set the random permutation
@®!, as a time-varying random permutation of F.
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In Fig. 5, we show the transmission delay of our proposed
scheme and the benchmark schemes while varying the F-AP
caching capacity. It can be observed that the transmission
delay reduces as the caching capacity increases. It can also be
observed that the transmission delay of our proposed scheme
is always lower than that of the benchmark schemes. That
is reasonable because larger caching capacity enables F-APs
to cache more popular files simultaneously and our proposed
scheme can utilize the communication among F-APs to reduce
the average transmission delay.

V. CONCLUSIONS

In this paper, we have proposed an MARL-based coopera-
tive caching scheme in F-RANs. In each F-AP, the DDQN
has been utilized to meet the integer and cache capacity
constraints. In addition, MARL has introduced the communi-
cation procedure to leverage the cooperation among F-APs. By
recording the historical strategies of the associated F-APs, our
proposed scheme has made agents communicate with other
agents to maximize the global reward function and reduce
the average transmission delay further. Simulation results have
shown that our proposed scheme achieves a significant perfor-
mance improvement compared with the benchmark schemes.
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