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Abstract

How can we decipher the hidden structure of a network based on limited ob-
servations? This question arises in many scenarios ranging from social to wireless
and to neural networks. In such settings, we typically observe the nodes’ behav-
iors (e.g., the time a node learns about a piece of information, or the time a node
gets infected by a disease), and we are interested in inferring the true network over
which the diffusion takes place. In this paper, we consider this problem over a
neural network where our aim is to reconstruct the connectivity between neurons
merely by observing their firing activity. We develop an iterative NEUral INFer-
ence algorithm NEUINF to identify the type of effective neural connections (i.e.
excitatory/inhibitory) based on the Perceptron learning rule. We provide theoreti-
cal bounds on the average performance of NEUINF as well as numerical analysis
to compare the performance of the proposed approach to some previous art.

1 Introduction
Reconstruction of neuronal networks connectivity has been a major challenge for the
past decades. Currently, invasive procedures are the only ”reliable” approach to map
the connectome. However, these approaches are prohibitively complex and time-consuming:
it took more than 10 expert/year to map the whole connectome of C. Elegans, compris-
ing only 302 neurons and a few thousands synaptic connections [1]. To map the whole
brain of fruit flies, with around 10, 000 neurons, we would have to spend around 4700
expert/year [2,3]. Following the same approach and using current technology, it is esti-
mated that it will take around 14 billion man/year to completely map the human brain’s
connectome [2]. Although there is an increasing effort to make some parts of the in-
vasive procedures automated, such approaches remain impractical for mid-sized/large
networks. Furthermore, the current invasive techniques cannot be applied to live ani-
mals/humans, as it involves dissecting the brain.

As a result, inverse methods with the focus on mapping the (whole or partial) con-
nectome from the activity of the neurons are compelling (or perhaps the only viable) al-
ternatives. They can be applied to live specimen and potentially require much less time
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and labor. Furthermore, rapid advancements in recording technologies has made it pos-
sible to simultaneously monitor the activities of tens [4] to hundreds of neurons [5], [6]
(for a good review, see [7]). Upcoming technologies will increase this number signif-
icantly in near future [8]. There has also been progress in simultaneously recording
and stimulating the neurons [9], [10], [11]. These advancements will soon alleviate the
issue of data availability. Similarly, significant efforts have been made to improve the
accuracy of inverse approaches in identifying neuronal connections (more on that in the
next section). However, the current algorithms either fall short of capturing important
details of realistic neural graphs (e.g., the synaptic delays) or become computationally
infeasible as the size of the network grows or its characteristics change.

In this paper, we propose an inverse approach for identifying the nature of (ef-
fective) connections between neurons that reflects their causal relationship. More
precisely, we consider a neural network where neurons follow the standard Leaky
Integrate-and-Fire (LIF) model [12] and connections are associated with random de-
lays. We propose an iterative NEUral INFerence algorithm NEUINF, that provably
identifies both the effective connections and their types (i.e., excitatory/inhibitory).
Furthermore, through an exhaustive set of numerical simulations (ranging over differ-
ent network models and neuronal firing patterns), we study the performance of NEUINF
compared to the previous state of the art.

2 Related Work
Identifying neural connections from a set of recorded neural activities is an instance
of network tomography [13] and has been extensively studied in the past. Cross Cor-
relogram is perhaps the most widely-used method to identify (functional) connection
between a pair of neurons [7]. However, approaches based on Cross Correlogram usu-
ally fall short of identifying causal relation or effective connectivity of neurons. This is
why some authors proposed Granger causality measure as an alternative to overcome
the drawback of Cross Correlogram (see, [14]).

Another very popular approach to identify effective connectivities is Generalized
Linear Models (GLMs) [15]. Methods based on GLM essentially take the effects of
stimulus, self-history of the neurons and contribution of other neurons into account
and calculate the filters through which all these factors affect the firing response of
each neuron. GLM was recently used in reconstructing a real physiological circuit
from recorded neural data [16]. The approaches based on GLMs are provably accurate
(i.e. they identify the correct set of connections in the underlying graph) if the neural
model used to generate spike data matches the one used in GLM. Otherwise, the final
estimation will have some bias and variance from the correct results [17]. Furthermore,
traditional GLM approaches suffer from high computational costs. Recently, however,
several accurate approximations have been suggested to resolve this issue [17], [18].
Nevertheless, the convergence proofs still only applies when the model for neurons and
that of GLM closely match each other.

Bayesian approaches are also widely used. In [19], a Maximum a Posteriori (MAP)
approach is applied to solve the problem of connection identification, with excellent
results in the regime of limited data, although at the expense of high computational
costs. Bayesian approaches have also been used in identifying connections directly
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from calcium-imaging data [20].
Recently, another line of work has focused on the connection mapping problem

that are more tailored to LIF neurons. In particular, Bussel et al. [21] addresses the
problem by converting the non-linear firing behavior of LIF neurons into a set of lin-
ear equations, which can be solved given a sufficient number of recorded samples.
While being efficient, this algorithm is highly sensitive to the accuracy of spike time
and heavily relies on the knowledge of model parameters, e.g. synaptic delays, which
are very difficult to obtain. Additionally, Memmesheimer et al. [22] proposed an in-
ference algorithm based on the Perceptron learning rule, similar to Baldassi et al. [23],
for which they proved that under accurate spike times it identifies a simple n-to-1 feed
forward network. They also proposed a heuristic extension that works with finite pre-
cision in recorded spike times. Nevertheless, their model does not take into account
(random) synaptic delays. Moreover, as we will see later, having extra post-synaptic
neurons even in a simple feed forward scenario can have a dramatic effect on the per-
formance of the inference algorithm when the structure of the graph (i.e., here being
feed-forward) is not known a priori.

Finally, we should mention that the consistency problem even for a n-to-1 feed
forward network is NP-hard. In words, determining whether or not there exists a set of
delays and weights such that we can fully match the set of input firing patterns to the
output is very difficult [24] . Although this result does not necessarily mean finding
such a configuration is impossible, it shows that finding provable ”positive learning
results” for the case of spiking neuron is quite difficult.

The proposed approach in this paper is similar to GLMs in that it does not rely on
the knowledge of propagation delays, but differs in the final iterative algorithm and the
provided theoretical analysis in that it only makes very general assumptions about the
nature of connections. Furthermore, while the final algorithm update rule is inspired
by the Perceptron learning rule, it differs from previous similar approaches in that the
effect of propagation delays are considered in the algorithm.

3 Model and Problem Statement
As mentioned earlier, in this paper we consider a Leaky Integrate-and-Fire (LIF) model
for the neurons [12]. In this model, each neuron accumulates the incoming (weighted)
spikes from all of its neighbors and fires if the net sum exceeds a threshold θ. Oth-
erwise, the membrane voltage decays exponentially fast. The differential equation for
the LIF model is given by

dV (t)

dt
=
I(t)− V (t)

τ
,

dI(t)

dt
= −I(t)

τe
,

where V and I are the membrane voltage and input current, respectively, and τ and τe
are the membrane time constants.

As for the graph, we assume that there are two types of connections: excitatory
and inhibitory. In accordance with biological neuronal networks, we assume that the
excitatory connections are more numerous than the inhibitory ones. Furthermore, we
assume that the weight of connections is fixed and to keep the network balanced, we
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Figure 1: Network model: a recurrent neural network where we try to identify the
incoming connections of node b by observing the spike trains x1(t), . . . , x5(t) and
y(t). Here we assume that edges have random delays and neurons can be excitatory or
inhibitory.

require for the inhibitory connections to have a larger weight (in magnitude) than exci-
tatory ones. We typically set the weight of an excitatory connection to +1mV and that
of an inhibitory connection to −δmV, where δ = nexc/ninh, and nexc and ninh are
the number of excitatory and inhibitory neurons, respectively. Following Dale’s princi-
ple [25], we assume that all outgoing connections of a neuron have the same type, i.e.,
they are all either excitatory or inhibitory.

We also assume that neural connections have intrinsic delays which represent the
time it takes for the information to propagate through the axons and synapses. The
delay for each link is assumed to be a random number in the interval [0, dmax], where
dmax > 0 is the maximum delay. The delays do not change and once assigned, re-
mains fixed. Figure 1 illustrates the model used to generate data in the simplest case
considered in this paper.

Throughout this paper, we assume that the the connectivity matrix, as well as the
intrinsic connection delays are unknown to the inference algorithm. The goal is to infer
the connectivity pattern by only observing the spike trains. With NEUINF we propose
an algorithm that iteratively identifies the connections by producing an analogue asso-
ciation matrix that reflects the accumulated belief of each connection. This matrix can
then be transformed into a ternary adjacency matrix to infer the type of connections:
void (no connection), excitatory, or inhibitory. The identified connections indicate the
causal influence of neurons on each other. Note that in a setting where the activity
of all nodes in the network are recorded, the resulting effective connectivity will be
equivalent to capturing the synaptic connections.

4 Proposed Algorithm
In order to identify the connections, we can consider each post-synaptic neuron sepa-
rately and find its incoming connections. Let xi(t) and y(t) denote the firing state of
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the i-th pre-synaptic and the post-synaptic neuron at time t. For the ease of presenta-
tion, let us assume momentarily that the firing state of the post-synaptic neuron at time
t depends only on the states of its neighbors at time t. Thus, we effectively ignore the
propagation delay and the integration procedure. Our goal is to find a set of weights W
such that the average quadratic error E over a recording period T is minimized:

min
W

E = min
W

1

T

T∑
t=1

∣∣∣∣∣f
(

n∑
i=1

Wixi(t)− θ

)
− y(t)

∣∣∣∣∣
2

. (1)

Here, Wi is our belief about the connection weight from the i-th pre-synaptic to the
post-synaptic neuron and f(.) is the the Heaviside step function (or its continuous ap-
proximations). By taking the derivative, we obtain

∇E =
2

T

T∑
t=1

(f (〈W,Xt〉 − θ)− y(t)) f ′ (〈W,Xt〉 − θ)X>t , (2)

where Xt = (x1(t), . . . , xn(t)) is the state of pre-synaptic neurons at time t. Now, we
can iteratively update our beliefs about W according to the following update rule:

W (τ + 1) = W (τ)− ατ∇E(τ), (3)

where ατ is a small number representing the learning rate.1 The above update rule fol-
lows the standard gradient descent approach. However, a closer look at (2) reveals some
interesting characteristics: the weight Wi, will be updated (for a given t) if both of the
following conditions are satisfied: 1) xi(t) = 1, and 2) f (〈W (τ), Xt〉 − θ) 6= y(t). In
words, we update the weightWi in round τ if and only if the pre-synaptic neuron i fires
and W (τ) does not correctly predict the state y(t) of the post-synaptic neuron. Note
that these two conditions are in fact reminiscent to the well-known Perceptron learning
rule in neural networks [26].

Equipped with these observations, we propose NEUINF that that does not use the
derivative of function f(.) and takes into account both the unknown propagation de-
lays and the neural integration procedure. Since we do not know the synaptic delays,
we define an integration window ∆ such that only the firings during this window are
considered for the updates. In other words, if neuron i has fired between t −∆ and t
we take such firings into account, otherwise we discard them. The details are shown
below in Algorithm 1.Algorithm 1 is deterministic. In practice, we have found that a stochastic version
of the above algorithm, which we call STOCHASTIC NEUINF, works much better. The
only difference between the two algorithms is in the weight update rule. In each it-
eration τ , the deterministic version updates any weight i with ∆Wi 6= 0, whereas in
the stochastic version weights with ∆Wi 6= 0 are updated with some probability β
independently at random. Setting β inversely proportional to the recording duration
improves the results even further.

In order to analyze the performance of NEUINF we make the following mild as-
sumptions:

1We usually choose ατ in such a way that
∑

τ ατ → ∞ and
∑

τ α
2
τ < C, for some positive constant

C.
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Algorithm 1 NEUINF

Input: The observations {xi(t)} and {y(t)} over period T , a maximum number of
iterations τmax.

Output: Connections Belief Matrix W
Initialize W (0) = (0, . . . , 0)1×n
for τ = 1→ τmax do

for t = 1, . . . , T do
set vi(t) =

∑t
ti=t−∆ xi(t), ∀i

set ŷ(t) = f (
∑
iWi(t)vi(t)− θ)

if ŷ(t) 6= y(t) then
∆W = (ŷ(t)− y(t))V Tt
Break

end if
end for
Update: W (τ + 1) = W (τ)− ατ∆W

end for

(A1) The probability of firing for a (pre-synaptic) neuron does not depend on its being
excitatory or inhibitory.

(A2) Excitatory (inhibitory) connections increase (decrease) the probability of the
post-synaptic neuron to fire.

With the above assumptions we can prove that NEUINF provides the desired ordering
for the average values of different connection types, i.e., it returns higher values for
excitatory connections than inhibitory or non-existent (void) connections. While this
may seem like a weak guarantee, due to the generality (and almost triviality) of as-
sumptions A1 and A2, it can be applied to a wide range of scenarios. We can have
tighter guarantees if we make more strict assumptions about the type of the neurons
and statistical properties for the firing patterns (as in the case of GLM) or structure of
the graph (e.g., random/small-world graphs).

Theorem 1. Under the assumptions A1 and A2, and for a sufficiently small learning
step ατ , NEUINF outputs

w̄exc ≥ w̄void ≥ w̄inh,
where w̄exc w̄void and w̄inh denote the expected values returned by NEUINF for ex-
citatory, void, and inhibitory connections, respectively. Here, the expectation is taken
over the randomness of pre-synaptic spike patterns.

The proof of the theorem is provided in the supplementary materials. To give the
reader an intuition, we use induction to show that the correct ordering for the average
value of our beliefs about the type of synaptic connections is preserved in each iteration
of the inference algorithm NEUINF.

Remark 1. The two assumptions A1 and A2 are quite broad and are generally held in
practice. As we do not make any assumptions on the network type (e.g., random/small-
world graphs), its structure (e.g., feed forward/recurrent) and the statistical properties
for the firing patterns, Theorem 1 applies to a wide range of scenarios.
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In the next section, we compare the performance of NEUINF with previous art.

5 Numerical Experiments
To assess the effect of different network parameters on the performance of the algo-
rithm, we generate several Erdos-Renyi directed random graphs where two nodes are
connected with probability p and independently of every other node. In accordance
with real biological networks we assume that the probability of a connection being
excitatory p+ is five times that of being inhibitory p−, namely, p+ = 5p−. For each
graph, we set the firing threshold to θ = 5mV and the maximum delay to dmax = 10ms.
We also assume that the weight of an excitatory connection is +1mV whereas that of
an inhibitory connection is −δmV, with δ = p+

p−
, to keep the network balanced. For all

the simulations, we assume that neurons have a refractory period of 1ms and the mem-
brane potential is reset after a neuron fires. The time constants of artificial neurons is
set to τ = 10ms and τe = 2ms. All the data corresponding to neural activity is gen-
erated by the Brian neural simulator [27] to make sure that the numerical experiments
are as close as possible to the real neural networks.

For our experiments, we consider both feed-forward and recurrent networks. In the
case of feed-forward networks, the pre-synaptic neurons, and in the case of recurrent
networks, all neurons received traffic from ”outside” which account for spike trains
from neurons whose activities is not recorded. This traffic is modeled as a random pro-
cess that results in each neuron being stimulated with some probability q independent
of the activity of neurons ”inside” the network 2.

Once the data is generated, we compare the performance of NEUINF with Cross
Correlogram and GLM and study the effect of different parameters such as recording
duration T , knowledge of the network topology type (feed-forward or recurrent), and
importance of estimating synaptic delays for increasing the spike prediction accuracy.
Note that there are several ways of implementing the GLM algorithm and to interpret
the final result in terms of the neural connections. In this paper, we use the code pro-
vided in [15]3 and modified it to serve our setup. Given the variety methods to identify
the type of pairwise neural connections (e.g., peak value of or the area underneath the
post-synaptic coupling filters), we have selected the criteria that gives best results in
each considered case.

We evaluate the performance of the considered algorithms according to the follow-
ing three criteria:

1. The average values of the association matrix for the excitatory/void/inhibitory
connections.

2. The precision and recall of the algorithm over the ternary adjacency matrix.

3. The spike prediction capability.
We use the K-Means algorithm (for K = 3) to transform the analog association matrix
into the digital adjacency matrix. As for the spike prediction quality, Q̄, the perfor-
mance is measured in terms of the number of mismatches between the predicted and

2This incoming traffic will also get the network up and running from the initial resting state.
3Available at http://pillowlab.cps.utexas.edu/code_GLM.html, thanks to

Pillow Lab.
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Figure 2: The left figure shows the effect of recording duration T on the belief returned
for incoming connections by different inference algorithms for a recurrent network of
n = 60 neurons.

actual output spike train, for all post-synaptic neurons, divided by the total number
of spikes in the actual spike train. More precisely, let yj(t) and ŷj(t) denote the
actual and predicted state of the post-synaptic neuron j at time t. Then, we have
Q̄ = (

∑
t

∑n
j=1 |yj(t)− ŷj(t)|)/(

∑
t

∑n
j=1 yj(t)).

5.1 Numerical Results
Here we only report the results for the more general case of recurrent networks. Related
results for feed-forward topology is reported in the longer version of this article [28].
For this part, we consider a network of n = 60 neurons, 50 excitatory and 10 in-
hibitory, with a connection probability of 0.2. Figure 2a illustrates the effect of T on
the average value of beliefs returned by the considered algorithms. As shown in the
figure, STOCHASTIC NEUINF outputs an association matrix with the desired ordering,
i.e. higher values for excitatory connections and lower values for inhibitory ones.

To make the comparison between different algorithms more consistent, the associ-
ation matrix returned by each algorithm is normalized in such a way that the `∞-norm
of each column is 1 and then the matrix is whitened. Figure 2b shows the gap between
the beliefs for each pair of connection types (i.e., between excitatory and ”void” as
well as ”void” and inhibitory) . Again, STOCHASTIC NEUINF outperforms the other
considered algorithms.

The precision and recall of different approaches, after ”ternarification” using the
K-Means algorithm, is shown in Figure 3. In identifying excitatory and ”void” connec-
tions, STOCHASTIC NEUINF outperforms both CC and GLM. Furthermore, although
it seems the CC algorithm is better in identifying inhibitory connections, it does that at
the expense of very low precision.
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Figure 3: Performance of the algorithms after ”ternarification” of the association ma-
trix.

5.2 Sparsity helps
We also observe another trend in our simulations: Sparsity, both in the firing patterns
and network topology, improves the performance. Figure 11 illustrates the performance
of STOCHASTIC NEUINF in differentiating connection types in feed-forward/recurrent
networks for different values of connection probability p, and probability of being trig-
gered by outside traffic, q.

9



0

1

2

3
q = 0.3, T = 5.5s

0

1

2

3
p = 0.3, T = 5.5s

p = 0.2

p = 0.3

q = 0.3

q = 0.4

q = 0.5

void-inh

void-inh

exc-void

exc-void

(a) Feed-forward

−0.25
0

0.25

0.5
T = 250ms

0

0.25

0.5
p = 0.3, T = 250ms

p = 0.25
p = 0.3
p = 0.4
p = 0.45

q = 0.5

q = 0.6

void-inh

void-inh

exc-void

exc-void

(b) Recurrent
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sociation matrix returned by STOCHASTIC NEUINF for feed-forward and recurrent
network in different scenarios.

6 Conclusions
In this paper, we introduced an iterative online algorithm we call NEUINF that identifies
the structure of a neural network from neuron’s activity alone. In contrast to previous
algorithms that need very precise and often impractical information about the neural
network (e.g., topology, synaptic delays, precise timings of spike trains, etc), NEUINF
performs well even in the face of imprecise spike train recordings with unknown topol-
ogy and synaptic delays. We also theoretically showed that NEUINF is capable of
differentiating between connection types as it receives enough samples. By using the
numerical simulations that precisely mimic the activity of real neural networks, we also
evaluated the performance of NEUINF in comparison with previous state-of-the-art and
observed that in all considered cases NEUINF outperforms them.
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A Proof of Theorem 1
In the following, we prove the theorem for the determinisitc version of the algorithm,
i.e., NEUINF. The extension to the stochastic version, STOCHASTIC NEUINF, is
straightforward.

We use induction to prove the theorem. With some abuse of notation, let wj(τ)
denote the output value of the algorithm at round τ of optimization for the incoming
connection from neuron j. We will show that

w̄exc(τ) > w̄void(τ) > w̄inh(τ).

To start, note that since we start from the all-zero vector for the inferred connectiv-
ity matrix, initially we will have ŷ(t) = 0, i.e., no predicted output spikes. This means
that given a sufficiently small step size, ατ , the initial updates will be only when there
is an output spike, i.e., y(t∗) = 1 for some t∗, and some of pre-synaptic neurons have
fired, i.e., vi(t∗) > 0, for some i’s. This means that, for some t∗, we will have

w̄j(1) = w̄j(0)− ατE{∆wj(0)} = ατ Pr{y(t∗) > 0|vj(t∗) > 0}Pr{vj(t∗) > 0}

Now, if neuron j is connected to the output neuron through an excitatory, inhibitory or
void connection, we will have

w̄exc(1) = ατ Pr{y(t∗) > 0|Gj > 0, vj(t
∗) > 0}Pr{vj(t∗) > 0},

w̄void(1) = ατ Pr{y(t∗) > 0|Gj = 0, vj(t
∗) > 0}Pr{vj(t∗) > 0},

w̄inh(1) = ατ Pr{y(t∗) > 0|Gj < 0, vj(t
∗) > 0}Pr{vj(t∗) > 0}

By definition, we have Pr{y(t∗) > 0|Gj > 0, vj(t
∗) > 0} > Pr{y(t∗) > 0|Gj =

0, vj(t
∗) > 0} > Pr{y(t∗) > 0|Gj < 0, vj(t

∗) > 0}. Thus, we will have

w̄exc(1) > w̄void(1) > w̄inh(1)

Now assuming that induction’s criteria hold up to iteration τ , we show that w̄exc(τ+
1) > w̄void(τ + 1) > w̄inh(τ + 1). To this end, we distinguish two events

1. Predicted firing pattern matched the actual output firing pattern, for all t =
1, . . . , T .

2. There is a t∗ for which y(t∗) 6= ŷ(t∗), i.e., there is a mismatch between predic-
tion and reality.

The first event means that the weights will not get updated and the algorithm will
terminate. Thus, the ordering up to this iteration is preserved and the desired result is
proven. In the case of second event above, we will have

w̄j(τ + 1) = w̄j(τ)− ατE{∆wj(τ)}
= w̄j(τ) + ατ Pr{vj(t∗) > 0} [Pr{y(t∗) = 1|vj(t∗) > 0} − Pr{y(t∗) = 0|vj(t∗) > 0}]
= w̄j(τ) + ατ Pr{vj(t∗) > 0} [2 Pr{y(t∗) = 1|vj(t∗) > 0} − 1] . (4)
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Now we know that the induction criteria holds up to iteration τ . Thus, to show w̄exc(τ+
1) > w̄void(τ + 1) > w̄inh(τ + 1), it is sufficient to show that

Pr{y(t∗) = 1|Gj > 0, vj(t
∗) > 0} > Pr{y(t∗) = 1|Gj = 0, vj(t

∗) > 0} > Pr{y(t∗) = 1|Gj < 0, vj(t
∗) > 0},

which holds by the definition of excitatory, inhibitory and void connections. This
proves the theorem.

Remark 2. Note that the above theorem is only based on the assumptions that excita-
tory (inhibitory) neurons have positive (negative) effect in triggering the other neigh-
boring neurons and that the probability of firing at any given moment does not depend
on the type of the neuron (i.e., its being excitatory or inhibitory). In other words, we
did not made assumptions on the network type (e.g., ErdsRnyi random graph or small-
world networks), its structure (e.g., being feed-forward or recurrent) and the statistical
properties for the firing patterns of neurons (e.g., they being independent of/correlated
with each other), which makes the theorem rather general.

However, we can show that the speed of the algorithm and how fast it reaches
certain level of accuracy depends on several properties of the network. In particular, it
is not difficult to show that for a feed-forward random graph, i.i.d. input firing patterns
result in faster convergence and improved accuracies whereas correlated input reduces
the speed of convergence. Due to lack of space, we have not included the corresponding
numerical results for these scenarios though.

B More Numerical Results

B.1 Feed-forward networks
In the main body of the paper, we reported the results for a scenario with recurrent
networks. Here, we focus on a more special case with feed-forward topology (which
is, for instance, more relevant to transmitting sensory signals).

We start with a single layer feed-forward network that has n = 75 pre-synaptic and
m = 15 post-synaptic neurons, the connection probability being set to p = 0.2. Figure
5 illustrates the effect of the recording duration T on the accuracy (in terms of the
average value of ”beliefs” about the three connection types). We have considered three
approaches: Cross Correlogram (CC), GLM, and STOCHASTIC NEUINF with β ' 0.1.
To make the comparison between different algorithms more consistent, the association
matrix returned by each algorithm is normalized in such a way that the `∞-norm of each
column is 1 and then the matrix is whitened. As shown in the figure, STOCHASTIC
NEUINF outputs an association matrix with higher values for excitatory connections
and lower values for inhibitory ones. Furthermore, longer durations improve the quality
of the results. In the figure, µrecurr illustrates the average of the values returned by the
considered algorithms for the non-existent recurrent connections in the post-synaptic
layer.

However, the ordering between the average belief values is only one side of the
story. The variance of the beliefs as well as the gap between them are the other impor-
tant factors that will affect the results returned by the K-Means algorithm. Figure 6a
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Figure 5: The mean value of beliefs for the incoming connections given by different
inference algorithms for a feed-forward network of n = 75 and m = 15 pre- and
post-synaptic neurons.

illustrates the gap between the beliefs (i.e., between excitatory and ”void” as well as
”void” and inhibitory) for the three inference algorithms. As can be seen, STOCHASTIC
NEUINF significantly outperforms the other considered algorithms. Furthermore, in the
same figure, we also show (by crossed-orange bars) the performance of STOCHASTIC
NEUINF when it is given as side information that the graph to infer is a feed-forward
network. As we observe, this side information considerably improves the performance.

Furthermore, once the returned analog graphs are turned into a ternary graph by
the K-Means method, we can also evaluate the quality of spike prediction. Figure 6b
illustrates the evolution of Q̄ as a function of T , the duration of recorded samples,
when NEUINF is applied to a feed-forward network with n = 60 pre- and m = 48
post-synaptic neurons. As shown in the figure, the quality improves as T grows. Fur-
thermore, note that NEUINF consistently performs better in reconstructing the output
spikes. Figure 6b also emphasizes the importance of identifying connection delays in
reproducing the output spikes: when we perform spike reproduction with the actual
connectivity matrix, G, without considering the synaptic delays, the reproduction is
not 100% accurate and a mismatch of around 30% will remain.

Figure 7 illustrates the precision and recall for feed-forward network with n = 75
pre- and m = 15 post-synaptic neurons, in a scenario where algorithms operated in the
topology-aware situation, i.e. they knew that the graph is feed-forward.4 Here again
STOCHASTIC NEUINF outperforms the other algorithms.

B.2 Examples of Inferred Graphs
Figure 8 illustrates examples of association matrices inferred by STOCHASTIC NEUINF
and GLM, in comparison with the actual ternary matrix used in producing neural data
(shown in Figure 8a ), for a feed-forward network and in the topology-aware situation

4Similar results can be obtained for the topology-unaware situation. However, based on the inferred
graphs shown in Figure 9, the K-Means algorithm might not be the best solution to transform the association
matrix into the ternary adjacency matrix. More clever algorithms should perform better in that task.

15



0

1

2

3
Void-Inhibitory

0.1 3 5 8 11 13
−0.5

0.5

1.5
Excitatory-Void

T (s)

GLM NEUINF CC
T (s)

(a) Belief gaps.

200 350 500 650 800 950
0

0.3

0.6

0.9

1.2

1.5

T (ms)
Fr

ac
tio

n
of

m
is

m
at

ch
es

NEUINF Correlogram ActualW

(b) Fraction of mismatches

Figure 6: The left figure shows the effect of recording duration T on the belief gaps
for different algorithms, where the crossed-bars indicate a scenario when the topology
of the graph is known a priori. The right figure illustrates the effect of T on spike
prediction quality.
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(a) Actual connectivity matrix

(b) NEUINF

(c) GLM

Figure 8: The inferred graphs for different algorithms. Red, blue and green pixels
in the actual graph represent excitatory, inhibitory and void connections in the actual
connectivity matrix.

(for all algorithms). As can be seen from the figure, the graph returned by STOCHASTIC
NEUINF is much more similar to the actual version.

Figure 9 illustrates the same scenario, but for a topology-unaware situation.
Similar results for the recurrent scenario is shown in Figure 10 for an example

graph returned graph by STOCHASTIC NEUINF in comparison with the ternary graph
used to produce neural data (the ”ground truth”).

B.3 Sparsity helps
We also observe another trend in our simulations: Sparsity, both in the firing patterns
and network topology, improves the performance. Figure 11 illustrates the performance
of STOCHASTIC NEUINF in differentiating connection types in feed-forward/recurrent
networks for different values of connection probability p, and probability of being trig-
gered by outside traffic, q.
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(a) Actual connectivity matrix (b) NEUINF (c) GLM

Figure 9: The inferred graphs for different algorithms. Red, blue and green pixels
in the actual graph represent excitatory, inhibitory and void connections in the actual
connectivity matrix.

(a) Actual connectivity matrix (b) STOCHASTIC NEUINF
(c) Ternary STOCHASTIC

NEUINF

Figure 10: The inferred graphs for different algorithms. Red, blue and green pixels
in the actual graph represent excitatory, inhibitory and void connections in the actual
connectivity matrix.
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Figure 11: The gap between excitatory-void and void-inhibitory connections in the
association matrix returned by STOCHASTIC NEUINF for feed-forward and recurrent
network in different scenarios.
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