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Abstract—The emergent technology of Reconfigurable Intel-
ligent Surfaces (RISs) has the potential to transform wireless
environments into controllable systems, through programmable
propagation of information-bearing signals. Techniques stem-
ming from the field of Deep Reinforcement Learning (DRL)
have recently gained popularity in maximizing the sum-rate
performance in multi-user communication systems empowered
by RISs. Such approaches are commonly based on Markov
Decision Processes (MDPs). In this paper, we instead investigate
the sum-rate design problem under the scope of the Multi-
Armed Bandits (MAB) setting, which is a relaxation of the MDP
framework. Nevertheless, in many cases, the MAB formulation
is more appropriate to the channel and system models under
the assumptions typically made in the RIS literature. To this
end, we propose a simpler DRL approach for orchestrating
multiple metasurfaces in RIS-empowered multi-user Multiple-
Input Single-Output (MISO) systems, which we numerically
show to perform equally well with a state-of-the-art MDP-based
approach, while being less demanding computationally.

Index Terms—Reconfigurable intelligent surfaces, deep rein-
forcement learning, multi-armed bandits, multi-user MISO.

I. INTRODUCTION

The next era of wireless communication, i.e., the 6-th
Generation (6G) networks, promises a plurality of remarkable
benefits, such as orders of magnitude higher communication
rates, ultra-low latency, sensing, and seamless integration of
Internet of Things (IoT) devices [1]. Evidently, such an ambi-
tion necessitates the development of novel infrastructure and
intelligent network components that can guarantee autonomous
operation. Among the candidate technologies, the suggestion
of Reconfigurable Intelligent Surfaces (RISs) has been gain-
ing momentum among academics, as well as major telecom
vendors and operators. An RIS is an artificial planar structure
to be overlaid on the sides of unassuming surfaces, such as
inner or outer walls of buildings [2], [3]. Its almost passive
(i.e., without power amplification) metamaterials are organized
in unit circuits that control the reflection angles of impinging
Electro-Magnetic (EM) waves [4]. The deployment of an RIS
is accompanied by a controller that: (a) controls the internal
states of the RIS elements, (b) communicates with other
components of the environment, and (c) empowers RISs with
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computational capabilities, therefore yielding a dynamically
programmable wireless environment “as a service” [5].

To capitalize on the benefits of the RIS technology, however,
and especially when considering the objective of high commu-
nication rates, the RIS controller incorporates some form of
optimization procedure in order to select favorable states for
the RIS elements. Traditional methods, derived from the broad
field of optimization theory [6], are in general excessively
time-consuming to be deployed in real-time operations, and
usually make strong assumptions about the properties of the
underlying system. An alternative paradigm is advocated by
the surging developments in Machine Learning (ML). This
domain of data-driven approaches involves a training process
in which employed functions are fitted to observed data (e.g.,
from simulations or field trials) and are, thus, designed to be
model-agnostic. A lot of effort has been made toward adopting
ML approaches in wireless communications [7], and recently
in RIS-empowered systems [8], [9]. Their majority, however,
considers methodologies that adhere to supervised learning,
which is less equipped to deal with continual environmental
changes, due to the inherent and separate data-collection
process that takes place prior to the final deployment.

To make RISs operate genuinely autonomously, online
methods are required. To that purpose, a growing area of
research focuses on Deep Reinforcement Learning (DRL)
algorithms. Most papers in the literature concern the sum-rate
maximization problem by iteratively configuring the digital
precoder and the RIS phase configuration [10]–[14]. A number
of works include further constraints and variations, such as
controlling the power allocation [15] and deploying Unmanned
Autonomous Vehicles (UAVs) [16], while others prioritize
different objectives, like secrecy rate [17], energy efficiency
[18], and resource scheduling [19], [20].

A common trait in all relevant DRL works is that they
are based on the Markov Decision Process (MDP) formalism,
which constitutes the cornerstone of Reinforcement Learning
(RL). In this article, we are motivated by the observation that
the rate maximization problem, as it is typically framed in
most works, constitutes a relaxed version of the MDP, that
nicely fits the elementary framework of Multi-Armed Bandits
(MAB). Therefore, we propose a deep-learning-based bandit
algorithm for the sum-rate maximization problem in RIS-
empowered multi-user Multiple-Input Single-Output (MISO)
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systems, that is conceptually simpler. Our evaluation pro-
cess showcases that its performance is equal to a popular,
state-of-the-art, DRL algorithm, while having minimal hyper-
parameters and lower neural network requirements.

Notation: Bold-faced small and capital letters denote vectors
and matrices, respectively. Calligraphy letters denote sets,
unless specified otherwise. [x]i denotes the i-th element of
x and [X]i,: ([X]:,i) denotes the i-th row (column) of X.
⊗, card(S), and x ∼ A denote the Kronecker product,
the cardinality of a set, and a random variable following
a distribution, respectively. The vec(·) operator vectorizes a
matrix in row format, E{·} denotes an expectation, and IN
denotes the N × N (N ≥ 2) identity matrix. The complex
standard Gaussian distribution is represented by CN (0, 1).

II. SYSTEM MODEL AND DESIGN OBJECTIVE

A. System Model
The considered downlink system consists of a Base Station

(BS), equipped with NT antenna elements, which serves
K single-antenna User Equipments (UEs). The direct link
between the BS and the UEs is assumed to be obstructed due
to the presence of a blocker. Instead, the communication is fa-
cilitated by M identical RISs, positioned at known locations to
the BS. Each surface is comprised of a planar arrangement of
N phase-shifting unit elements (organized in Nh rows and Nv

columns). Let Ntot ,MN be the total number of elements of
all deployed RISs, and assume an RIS controller that is able
to regulate the configuration of all the elements of the RISs.
For computational purposes, it is usually convenient to assume
the RIS elements to be controlled in groups of Ngroup, so
that elements within a group share the same configuration. On
that account, let N̂ be the number of individually controllable
groups referring to all M RISs, i.e., N̂ , Ntot/Ngroup.

For simplicity, we consider quantized RISs with 1-bit res-
olution (i.e., two possible phases per element), as is common
practice in manufactured prototypes [4], in the ideal case of
unit-amplitude reflection coefficients. By denoting with θm the
N -element vector that corresponds to the combined configu-
ration of the elements of the m-th RIS with m = 1, 2, . . . ,M ,
its reflection coefficients are denoted as

φm , [exp (jπ[θm]1), . . . , exp (jπ[θm]N )]
T
. (1)

Proceeding, we make use of the free-space pathloss model
L(d) , 20 log10(4πdλ

−1) that represents the power loss
factor (in dB) at a certain distance d and for a wavelength
λ of the carrier frequency. The involved links are modeled as
frequency-flat fading channels that change independently after
the elapse of the duration of the channel coherence time. We
use Hm ∈ CN×NT and gm,k ∈ C1×N with k = 1, 2, . . . ,K
to denote the channel coefficients of the m-th RIS to the BS
and the m-th RIS to the k-th UE links, respectively. The BS
transmitter employs the precoding matrix V ∈ CNT×K from
a discrete codebook V to transmit a row vector of information
symbols q ∈ CK×1. Each k-th column of V represents the
unit-norm precoding vector selected for the k-th UE. Hence,
the transmitted signal is constructed as x , Vq, assuming
equal power allocation among the UE signals so that the
transmission power is constrained by the total power budget P .

Using the above, the end-to-end channel is denoted as

bk ,
M∑
m=1

√
L (dm)L (dm,k)gm,kΦmHm, (2)

where dm is the distance between the m-th RIS and the BS,
dm,k is the distance between the m-th RIS and the k-th UE,
and Φm is defined as the N ×N diagonal matrix who has the
elements of vector φm placed in its main diagonal. Each of
the k UEs receives in baseband the following signal:

yk = bk[V]:,k[q]k +

K∑
i=1, i 6=k

bk[V]:,i[q]i + nk, (3)

where nk ∼ CN (0, σ2) is the Additive White Gaussian Noise
(AWGN) corresponding to the k-th UE.

B. Channel Model
The Ricean fading model is used to characterize the channel

gain matrices. Each of Hm and gm,k consists of a mixture of a
deterministic Line Of Sight (LOS) and a stochastic Non-Line
Of Sight (NLOS) components. Specifically, the BS-RIS links
can be mathematically expressed as

Hm ,

√
κ1

κ1 + 1
H̄m︸ ︷︷ ︸

LOS component

+

√
1

κ1 + 1
H̃m︸ ︷︷ ︸

NLOS component

, (4)

where [H̃m]i,j ∼ CN (0, 1) and the LOS component H̄m is
expressed in terms of the steering vector for the rectangular
RIS with ideal isotropic elements [21] and the steering vector
of the BS. Both of them depend on the azimuth and elevation
angles of arrival and departure of the impinging/outgoing
signals. Similarly, each RIS to the k-th UE link is modeled as

gm ,

√
κ2

κ2 + 1
ḡm,k︸ ︷︷ ︸

LOS component

+

√
1

κ2 + 2
g̃m,k︸ ︷︷ ︸

NLOS component

, (5)

with the random vector g̃m,k ∼ CN (0, IK) and the steering
vector component ḡm,k depending on the relative positions
between the m-th RIS and the k-th UE. The Ricean factors
κ1 and κ2 control the LOS-dominance of each channel.

C. Design Problem Formulation
As is common in multi-user communications, the Signal-to-

Interference-plus-Noise Ratio (SINR) metric is employed to
describe the quality of transmissions. Assuming that Channel
State Information (CSI) measurements can be obtained pre-
cisely and efficiently during a dedicated phase [3], [22], [23],
the SINR for each k-th UE is computed as

SINRk ,
|bk[V]:,k|2∑K

i=1, i 6=k |bk[V]:,i|2 + Kσ2

P

, (6)

which can be used for calculating the sum-rate performance
in bits per second per Hertz as follows:

Rk , log2 (1 + SINRk). (7)

Given a time horizon T of Independent and Identically Dis-
tributed (IID) channel realizations measured at discrete time
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intervals, the problem considered in this paper is that of the
maximization of the sum rate among all UEs for the specified
period. The free parameters of the system are the selection
of the precoding matrix and the joint configuration of the M
RISs. A centralized controller is conceived, that observes at
every time step all involved channel coefficients, selects the
appropriate precoder and RIS configurations, which are then
used for the signal transmission. For notation purposes, we
incorporate the configurations of all the individually controlled
RIS element groups in the binary N̂ -dimension vector ϑ. The
design optimization problem can now be summarized as:

OP : max
V∈V,ϑ∈{0,1}N̂

T∑
t=1

K∑
k=1

Rk s.t. E{‖x‖2} ≤ P. (8)

The constraint needs to be satisfied by the design of the
precoder and the power allocation onto the UE symbols.
Nevertheless, OP is a discrete optimization problem of high-
dimensionality, which typically involves applying an iterative
optimization scheme at every channel coherence time.

III. DRL-BASED PROBLEM FORMULATION

RL is a sequential decision making framework under which,
at each discrete time step t, an agent (which is the controller
in our RIS-empowered multi-user MISO system), observes the
state of the environment (the wireless system) and decides on
an action. The action is then transmitted to the environment,
which feeds a reward signal back to the agent and proceeds
to the next time step t + 1. In the following, we give the
correspondence of these concepts to the problem at hand:
• State: Under the assumption of available and perfect CSI

at the agent, the state corresponds to the concatenated
vector of all involved channel coefficients:

st , [vec(H1), vec(H2), . . . , vec(HM ),

gT1,1,g
T
1,2, . . . ,g

T
1,K , . . . , (9)

gTM,1,g
T
M,2, . . . ,g

T
M,K ]T .

We denote by S the state space, which is a subset of
Cdim, where dim ,MN(NT +K).

• Action: The agent selects the precoding matrix and the
joint RIS configuration, i.e., it is responsible to compute:

at , [vec(V), ϑT ]T . (10)

In this work, we assume a discrete action space A with
an implied ordering of the available actions. We will be
using the notation I(a) to refer to the index of a in A.

• Reward: The reward rt is simply defined as the achiev-
able sum-rate performance for the current CSI, i.e.:

rt ,
K∑
k=1

Rk. (11)

It is assumed that one time step corresponds to one channel
coherence block, hence, each state contains a different channel
realization. The goal of the agent is to converge to a policy,
i.e., a sequential action-selection function, that maximizes
the (expected) sum of rewards during the interaction period.
Hence, the objective of the RL formulation is equivalent to

BS

RISM

RIS1

UEK

UE1

Environment

Controller (agent)

Fig. 1. An RL-based formulation of the sum-rate maximization problem in
RIS-empowered multi-user MISO systems. The agent utilizes a neural network
to learn from past experiences.

OP’s objective. A schematic overview of the RL process for
the considered optimization problem is illustrated in Fig. 1.

Problems that fall under the domain of RL typically adhere
to the MDP formalism. An MDP is defined via the afore-
mentioned state, action, and reward conceptualizations, but
with the additional “Markovian property” of the environment
dynamics, namely:

1) The next state st+1 is produced by the environment
according to a transition probability distribution (usually
unknown to the agent), P , that depends exclusively on
the past state and action, i.e., st+1 ∼ P(st+1|st,at).

2) The instantaneous reward at time t is treated as a
function that depends on st, at, and st+1, i.e., rt =
R(st,at, st+1).

In the growing field of DRL, deep neural networks are
employed to parameterize directly or indirectly the policy
function, and are trained on collected experiences. The main
difference with other forms of ML is that the networks
themselves guide the data collection process, instead of relying
on a pre-compiled dataset, since they dictate the agent’s
interactions. As a result, there is an implicit trade off between
the exploration (observation of different states/actions) and the
exploitation (selection of already discovered beneficial actions)
during the learning process.

The most popular algorithm in discrete action spaces is
termed Deep Q Network (DQN) [24]. This agent is tasked
with learning the optimal action value function Q(st,at), that
describes the expected “utility” (sum of rewards), when the
agent observes st and selects at. DQN chooses to approximate
Q with a neural network Qw with weights w that receives a
state as input and outputs a vector of dimension card(A),
so that the i-th component of the vector is an estimate of
the Q value for the action with index I(a) = i. Once the
Q values are estimated, the agent’s policy is to select the
one with the highest Q value, although a random action
is selected with probability ε to encourage exploration (this
behavior is commonly termed “ε-greedy”). The network can
converge to the optimal Q function by (partially) minimizing

1558Authorized licensed use limited to: Oulu University. Downloaded on February 09,2023 at 10:56:41 UTC from IEEE Xplore.  Restrictions apply. 



4

the squared Temporal Difference (TD) learning loss function
of the network at every iteration, which is defined as:

L(w) ,
∑

(s,a,r,s′)∈B

(
Qw(s,a)− (r + max

a′∈A
Qw(s′,a′))

)2

,

(12)

where B is a batch of collected past experiences (state, action,
reward, and next state tuples). The network’s weights are
updated at every step through any variant of gradient descent,
using a learning rate η1. This process, however, is prone
to instabilities during training. To that end, many variations
were proposed that are usually applied in unison. Firstly,
the collected experiences may be sampled in proportion to
the resulting TD error during the agent’s last encounter. In
addition, the gradient values may be clipped in a range [−δ, δ].

More importantly, a “target network” Q̂ŵ is introduced,
which is a copy of the original Q network, but with its own
set of weights ŵ. Its role is to be updated at a lower rate to
help with the stability of the descent, as the original network
changes. The policy of DQN now involves the selection of the
action that maximizes Q̂ŵ(s,a), instead of Qw(s,a), while
Q in the max term of (12) is also substituted by Q̂. While
Q continues to get updated via gradient descent at every time
step t, the weights of Q̂ change at a lower frequency t′ through
a soft-copy from w, with a controllable “temperature” hyper-
parameter τ as ŵ ← (1− τ)ŵ + τw.

IV. PROPOSED MAB METHODOLOGY

Having described the theoretical aspects of the methodology
and the benchmark algorithm in detail, we proceed with the
presentation of our own contributions. The main motivation for
this work is the observation that (a) the channel realizations
in the problem at hand are IID and (b) the agent’s action
(RIS phase profiles and the BS precoder selection) result
to the immediate calculation of the reward value (sum-rate),
within the current coherent block. Under the prism of this
inspection, it becomes apparent that the “Markovian property,”
as defined in Section III, is reduced to the degenerate case
where P(st+1|st,at) ≡ P(st+1) and for the reward holds
R(st,at, st+1) ≡ R(st,at) (i.e., it is a function of only st
and at). This has the profound effect of making the time steps
disentangled from each other, in the sense that the agent’s
action cannot influence the environment’s future evolution,
and hence, move to more favorable states. An agent is simply
required to act greedily, by only considering the immediate
reward, instead of devising a more sophisticated policy, usually
attained by DRL algorithms.

This perspective motivates us to propose a conceptually
simpler MAB-based formulation for solving the sum-rate max-
imization design objective. In a MAB setting, each available
action is associated with an underlying distribution over the
rewards, which is represented as R̂(r|a). At each time step t,
when an action at is selected, a realization of the sum rate,
rt, is sampled from the distribution R̂(r|at). Conceptually,
MAB algorithms keep track of running averages of the reward
per action and use an exploration behavior for efficient search
in the action space, such as the ε-greedy strategy of DQN.

Fig. 2. The structure of the reward-prediction network Ĝw̃ of the proposed
DRP algorithm. The network receives a channel observation as input and
outputs its predicted expected reward for each of the actions in the action
space.

The MAB setting is able to admit “context” observations that
may guide the agent toward the appropriate action selection
at every time step, a variation denoted as Contextual Bandits
(CB). Note that in principle, no assumption is made about the
generative process of the observations, other than that they
influence R̂(r|a), i.e., R̂(r|a) ≡ R̂(r|s,a).

One straightforward technique one may employ to solve
the CB problem is to have a neural network predicting the
average reward for each action. We propose one such bandit
algorithm, which we call Deep Reward Prediction (DRP) for
the considered sum-rate maximization problem. A neural net-
work Ĝw̃(s), parameterized by its weight vector w̃, receives
as input a state/observation vector st and outputs a vector
r̂t ∈ Rcard(A), so that its i-th element corresponds to the
network’s prediction for the expected reward if the action with
I(a) = i were to be selected upon observing st. A schematic
overview of this reward-prediction network is given in Fig. 2.
Notice that the Ĝ network is very similar to the Q network
of DQN, however, their difference lies in the interpretation
of the predictions (expected rewards versus Q-values) and the
training process. In fact, given that the transitions are IID and
unaffected by the agent’s actions, the simple Mean Squared
Error (MSE) loss function is exploited to make the network
accurately predict the expected values:

L̂(w̃) ,
(
rt − [Ĝw̃(st)]I(at)

)2
. (13)

In the above, the [Ĝw̃(st)]I(at) can be interpreted as a mask
that only considers the reward prediction that corresponds to
the actually selected action during the interaction. Since the
output of Ĝ provides an estimate of how good each action is,
the ε-greedy strategy is utilized to help the agent explore differ-
ent actions during training. The complete proposed method is
summarized in Algorithm 1. Note that, in contrast to the DQN
benchmark, our method requires only two hyper-parameters (ε
and η2) and a single instance of a neural network.

V. NUMERICAL EVALUATION

To assess the performance of our proposed methodology, we
devise a scenario with K = 2 UEs and M = 2 RISs in the
presence of LOS-dominated channels. The main parameters
of the simulated RIS-empowered communications are given in
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Algorithm 1 The Proposed Deep Reward Prediction (DRP)
Require: Probability of selecting a random action ε and the

learning rate η2.
1: Initialize w̃ randomly.
2: Observe initial state s1 from the environment.
3: for t = 1, 2, . . . , T do
4: With probability ε select a random action from A,

otherwise, select at so that I(at) = argmax Ĝw̃(st).
5: Feed at to the environment and receive rt and st+1.
6: Compute gradient ∇L̂(w̃) using (13).
7: Update network as w̃ ← w̃ − η2∇L(w̃).
8: end for
9: return Trained network Ĝw̃.

Table I, although we allow for the total power budget P and
the number of RIS elements N (and subsequently Ntot and N̂ )
to vary across the following evaluation settings. The precoding
codebook was constructed via the 2 × 2 Discrete Fourier
Transform (DFT) matrix. In detail, its first two columns
were considered to be the available choices for the precoder
intended for the first UE, while the latter two were allocated
to the second UE. The codebook is purposely kept modest in
order to restrain the exponential growth of the action space,
in the view of investigating the effects of the RISs in the
considered communication system.

In our evaluation process, we consider the proposed bandit
algorithm DRP along with the DQN benchmark. We also
simulate the classic Upper Confidence Bound (UCB) MAB
algorithm [25] that disregards any observations. Instead, it
keeps track of running averages and confidence intervals for
the expected sum rates per action, and selects the one with the
highest confidence bound. Finally, the random action selection
policy and the optimal policy of exhaustively evaluating all
RIS configurations and precoders at every channel realization
are included as a baseline and upper bound, respectively.
Each of the two DRL algorithms was trained for a total of
50card(A) time steps for each trial, followed by an evaluation
period of 300 steps, in which the agents selected actions
with their learned deterministic policy (i.e., without choosing
a random action with probability ε). For fairness, identical
neural networks are used by the two agents, although recall
that DQN uses two copies of its Q network. The employed
network is consisted of two Convolutional/MaxPooling blocks
followed by two fully connected layers with ReLU activations.
The convolutional layers have 64 units and a kernel size of
5, the MaxPooling operations also have a size of 5, and the
fully connected layers are consisted of 32 units each, with
the Dropout technique being applied for regularization. The
hyper-parameters used in the evaluation process are given in
Table II. The UCB algorithm was trained for 500card(A) steps
to compensate for the lack of contextual observations.

Firstly, the average sum rates attained during the evaluation
period by each method are compared in Fig. 3 across increas-
ing RIS sizes and different elements’ groupings. Clearly, the
proposed DRP algorithm and DQN exhibit identical perfor-
mances. This result reinforces our hypothesis that elaborate
MDP-based techniques do not provide any significant advan-

TABLE I
PARAMETER VALUES USED FOR THE SIMULATION RESULTS.

Parameter Value
BS coordinates (m) (10, 5, 2)
RIS coordinates (m) (7.5, 13, 2), (12.5, 13, 2)
UE1 coordinates (m) (8.775, 14.394, 1.634)
UE2 coordinates (m) (9.648, 13.281, 1.632)
NT, card(V) 4
κ1, κ2 30 dB
σ2 (equal for all UEs) −110 dBm
Carrier frequency 35 GHz
Ngroup 16

TABLE II
HYPER-PARAMETER VALUES OF THE CONSIDERED DRL ALGORITHMS.

Common Parameters
ε 0.3
Dropout probability 0.2

DRP Parameters
Learning rate η2 0.001

DQN Parameters
Batch size card(B) 128
Learning rate η1 0.0002
Soft update τ 0.18
Target update frequency t′ 100

32 64 96 128 160
Total RIS meta-atoms (Ntot)

1.0

1.5

2.0

2.5

S
u

m
-R

at
e

(b
p

s/
H

z)

DRP DQN UCB Random Optimal

16 64 256 1024 4096
Number of actions (card(A))

Fig. 3. Sum-rate performance of the compared algorithms as the number of
RIS elements and the dimension of the action space increase. The BS transmit
power P was set to 40 dBm.

tage in the plain sum-rate maximization problem with IID
channel realizations. Both DRL algorithms vastly outperform
the random baseline, with an increase of higher than 89%.
At the same time, their performance is close to the optimal
rate (varying approximately from 77% to 96%). Interestingly
enough, the naive bandit approach, UCB, is also capable
of sufficiently outperforming the random selection strategy,
while it achieves comparable results to the DRL methods
for the case of 96 RIS elements. At the same time, Fig. 3
shows that its performance degrades at the largest trial and
we expect the trend to continue in increasing RIS sizes.
Nevertheless, it can be inferred that the formulation of the
sum-rate maximization problem as a MAB approach allows
for channel-agnostic strategies to be deployed, albeit with
relatively limited capabilities.

In Fig. 4, the attained rewards during the training process of
the DRL algorithms are depicted, for the setup with 128 total
RIS elements. For clarity, only the first 15000 iterations are
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2500 5000 7500 10000 12500 15000
Iteration
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1.0

1.5

2.0

2.5
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m
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(b
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s/
H

z)

DRP

DQN

Fig. 4. Training curves of the compared DRL algorithms for the first portion
of the training period. The curves are smoothed by averaging within a rolling
window of 300 iterations, and the shaded areas represent the accompanying
standard deviations. P is set to 40 dBm and Ntot to 96.

TABLE III
NORMALIZED AVERAGE SUM RATES FOR VARYING POWER.

P (dBm) 10 20 30 40 50
DRP 0.728 0.791 0.787 0.800 0.746
DQN 0.731 0.754 0.775 0.809 0.737

shown (approximately 30% of the training period), in which
variations during training are prominent. It can be observed
that the learning curve of the DQN is steeper than that of
DRP, although they both reach their common peak plateau
at approximately the same time. Let it be noted that for
this part of the evaluation, the actions are selected with the
exploration policy (i.e. the ε-greedy selection), which results
in lower reward values, compared with the final evaluation of
the learned (deterministic) policies.

To investigate the effect of the transmit power P on the
performance of the DRL algorithms, we repeat the evaluation
process for the trial with 96 total RIS elements, while varying
P . The normalized average sum rates, with respect to the
optimal rate given by exhaustive search, are given in Table III.
The employed algorithms are mostly unaffected by the changes
in P , performing in a similar manner (with respect to the
optimal policy of exhaustive search), in all regimes.

VI. CONCLUSION

This paper addressed the sum-rate maximization problem
in RIS-empowered multi-user MISO systems using RL tech-
niques. Motivated by the IID assumption about the channel
realizations and the immediate rate feedback, we suggested a
treatment of the problem under the MAB framework, instead
of the traditional MDP formalism. We proposed a DRL
bandit algorithm equipped with a reward prediction network
to estimate average sum rates per action (RIS configuration
and precoder selection) and the ε-greedy exploration behav-
ior. The numerical evaluation process in a multi-RIS system
established that the method compares equally with the state-
of-the-art DQN algorithm, while being simpler in terms of in-
terpretability, number of hyper-parameters, and neural network
requirements. Finally, we demonstrated that our MAB-based
UCB approach attains competitive performance in certain
cases without the need for any channel observation.
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