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Abstract— Multiple-shift complementary sequences (MCS), a
generalized form of Golay complementary sequences, have re-
cently been introduced to encode OFDM signals, allowing a
better trade-off between the code rate and peak-to-mean envelope
power ratio (PMEPR). However, a table of such sequences needs
to be constructed by exhaustive search, a practically impossible
task for a moderately large number of sub-carriers. As has been
done for Golay complementary sequences and generalized Golay
complementary sequences, this paper successfully identifies a
class of MCS as the second order cosets of the first order Reed-
Muller codes. We also present a new proof for the PMEPR of
MCS.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) pro-
vides excellent immunity to impulse noise and alleviates the
need for equalizers, also enabling efficient hardware imple-
mentations using fast Fourier transform (FFT) algorithms.
However, a major drawback is the high peak-to-mean envelope
power ratio (PMEPR) of the OFDM signal. A number of
PMEPR reduction techniques have been proposed including
signal distortion techniques [1], [2], coding [3], [4], [5],
[6], multiple signal representation [7], [8], [9], [10], modified
signal constellation [11], pilot tone methods [12] and others.

An idea introduced in [13] and developed in [14] is to use
the Golay complementary sequences [15] to encode OFDM
signals with a PMEPR at most 2. Recently Davis and Jed-
wab [3] made further advances on this work and observed
that the 2h-ary Golay complementary sequences (GCS) of
length 2m can be obtained from certain second order cosets
of the classical first order Reed-Muller code. As consequence
of this intrinsic observation, Davis and Jedwab [4] were
able to obtain, for a small number of carriers, a range of
binary, quaternary and actuary OFDM codes with good error-
correcting capabilities, efficient encoding and decoding, and a
PMEPR at most 2. Since the code rate of GCS is prohibitively
low for a moderate to large number of sub-carriers, a follow-
up work done in [6] investigated the trade-offs between code
rate and PMEPR using Generalized Golay complementary
sequences [16].

Xin and Fair [17] have recently introduced another general-
ization of GCS called multiple-shift complementary sequences

(MCS). The autocorrelation of a pair of MCS of length n sums
to zero at delays which are multiples of a certain number
L- whereas the autocorrelation of a classical GSC pair sums
to zero at all delays between 1 and n − 1. If L is set to
1, then MCS reduces to classical GSC. Clearly, any Golay
sequence is a multiple-shift sequence, but the converse is not
always true. Thus, there are more members of MCS than those
of GCS. This translates to higher coding rate and reduced
PMEPR [17]. While several properties and the PMEPR of
MCS are discussed in [17], the sequences are generated by
exhaustive computer search, a practically impossible task for
even a moderately large number of sub-carriers. Therefore an
algebraic method to construct a sufficient number of code-
words is desirable. In this paper, we successfully identify a
class of MCS in the second order cosets of the first order Reed-
Muller codes and specify the trade-off between the code rate
and PMEPR when MCS are used to encode OFDM signals.
This identification enables finding distinct MCS. We prove the
PMEPR of MCS and this proof immediately reveals how GCS,
Generalized GCS and MCS are related.

For an M -ary phase shift keying, let ξZM = {ξk : k ∈
ZM}, where ξ = exp (2πj/M) and ZM = {0, · · · ,M − 1}.
For a codeword c = (c0, . . . , cn−1) with c� ∈ ξZM , the n sub-
carrier complex baseband OFDM signal may be represented
as

sc(z) :=
n−1∑
�=0

c�z
�, (1)

where z = ej2πt. The instantaneous power of the complex
envelope sc(z) is defined by

Pc(z) := |sc(z)|2. (2)

The peak-to-mean power ratio (PMEPR) of codeword c is
defined as

PMEPR(c) :=
1
n

sup
|z|=1

Pc(z). (3)

II. PMEPR OF MCS

We next investigate the PMEPR of MCS and compare it
with those of GCS and the generalized GCS. First we briefly
review Golay sequences.
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Two ξZM -sequences a and b of length n are said to form a
Golay complementary pair [15] if Pa(z) + Pb(z) = 2n. Each
sequence a or b is called a Golay complementary sequence. It
is easy to see PMEPR(a) ≤ 2 if a is a GSC. A generalization
of Golay complementary pair, known as the Golay comple-
mentary set of element N [16], {a0, · · · , aN−1}, is defined
by Pa0(z) + · · · + PaN−1(z) = Nn. Any ξZM -sequence a�

in the complementary set is called an N -generalized GSC.
Clearly, PMEPR(a) ≤ N if a is an N -generalized GSC. In
particular, a 2-generalized GSC is an ordinary GSC. Using
the aperiodic auto-correlation function Ra(·) of a sequence
a ∈ C

n, defined by

Ra(�) :=




n−�−1∑
k=0

ak+�āk, � = 0, 1, · · · , n − 1,

0, otherwise,

where z̄ is the complex conjugate of z, the Golay complemen-
tary set of N can be alternatively defined by

Ra0(�) + · · · + Ran−1(�) = Nnδ(�).

where the Dirac function δ(�) is defined by δ(0) = 1
and δ(�) = 0 for � �= 0. Another generalization of GCSs
is called multiple shift complementary sequences, first in-
troduced in [17]. Their fundamental properties have been
investigated in [17], but an explicit algebraic construction for
them is unknown so far. We next identify a certain class of
MCSs as second order cosets of the first order Reed-Muller
codes.

Definition 1: Let L be a positive integer. Two ξZM -
sequence a and b of length n are said to form a multiple shift
complementary pair of L (or L-shift complementary pair) if

Ra(�) + Rb(�) = 2nδ(�), � mod L = 0. (4)

a or b is called a multiple shift complementary sequence of L
(or an L-shift complementary sequence).

A 1-shift complementary sequence is a Golay complemen-
tary sequence. In the following, we present a new proof to
show that the PMEPR of an L-shift complementary sequence
is at most 2L. While the PMEPR of MCSs has been dis-
cussed in [17], our new proof immediately reveals the relation
between generalized Golay GCS and MCS.

Theorem 1: The PMEPR of an L-shift complementary se-

quence is at most 2L.

Proof: Suppose that a and b form an L-shift comple-
mentary pair. Let ζ = exp(j2π/L). For a ξZM -sequence
a = (a0, a1, · · · , an−1), define the sequences au ∈ C

n for
u = 0, 1, . . . , L − 1 as

au = (a0ζ
0u, a1ζ

u, a2ζ
2u, · · · , an−1ζ

(n−1)u).

Then a = a0 and

L−1∑
u=0

Pau(z) =
L−1∑
u=0

∣∣∣∣∣
n−1∑
k=0

akζkuzk

∣∣∣∣∣
2

=
L−1∑
u=0

(
n +

N−1∑
�=0

Ra(�)ζu�z� + R̄a(�)ζ−u�z−�

)

= Ln + 2�
(

n−1∑
�=0

Ra(z)z�
L−1∑
u=0

ζu�

)
,

where �(·) is the real part of a complex number. Since

L−1∑
u=0

ζu� =
{

L, � mod L = 0,
0, otherwise,

follows that

L−1∑
u=1

Pau(z) = Ln + 2L�

 ∑

� mod L=0,� �=0

Ra(�)z�


 .

Similarly, for a ξZM -sequence b = (b0, b1, . . . , bn−1), we can
define

bu = (b0ζ
0u, b1ζ

u, b2ζ
2u, · · · , bn−1ζ

(n−1)u)

for u = 0, . . . , L − 1, and show that

L−1∑
u=0

Pbu(z) = Ln + 2L�

 ∑

�=0 mod L,� �=0

Rb(�)z�


 .

Since a and b form an L-shift complementary pair, these yield

L−1∑
u=0

[Pau(z) + Pbu(z)] = 2Ln.

It shows that PMEPR(a) ≤ 2L and hence completes the

proof.
The argument in the proof shows that

{a0, ·, aL−1, b0, · · · , bL−1} is a Golay complementary
set if ζ ∈ ξZM , that is,

M mod L = 0.

For an example, a 2-shift complementary binary sequence is a
4-generalized Golay complementary sequence. Therefore the
L-shift complementary sequences constitute a subset of the
N -generalized GCS if M mod L = 0. But this result may
not hold generally.

III. ENCODING OF MCS

We next identify a class of MCS in the second order
cosets of the first order Reed-Muller code. We also investigate
the trade-off between the code rate and PMEPR when MCS
are used to encode OFDM signals. We use the frameworks
of Boolean functions and Reed-Muller code in our discus-
sion [18].

A Boolean function is a mapping f from Z
m
2 to ZM . For any

x = (x1, . . . , xm) ∈ Z
m
2 , we regard each variable xi as itself

619

Authorized licensed use limited to: UNIVERSITY OF ALBERTA. Downloaded on December 21, 2009 at 19:57 from IEEE Xplore.  Restrictions apply. 



being a Boolean function xi : (y1, · · · , ym) → yi. Consider
the 2m monomials

1, x1, . . . , xm, x1x2, x1x3, · · · , xm−1xm, · · · , x1 · · ·xm.

Then any Boolean function f can be uniquely expressed as
a linear combination over ZM of these monomials. Let i =∑m

�=1 i�2m−� be the binary expression of a number i ∈ Z2m .
For a Boolean function f , define a sequence f of length 2m

by abusing the symbol f , such that the ith coordinate of f is
f(i1, . . . , im).

The r-th order Reed-Muller code RMM (r,m) of length
2m is generated by the monomials in Boolean functions xi

of degree at most r. Alternatively, RMM (r,m) is the linear
code over ZM whose generator matrix is identical to that of
binary Reed-Muller code RM2(r,m). The number of mono-
mial in the xi of degree � is

(
m
�

)
, so RMM (r,m) contains

M
r
�=0 (m

� ) codewords. As an advantage of Reed-Muller code,
the minimum Hamming distance of RMM (r,m) is 2m−r. In
addition, for a codeword c ∈ RMM (2,m), c + RMM (1,m)
is called a second order coset of the first order Reed-Muller
code RMM (1,m).

Now we are going to identify a class of L-shift comple-
mentary sequences of length 2m in the second order cosets of
the first order Reed-Muler code. Consider the case L = 2d for
some integers d ≥ 0. Define the quadratic form

f(x1, . . . , xm) : =
M

2

m−d∑
k=1

xπ(k)xπ(k+1)

+
m∑

k=1,k �=�

m∑
�=m−d+1

ck,�xkx�

+
m∑

�=1

c�x�.

where π is the permutation of the set {1, 2, . . . ,m − d} and
ck,�, c� ∈ ZM . Then we have the following identification
theorem

Theorem 2: Suppose that the sequences a and b over ZM

are defined by

a(x1, · · · , xm) := f(x1, · · · , xm) + c,

b(x1, · · · , xm) := f(x1, · · · , xm) + 2h−1xπ(1) + c′.

Then the ξZM -sequences ξa and ξb form a 2d-shift comple-
mentary pair of length 2m for any c, c′ ∈ ZM .

Proof: Consider m > 1 since it degenerates to the trivial
case of GCS for m = 1. For a given x ∈ Zn, let y = x + u
for some u �= 0 and u mod 2d = 0. Suppose that the binary
representation of x and y are (x1, · · · , xm) and (y1, · · · , xm)
respectively. Then

bx − ax =
M

2
xπ(1) + c′ − c. (5)

We now discuss (5) for two cases.
Case 1: yπ(1) �= xπ(1). Then

(ax − ay) − (bx − by) =
M

2
(yπ(1) − xπ(1)) =

M

2
.

Recall ξ = exp(2πj/M), this implies

ξax−ay/ξbx−by = ξM/2 = −1.

Therefore ξax−ay + ξbx−by = 0, which obviously implies that
Ra(u) + Rb(u) = 0. Therefore ξa and ξb form a 2d-shift
complementary sequence pair.

Case 2: yπ(1) = xπ(1). Since y �= x, there is some � ∈
{1, · · · ,m− d} such that y� �= x�. Since π is the permutation
of {1, · · · ,m−d}, we can assume that v is the smallest integer
for which xπ(v) �= yπ(v). Let x′ be the integer whose binary
representation

(x1, x2, · · · , 1 − xπ(v−1), · · · , xm−d+1, · · · , xm)

differs from that of x only in π(v−1)th coordinate. Similarly
define y′ to have the binary representation

(y1, y2, · · · , 1 − yπ(v−1), · · · , ym−d+1, · · · , ym).

So y′ = x′ + u due to xπ(v−1) = yπ(v−1). By the definition
of the quadratic form f , we have

fx′ − fx =
M

2
xπ(v−2) +

M

2
xπ(v) + dπ(v−1)(1 − 2xπ(v−1))

+
m∑

�=m−d+1

cπ(v−1),�xπ(v−1)x�(1 − 2xπ(v−1)).

Since y mod 2d = x, we have x� = y� for � = m − d +
1, . . . ,m. Since xπ(v−1) = yπ(v−1), and xπ(v) �= yπ(v), we
obtain

(ax − ay) − (ax′ − ay′) =
M

2
.

This together with (5) implies that

(bx − by) − (bx′ − by′) = (ax − ay) − (ax′ − ay′) =
M

2
.

Then

ξbx−by/ξbx′−by′ = ξax−ay/ξax′−ay′ = −1,

which implies that

ξax−ay + ξax′−ay′ = 0 = ξbx−by + ξbx′−by′ .

Therefore,
Ra(u) + Rb(u) = 0,

which completes the proof.
Using Theorem 2, we identify

(m−d)!
2 Md(m−d)+d(d−1)/2+m+1 numbers of 2d-shift

complementary sequences in the second order cosets of
first order Reed-Muller codes. Therefore the resulting code
rate is

d(m − d) + �d(d − 1)/2� + m + 1
2m

+
�log2(m − d)! − 1�

2m log2 M
.

Fig. 1 shows the code rate versus PMEPR for these identified
MCS for n = 16. Since these sequences constitute a subset of
the second order Reed-Muller code RMM (2,m), their code
rate is lower than that of second order Reed-Muller codes.
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Fig. 1. The code rates of MCS found by computer search, the second order
Reed-Muller code and MCS identified in Theorem 2 versus the PMEPR for
n = 16.

Fig. 1 compares this class of MCS and MCS found by exhaus-
tive computer search. There are many more MCS than found
by Theorem 2. Thus it may be possible to find high-coding-
rate schemes using MCS. Note however that the sequences in
Theorem 2 guarantee that the minimum Hamming distance is
2m−2, a guarantee which may not hold for larger sets of MCS.

IV. CONCLUSION

In this paper, we have shown that the PMEPR of an L-
shift complementary sequence is at most 2L. This suggests a
relationship between MCS and generalized GCS. An M -ary
L-shift complementary sequence is a 2L-generalized Golay
complementary sequence if M mod L = 0. GSC and gen-
eralized GSC both have intimate links to Reed-Muller codes
[6]; similarly, this paper identifies a class of MCS as second
order cosets of the classical first order Reed-Muller code. The
trade-off between the code rate and PMEPR for this class of
MCS has been determined. Simulation results show that there
are many more MCS than those are identified in Theorem 2.
Thus it may be possible to construct an encoding scheme of
high code rate using MCS. But such an encoding scheme may
not guarantee that the minimum Hamming distance is 2m−2.
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