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ABSTRACT

Regression from high dimensional observation vectors is par-
ticularly difficult when training data is limited. More specifi-
cally, if the number of sample vectors n is less than dimension
of the sample vectors p, then accurate regression is difficult to
perform without prior knowledge of the data covariance.

In this paper, we propose a novel approach to high dimen-
sional regression for application when n. < p. The approach
works by first decorrelating the high dimensional observation
vector using the sparse matrix transform (SMT) estimate of
the data covariance. Then the decorrelated observations are
used in a regularized regression procedure such as Lasso or
shrinkage. Numerical results demonstrate that the proposed
regression approach can significantly improve the prediction
accuracy, especially when n is small and the signal to be pre-
dicted lies in the subspace of the observations corresponding
to the small eigenvalues.

Index Terms— High dimensional regression, covariance
estimation, sparse matrix transform

1. INTRODUCTION

Regression from high dimensional observation vectors is par-
ticularly difficult when training data is limited. Traditional
regression methods that use the sample covariance, such as
the ordinary least squares (OLS) approach, perform poorly
in this situation. This is because, if the sample number n is
less than the data dimension p, then the sample covariance is
singular, with at least p — n of the smallest eigenvalues esti-
mated to be zero. In this case, the sample covariance does not
accurately characterize any signal that falls in the subspaces
corresponding to the smallest eigenvalues of the observations.

In the past decades, regression methods that adopt regu-
larization have been introduced, such as ridge regression [1],
subset selection, and Lasso [2]. More recently, there has also
been increasing interest in replacing the sample covariance
with some sparse estimates of the true covariance or its in-
verse for high dimensional regression problems [3, 4].
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In this paper, we propose a novel regression approach that
first decorrelates the high dimensional observation vector us-
ing the sparse matrix transform (SMT) estimate of the covari-
ance [5]. To improve the prediction accuracy, model selection
is then performed by regularizing the regression in the domain
of the decorrelated data. In particular, we explore the use of
both Lasso and shrinkage methods for this regularized regres-
sion step. While the technique we propose can be used with
other estimates of the covariance, we have found that SMT
covariance estimation results in relatively good estimates par-
ticularly when n < p [5, 6]. The SMT covariance estimate
achieves this improved accuracy by imposing a constraint that
the eigenvector transformation should be formed by a product
of sparse rotations.

Our numerical results demonstrate that the both the SMT-
Lasso and SMT-Shrinkage regression methods can signifi-
cantly improve the prediction performance when n < p, and
that, for our experiments, the SMT-Lasso method yields bet-
ter results than the SMT-Shrinkage method, but at the cost of
greater computational cost.

2. REGRESSION MODEL

Without loss of generality, let y € R"*! be a vector of n
i.i.d. zero-mean Gaussian random variables which we would
like to estimate. Our observations are X € R™*P, a matrix
containing n independent zero mean Gaussian random row
vectors, each of dimension p. The minimum mean square
error (MMSE) estimate of y given X has the form

9= Xb 1)
where b is a vector of regression coefficients given by
b=R,'p, (2

where R, = LE[X"X] is the covariance of the observations
X, and p = LE[X"y] is the correlation between the observa-
tions X and y.

Of course, in practice R, and p are often unknown, so that
b must be estimated from training data (y, X). This problem
has been widely studied over the years, and most recently has



become of particular interest in the challenging case when
n < p. The traditional method for solving the regression
problem is ordinary least squares (OLS). However, OLS be-
comes ill-posed when n < p, so partial least squares (PLS),
ridge regression [1], and Lasso [2] have been proposed as al-
ternatives.

3. SMT REGRESSION FOR HIGH DIMENSIONAL
DATA

Our approach will be to estimate y based on the assumption
that we can accurately estimate the covariance R,. Our ap-
proach is motivated by a variety of new methods for estimat-
ing high dimensional covariance matrices through the use of
sparsity constraints [5, 7]. In particular, we will use the re-
cently introduced SMT covariance estimation method, which
has been shown to produce substantially more accurate co-
variance estimates for certain physical data through the intro-
duction of a covariance model [5, 6]. Importantly, the SMT
covariance estimate can accurately produce all the eigenval-
ues of the covariance even when n < p, and the resulting
estimate is typically full rank.

Perhaps surprisingly, we find that even when the exact
value of the covariance is used in (2), the resulting regres-
sion coefficients may yield estimates that are inferior to es-
tablished methods. Intuitively, this is because the correlation
p must also be accurately determined. Therefore, having an
accurate estimate of R, does not insure success.

Our proposed regression approach is based on two steps.
In the first step, we decorrelate the observations using the es-
timate of R,. In the second step, we estimate the regression
coefficients in this decorrelated domain. We propose three
possible methods for estimating these regression coefficients.
The first method, which we refer to as SMT-Lasso, applies
the Lasso regression method in the decorrelated domain. The
second method, which we refer to as SMT-Shrinkage, shrinks
the regression coefficients toward zero; and the third method,
which we refer to as SMT-subset selection, simply selects the
coordinates which are most correlated with the .

For all the three methods, we use the SMT covariance es-
timate to decorrelate the observation data in the first step. Let
R,, be the covariance estimate, and let the eigen decomposi-
tion of the covariance estimate be given by

R, = EAE? (3)

where E is the orthonormal matrix of eigenvectors and A is a
diagonal matrix of eigenvalues. Using these estimated quan-
tities, we can approximately decorrelate and whiten the ob-
served data using the transformation

X=XEA=. (4)

For the SMT covariance estimate, the entries of the diagonal
matrix A are generally positive, so the matrix is invertible.

Using the whitened observations X, the estimate of y can
now be expressed as

g=X8. )

Since X is a linear transformation of the observations X, it
does not change the OLS estimate. However, it can change
other regression results based on nonlinear estimators of the
regression coefficients.

An important special case occurs if the observations are

perfectly whitened. In this case, 1 E [f(tf(] = I, and the
regression parameters for MMSE estimation are given by

6= LE[XYy. (6)
n

The question remains of how to compute an effective estimate
of . For this purpose, we propose three methods.

3.1. SMT-Lasso

The first method we propose for estimating 3, which we call
SMT-Lasso, is based on the use of least squares minimization
with an Ly norm constrain on 3 [2]. The SMT-Lasso estimate
is given by

B=amgmin{|y—- XA 4X| B} . (@)

where \ is a regularization parameter that control the intensity
of L, constrain.

Notice that the solution to (7) depends on the specific
whitening transformation used in (4) because the L norm is
not invariant to orthonormal rotations. Therefore, SMT-Lasso
will produce a different solution from conventional Lasso
performed in the native coordinates of X. Since the columns
of the matrix X are not exactly orthogonal, the SMT-Lasso
regression coefficients are computed as the solution to a
quadratic programing problem. As with conventional Lasso,
this optimization problem can be computed using a variety of
efficient techniques [2, 8].

3.2. SMT-Shrinkage

The second method we propose for estimating 3, which we
call SMT-Shrinkage, is based on the approximation that the
columns of X are orthogonal, and have an Lo norm of n.
More specifically, we assume that

1 ~, ~
—X'X ~ 1. (8)
n

In fact, the form of the SMT covariance estimate ensures that
Ldiag { X*X } = I. So the columns of X have a constant
Lo norm of n. In addition, the columns are approximately
orthogonal because SMT covariance estimation attempts to
minimize correlation between columns subject to a constraint
on the required number of sparse rotations.



Using this approximation, the solution to (7) can be com-
puted by first solving the unconstrained optimization problem
to yield

1~
ﬁ = EXty ) (9)
and then applying the soft shrinkage operator to yield

B’Yi = Slgl’l(ﬁ1)(| /32 | _7)+ 7f0r7; = 13 23 Ry 20 (10)

where « is a regularization parameter and the operator (-)*
returns the positive portion of the argument. Notice that this
soft shrinkage operator has the same form that has been pro-
posed for shrinkage of wavelet coefficients [9].

3.3. SMT-Subset Selection

The third method we propose for estimating 3, which we call
SMT-Subset Selection, is similar to SMT-Shrinkage, but it se-
lects a subset of decorrelated components for the regression,
rather than shrinking the components toward zero.

For SMT-Subset selection, we first compute /3 of (9). We
then apply the following operation to each component of 3

% B if| B>y
;= . . 11
Bri { 0 otherwise (1)
Notice that this operation selects the components that have
the largest correlation with the observations to be predicted.
The values of the regularization parameters, A in (7), and
~in (10) and (11), can be estimated using cross validation.

4. NUMERICAL EXPERIMENTS

In this section, we compare the accuracy of various regression
methods using the following model for X € R"*P

X=y- '+ W, (12)

where 7 € RP*1 is a deterministic but unknown signal, y €
<1 is a vector of n independent Gaussian random variables
to be estimated, and each row of W € R™*P is an independent
p-dimensional Gaussian random vector of correlated noise or
clutter. Without loss of generality, we assume that W, v, and
X are all zero mean, and that elements of i have unit variance.

For all numerical experiments, the assumed clutter co-
variance, R,, = 2E[W'W], is computed from the real hy-
perspectral data shown in Fig. 1 with dimension p = 191
[10]. We use two covariance matrices in our experiments cor-
responding to “grass” and “water” classes, and for these two
classes, - trace { R, } is equal t0 9.68 x 10* and 2.83 x 10*,
respectively. Accordingly, we know that

R, =Ry,+71-71". (13)
All comparisons are done in terms of the signal-to-noise
ratio,
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Fig. 1. (a) Simulated color IR view of an airborne hyperspec-
tral data over the Washington DC Mall [10]. (b) Ground-truth
pixel spectrum of grass. (c) Ground-truth pixel spectrum of
water.
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Fig. 2. Plots of average SNR when 7 is the 170-th eigenvector
of R,,. Notice that SMT-Lasso regression results in the high-
est SNR in the range of n < p. (a) Clutter W is generated
using hyperspectral grass data. (b) Clutter 1 is generated
using hyperspectral water data.

which is computed for a set of 300 data vectors that are gen-
erated independently of the training data. Also, in each case,
the SNR is averaged over 30 simulations, each of which uses
a different realization of the cluster and signal.

4.1. When 7 Is a Small Eigenvector

Here, we investigate the case when the signal, T, falls in a sub-
space corresponding to small eigenvalues of the clutter/noise.
To do this, we choose 7 to be the 170-th eigenvector of R,,
(with eigenvalues sorted from largest to smallest). Further-
more, the data is scaled so that ||7||?> = 32. The experiments
are run for n = 50,100, and 200, and the results are com-
pared with the zero estimator (b = 0), OLS, ridge regression,
and traditional Lasso regression.

Figure 2 shows the plots of the average SNR as a function
of the sample size n for both the “grass” and “water” covari-
ance matrices. In Fig. 2(a) we can see the traditional regu-
ralized regression methods perform poorly; however, they do
improve the prediction accuracy in some cases as shown in
Fig. 2(b). Notice that the SMT-Lasso regression results in the
highest SNRs in the whole range of n < p for both cases.
This is because the SMT covariance estimate is able to rep-
resent the signal that exists in small eigenvector subspaces of
the clutter.



Average SNR
w

@

IS

N

——Zero estimator

—OLS

- - Ridge regression|
Traditional lasso

——SMT-Lasso

Average SNR
w

IS

——Zero estimator

—OLS

- - Ridge regression|
Traditional lasso

——SMT-Lasso

l—lﬁ

50 100 150 200
Sample size

(8) grass

50 100 150 200
Sample size

(b) water

250

and then different model selection methods are used to obtain
good estimates of regression coefficients in the decorrelated
data domain. Numerical examples show that the proposed
approach can significantly improve the SNR of the regression
models, especially for “small n, large p” problems.

6. REFERENCES

[1] T. Hastie, R. Tibshirani, and J. Friedman, The Elements
of Satistical Learning: Data Mining, Inference, and
Prediction.

Fig. 3. Plots of average SNR when 7 is a random Gaussian
signal. Notice that SMT-Lasso regression results in consis-
tently higher SNR in the range of n < p compared to the
other regression methods. (a) Clutter W is generated using
hyperspectral grass data. (b) Clutter T is generated using
hyperspectral water data.

——SMT-Lasso
6f | = = SMT-Shrinkage|
- - - SMT-Subset

——SMT-Lasso
- - SMT-Shrinkage|
- - - SMT-Subset

@

@

IS

Average SNR
w

Average SNR

IS

w

n

0 50 100 150 200 250 0 50 100 150 200 250
Sample size Sample size

(a) grass (b) water
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4.2. When 7 Is a Random Signal
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that || 7 ||?= 42.
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5. CONCLUSIONS

In this paper, we proposed a novel regression approach for
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