
Towards Tool Support for the Configuration of
Non-Functional Properties in SPLs

Julio Sincero, Wolfgang Schröder-Preikschat
Friedrich-Alexander University Erlangen-Nuremberg

{sincero,wosch}@cs.fau.de

Olaf Spinczyk
Dortmund University of Technology

olaf.spinczyk@tu-dortmund.de

Abstract—The configuration of NFPs (non-functional proper-
ties) is a crucial problem in the development of software-intensive
systems. Most of the approaches currently available tackle this
problem during software design. However, at this stage, NFPs
cannot be properly predicted. As a solution for this problem we
present the new extensions of theFeedback approach which aims
at improving the configuration of NFPs in SPLs. We introduce
our set of tools that are used to support the approach and show
how to use them by applying it to the well-known SPL (The Graph
Product Line) that was suggested as a platform for evaluating SPL
technologies.

I. I NTRODUCTION

A. Software Product Lines

The development of software product lines (SPLs) are
considered [31] to be a new paradigm, as the result of its
implementation, different members of a family of systems
(product portfolio) can be generated. A SPL is, normally, com-
prised of a set of assets (software components, documentation,
etc.) that can be assembled together to deliver products that
satisfy the needs of a particular domain.

Several methodologies have been proposed in order to
support the development of SPLs.Domain engineering[11] is
the act of studying and documenting a specific domain in order
to support the subsequent development phases (e.g. application
engineering).Feature modelingis the approach used to capture
the common, the variable and the interdependency’s present
in a specific domain, the results are captured in a model
(normally a represented in the form of afeature diagram) that
determines whichsets of featuresare valid product specifica-
tions. Hence, feature modeling is specially important during
domain engineering and also during product configuration.
Several feature implementationtechniques have also been
proposed in order to facilitate the actual implementation of the
software assets of a SPL [27], [20], [15]. Moreover, techniques
for scoping [19], testing [30], managing variability [17],are
also available, business aspects likerisk management[31],
management and financial controls[29] are also addressed.
The use of these, and, of course, other methodologies, in the
context of SPL development, aim at reduced time to market,
reduced costs, higher productivity, better product quality [31],
etc.

B. Non-Functional Properties

We see non-functional properties (NFPs) as those that do
not expresswhat a piece of software is able to compute,

but how, or in which circumstancesit achieves its main
goals (functional properties). Examples are: code size, memory
footprint, performance, security, reliability, scalability, etc. Our
experience developing families of operating systems show that
these propertiesemergefrom the complex interactions among
the different modules that comprise the entire system [26],
[25].

C. NFPs and SPLs

The idea to address the configuration of NFPs in the
context of SPLs is, mainly, due to two reasons (1) NFPs
are very much dependent on the components that comprise
the product (2) SPLs are, normally, responsible for generating
the components (choosing and configuring) that are required
(through a product specification) to be present in the final
product. We aim at taking advantage of the infrastructure that
supports product generation in SPLs to improve the process
of product configuration, specially, the configuration of NFPs.

D. Objective

The objective of this work is to present the extensions
of the Feedbackapproach [36] which aims at improving
the configuration of NFPs in SPLs. We introduce the new
set of tools that are used to support the approach, and we
show how to use them by applying it to a well-known [28]
SPL that was suggested as a platform for evaluating SPL
technologies. Finally, we evaluate the approach and discuss
about applicability.

E. Outline

The remainder of this document is organized as follows. In
the next section we start with the motivation by describing
advantages of addressing the configuration of NFPs in SPLs.
Subsequently, we present the related work. Section IV presents
the basic concepts of theFeedbackapproach and introduces
the new set of tools that are used to implement it. A case study
is presented in Section VI. The final section summarizes and
concludes the work.

II. M OTIVATION

Researchers have proposed many [9], [37], [2] approaches
that integrate information regarding NFPs into the software
development process. These techniques range from extensions
of UML [9] diagrams with non-functional information up to



the design of software architectures that take into consideration
the desired non-functional behavior.

However, these techniques take into account only informa-
tion gathered during requirements engineering. Although we
believe these approaches improve considerably the conformity
of the resulting software with the non-functional require-
ments, we think that a significant amount information that
can improve the configuration of NFPs is simply disregarded.
Additionally, as mentioned above, we believe that NFPs are
heavily influenced by the composition and implementation
of the different software components that make up the final
software product, and itcannotbe precisely predicted during
software design.

Therefore, our idea is to use the information captured both
at product generation (e.g. compile-time, etc.) and at runtime
to use it in the configuration process to enable theexplicit
configuration of NFPs.

Our vision is that during product configuration (feature
selection) the application engineer should be informed about
the impact of each feature on the NFPs of the final product.

III. R ELATED WORK

Our work is comprised of pieces from three major fields.
First, the configuration of NFP in SPLs. Second, tool support
for the SPL development. Third,reasoningin feature models.
The following sections present prominent work in these areas.

A. NFPs and SPLs

Norbert et. al. [34], [32] proposes the use of asemi-
automated derivation(SAD) to assist developers selecting
product features in SPLs with a large number of features. The
basic idea is to hide variation points that are irrelevant due to
non-functional requirements that should be met. They claim
that traditional approaches do not consider non-functional
properties, nor alternatives for a feature implementation. To
solve this problem, they present aintegrated software product
line model(ISPLM) which integratescode unitsand their non-
functional properties into the feature model.

Benavides et. al. [4] propose an extension to feature models
(as proposed by Czarnecki [10]) to accommodate information
about extra-functionalfeatures (NFPs, in our view). In this
approach, attributes likeprice or development timecan be
assigned to features. The features and their attributes are
transformed to aconstraint satisfaction problem(CSP) so that
an automated reasoning can be applied to it. Hence,Optimum
productscan be generated according to a determined criterion
(the extra-functionalfeatures).

These methods take advantage of information about NFPs
to improve product configuration. However, we think that both
are more related to the field ofvariability management[33],
[24]. They ease the configuration process in large SPLs but do
not offer the ability to explicit configure NFPs or to inform
the user about thereal influence of a feature on the required
NFP.

B. Tool Support

Pure::variants [7] is a tool (Eclipse plugin) that supports
variant management of SPLs. It is independent of program-
ming languages and it enables the definition of theproblem
domainby means of feature models, and thesolution domain
by family models. It also automates the process of product
generation. Regarding the configuration of NFPs, the current
version is able to assign bugs (from a bug-tracking system) to
specific features, therefore, during product configuration, the
application engineer is informed about theknown bugs that
will be present on the final product.

GEARS [23] is a tool and framework that enables the
development and evolution of SPLs, it applies the 3-tiered
SPL methodology [22]. In GEARS, SPLs are comprised of
three elements,Software assets(source code, documentation,
etc.), product feature profile(to model each product in the
portfolio), and thegears configuratorwhich automatically
assembles products based on its specification.

FeaturePlugin [1] is an open-source Eclipse plugin for
designing and configuring feature models. It supports the
concepts ofstaged configuration[13] andfeature cardinalities
[12]. The tool focus on providing advanced techniques of
feature modeling and not in supporting the whole process of
SPL development.

FAMA (FeAture Model Analyser) [5] is an extensible
framework for the automated analysis of feature models. It is
able to denote feature models in several logic representations,
therefore, different solvers can used in the analysis process.
Currently, it supports CSP, SAT (boolean satisfiability prob-
lem) and BDD (binary decision diagrams), but it is flexible
enough to have other solvers added to it. Cardinality-based
feature models are allowed and the following operation are
supported: finding out if a feature model is valid (it exists a
valid selection that satisfies all constraints), finding thetotal
number of valid products, list all valid configurations and
calculating the commonality of features (the number of valid
products it appears).

There are commercial, free and open-source alternatives for
the design of feature models, only pure-variants is able to pro-
vide non-functional information during product configuration,
at the moment very basic, though.

C. Reasoning in Feature Models

Important to our work is also the process ofreasoning
in feature models. A seminal work of Benavides et. al. [6],
presents the mapping from feature model components (e.g.
optional features, mandatory feature, and group features)to
diverse logical representations, namely, SAT, BDD and CSP.
Transforming feature models in these representations enables
the use of off-the-shelf solvers that can perform several
analysis very relevant for feature models (e.g. validity, number
of solutions, etc.).

The relation of feature models and grammars have also
been studied [3]. Batory, also motivated by the ability to use
off-the-shelf satisfiability solvers, presented the mapping from
feature models, firstly, to iterative tree grammars, and then



to propositional formulas. However, his main goal was to
simplify the laborious task of debugging feature models.

Recently, the relation of feature models and logic repre-
sentation have been further explored. Czarnecki et. al. [14]
proposes a method for the inverse transformation, from propo-
sitional formulas to feature model representation. Janotaet.
al. [18] studies the representation of feature models in higher-
order logic, a formalized meta-model is presented, however,
no tool support is provided.

IV. T HE FeedbackAPPROACH

The Feedbackapproach extends the traditional SPL devel-
opment techniques in order to provide information regard-
ing NFPs during product configuration. We introduced new
structures and mechanisms so that the SPL infrastructure can
be used to generate products that will be tested against the
desired NFP. This information is saved, organized, and re-
inserted in the SPL, it enables the user to benefit from it on
the configuration of further products.

This process is organized in three layers:
SPL Repository is comprised of the software components

that can be assembled together to generate products.
Additionally, components that are used merely to capture
non-functional information from generated products are
also available. We have shown [16] thataspectsare very
adequate for this task.

User Configuration is responsible for providing the mech-
anisms for product configuration. Besides the traditional
configuration process by selecting features from a feature
model, we provide the user with non-functional informa-
tion. As NFPs are very specific to each product, or even
features, this information can be displayed in different
ways, for example, sliders, graphs, charts, etc. Moreover,
during configuration the user can select the aforemen-
tioned components that are responsible for checking the
NFPs of the product.

Concrete Solution Domain encompasses the generated
product and the compile/runtime environment used to
generate and test the product.

The organization of the SPL in this fashion aims at im-
proving theconfiguration experiencein the following ways:
(i) providing exact information about products that have been
previously configured. (ii) using heuristics and regression tech-
niques to provide approximated information about products
that have been only partially configured. (iii) if more then one
software component implement the same functional behavior,
the user should be able to select the most appropriate by means
of its non-functional characteristics.

V. TOOL-CHAIN ARCHITECTURE

This paper introduces our new set of tools that support
the implementation of theFeedbackapproach. Basically, it
consists of a feature modeling tool, a logic solver and a set
of scripts. Figure 1 depicts the whole process and the tools
involved, details are explained in the following sections.

A. Turning the LKC into a Feature Modeling Tool

Our approach is centered on feature modeling. However, our
initial goal was not to develop a feature modeling tool from
scratch, but to integrate theFeedbackapproach into an existing
tool. The only feature modeling tool that, to the best of our
knowledge, provides freely its source code is the FeaturePlugin
[1]. Nevertheless, it requires the whole Eclipse project, as we
did not want to force the use of Eclipse to deploy our approach,
we had to turn this option down. Later, our work analyzing the
Linux Kernel [35] as a SPL has shown that its configuration
tool could be turned into a feature modeling tool.

The Linux Kernel Configurator (LKC) is a tool that is
delivered within the Linux Kernel in order to enable its con-
figuration (feature selection) . Its first prototype was proposed
in 2002, the current version is 1.3, and as the Linux Kernel,
it is released under the GNU General Public License (GPL).

Table I presents the mappings that we propose for the the
design of feature models using the LKC language constructs.

Most of the mappings were relatively easy to perform. For
the mandatoryrelation, the parent feature forces the selection
of the child by the use of a reverse dependency (select).
The optional relation is described by using a dependency
between the child and the parent feature (depends on).
The or group is designed by creating reverse dependencies
between the children and the parent, this was done inside a
menu definition in order to group the children together. The
alternative groupcan be described by including configuration
options (the children) inside achoice definition, which has
the same semantic as ofalternative groupin feature models.
Extra constrains likeimplies and excludesare defined using
normal and negated dependencies (requires).

Using these mappings we were able to design several feature
models. So far we did not find any feature model construction
that could not be modeled with the LKC language. Hence, it
was chosen as the feature configuration tool for the implemen-
tation of theFeedbackapproach.

B. Partial Configuration

As mentioned earlier, theFeedbackapproach enables the
user to generate products, run tests on it and savereal
information about NFPs to improve the configuration of further
products.

In our view, the collection of non-functional information can
be performed in two ways. First, generating single products
and performing tests on it (left side of Figure 1). Second,
generatingsetsof products to be tested on the same scenario
(right side of Figure 1).

To generatesetsof product specifications we use the concept
of partial configuration, which is a feature selectionwhere
features can beselected (the feature must be present) or
blocked(must not be present). Using thepartial configuration
we generate the set of valid product specifications that respect
the selectedand blocked features. This process is shown on
the right side of Figure 1. Using the feature modeling tool, the
user performs a partial configuration, which is the input of our



Figure 1. Overview of the Feedback Approach

generator (the feature model is translated to a binary decision
diagram, using the translation as proposed by Benavides [6],
and implemented using the BuDDy library [8]). The generator
output is a set of specifications that are used to generate the
corresponding set of products.

C. Running Tests

In our tool set,product specificationsare simple text files
with pre-processor directives (defines) to control the fea-
tures that should be enabled or not. Using the specification
generated as explained in the previous section, we are able to
generate sets of products and run them for the evaluation of
the required NFP.

As shown on the bottom part of Figure 1, the result of
the product analysis can be associated to afeature (specific
feature present in the model), to aspec (complete product
configuration), or to aunit (implementation unit, like classes
or aspects).

VI. CASE STUDY

In order to evaluate our approach we conducted one case
study. We have chosen theGraph Product Line(GPL) [28] for
several reasons, it was proposed as a platform for evaluating
SPLs, the domain of graphs is well understood and the
algorithms are well known, and finally, recent work [21]
has used it for evaluating new techniques for implementing
products lines.

A. The GPL Product Line

The GPL implements a family of classical graph applica-
tions. Its feature model is depicted in Figure 3, as it can be
seen, basically, its variation points are thegraph type(directed

Figure 2. The extended LKC Tool as a Feature Modeling Tool

or undirected), thesearch algorithm (DFS or BFS)1, and
edgetype (weighted and unweighted). Additionally, a set of
algorithms to handle graphs are also available:
Number (Number): assigns a unique number to each vertex

a the result of a traversal.
Connected Components (Con.Comp.): computes thecon-

nected componentsof an undirected graph.
Strongly Connected Components (SCC): computes the

strongly connected componentsof a directed graph.
Cycle Checking (CycleCheck): checks the existence of cy-

cles in a graph.
Minimum Spanning Tree (MSTP. and MSTK): computes

1DFS=depth-first search, BFS=breadth-first search



Table I
MAPPING: FEATURE RELATIONS TOLKC LANGUAGE

M
A

N
D

A
T

O
R

Y

P

C

c o n f i g P
boolean "P"
s e l e c t C

c o n f i g C
boolean "C"

O
P

T
IO

N
A

L P

C

c o n f i g P
boolean "P"

c o n f i g C
depends on "P"
boolean "C"

O
R

P

C1 C2 C3

menu "P"
c o n f i g P

boolean
c o n f i g C1

boolean "C1"
s e l e c t P

c o n f i g C2
boolean "C2"
s e l e c t P

c o n f i g C3
boolean "C3"
s e l e c t P

endmenu

A
LT

E
R

N
A

T
IV

E P

C1 C2 C3

cho i ce
prompt "P"

c o n f i g C1
boolean "C1"

c o n f i g C2
boolean "C2"

c o n f i g C3
boolean "C3"

endcho ice

IM
P

L
IE

S

A

B

c o n f i g A
boolean "A"
r equ i r es B

c o n f i g B
boolean "B"

E
X

C
L

U
D

E
S

A

B

c o n f i g A
boolean "A"
r equ i r es !B

c o n f i g B
boolean "B"

the mininum spanning tree, which is a spanning tree
with weight less then or equal to the weight of every
other spanning tree. Two implementations of this feature
are available.

Single-Source Shortest Path(SSP): computes the shortest
path from a source to all other vertices.

Table III shows the extra constraints that cannot be shown
on the feature model, and, therefore, are implemented as an
implies relation (shown on Table I). Each line shows which
features can be associated to each algorithm.

It may seem to be a very simple feature model, however,
even with only 19 features and a couple of extra constraints
the idea to provide non-functional information about everyof
its possible valid feature combinations, is a very challenging
task.

B. Targeted NFPs

So far in this document we have discussed about NFP in a
very general way. This was due to the following reason: NFPs
are totally dependent onscenariosandstandpoints. For some
stakeholders, the definition ofperformanceor security may
have completely different means than for other stakeholders.
Therefore, we think that NFPs should bespecifically defined.
For example, the question “what is the performance of pro-
ductX?”, is way too generic, and, in our opinion, cannot be
satisfactorily answered. Nevertheless, a question like “what
is the time required to perform the number algorithm in a
graph with 300 vertices and 45k edges?”, is a very appropriate
question, which shows a relevant way to represent one of the
several ways that the NFPperformancecould be seen in this
scenario. TheFeedbackaims at providing the visualization/-
configuration of NFPs defined in this manner during product
configuration.

In order to test this concept, and theFeedbackapproach
itself, we have defined the follow NFP to be tested:the
performance of thenumber algorithm for three different
workloads. That is, the time required to perform the algorithm
in randomly generated graphs of the sizes: 300 vertices and
125k edges, 500 vertices and 45k edges, and, 1000 vertices and
500k edges. To be able to provide the information resulting
from these tests during product configuration, we generated
a set of variants of the GPL using the process described in
Section V-B. We have set the featurenumber as selected
and all other features underalgorithm as blocked. Our
generator output 8 different product configurations that were
tested using the three different workloads. The results are
shown on Table II (time in milliseconds). Our feature modeling
tool shown in Figure 2 displays this information during feature
selection. As it can be seen on the bottom of Figure 2, we
are using rounded range control components (one for each
workload) to display theperformance(as defined above) of
the current selection.

This process enables us to display exact information about
NFPs that were specifically defined and tested. We believe
that this information helps the user on the process of deciding
which features should be included or not, or, at least, informing



Table II
NUMBER TESTS

Conf. Workload1 Worload2 Workload3
1 110 378 2868
2 111 380 2876
3 153 501 3298
4 161 493 3361
5 109 385 2848
6 111 377 2856
7 157 496 3340
8 153 513 3358

about the non-functional behavior that should be expected in
the final product.

VII. C ONCLUSIONS ANDFUTURE WORK

There are many ways to address the configuration of NFPs
of a system. Most of the approaches annotates models during
software design with non-functional information/requirements
that are of interest. However, the real behavior of a piece of
software can be verified only at runtime and when deployed
in real scenarios.

To tackle this problem we devised theFeedbackapproach.
We developed mechanisms to generate sets of products so that
desired NFPs can be tested in a real scenario. Additionally,this
information can be saved for further reuse. The application
engineer using our configuration tool is able to see what is
the impact of feature selection on NFPs that were previously
tested.

In our case study we have shown the feasibility of the idea,
and also, that with appropriate tool support it is relatively easy
to implement.

In order to extend and further evaluate out work, we plan
to improve the integration of our tools and to carry out a
case study in a large scale SPL with thousands of features.
The analysis of other types of NFPs (security, latency, etc.) in
operating systems are also under work. Moreover, we are also
investigating the inverse way to configure a product, enabling
the user to set constraints regarding the tested NFPs, and the
configuration tool will generate the sets of products that are
able to fulfill the requirements. Regarding selections thatwere
not tested, we are applying regression techniques to predict its
behavior.

REFERENCES

[1] Michal Antkiewicz and Krzysztof Czarnecki. FeaturePlugin: feature
modeling plug-in for Eclipse. In2004 OOPSLA workshop on Eclipse
technology eXchange (Eclipse ’04 at OOPPSLA ’04), pages 67–72,
Vancouver, Canada, July 2004.

[2] Len Bass. Principles for designing software architecture to achieve
quality attribute requirements. InSERA ’06: Proceedings of the
Fourth International Conference on Software Engineering Research,
Management and Applications, page 2, Washington, DC, USA, 2006.
IEEE Computer Society.

[3] Don S. Batory. Feature models, grammars, and propositionalformulas.
In 9th Software Product Line Conf. (SPLC ’05), pages 7–20, 2005.

[4] D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automatedreasoning
on feature models.LNCS, Advanced Information Systems Engineering:
17th International Conference, CAiSE 2005, 3520:491–503, 2005.

[5] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-Cortés. FAMA:
Tooling a framework for the automated analysis of feature models. In
Proceeding of the First International Workshop on Variability Modeling
of Software-Intensive Systems (VAMOS), 2007.

[6] D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-CortÃ©s. A first
step towards a framework for the automated analysis of featuremodels.
In Managing Variability for Software Product Lines: Working With
Variability Mechanisms, 2006.

[7] Danilo Beuche. Variant management with pure::variants. Technical
report, pure-systems GmbH, 2003. http://www.pure-systems.com/.

[8] BuDDy Project. http://sourceforge.net/projects/buddy.
[9] Luiz Marcio Cysneiros and Julio Cesar Sampaio do Prado Leite. Non-

functional requirements: From elicitation to conceptual models. IEEE
Transactions on Software Engineering, 30(5):328–350, 2004.

[10] Krysztof Czarnecki and Ulrich W. Eisenecker.Generative Programming.
Methods, Tools and Applications.AW, May 2000.

[11] Krzysztof Czarnecki.Generative Programming: Principles and Tech-
niques of Software Engineering Based on Automated Configuration and
Fragment-Based Component Models. PhD thesis, Technische Universität
Ilmenau, Ilmenau, Germany, 1998.

[12] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. Formal-
izing cardinality-based feature models and their specialization. Software
Process: Improvement and Practice, 10(1):7–29, 2005.

[13] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. Staged
configuration through specialization and multilevel configuration of fea-
ture models.Software Process: Improvement and Practice, 10(2):143–
169, 2005.

[14] Krzysztof Czarnecki and Andrzej Wasowski. Feature diagrams and
logics: There and back again. In11th Software Product Line Conf.
(SPLC ’07), pages 23–34, 2007.

[15] Cristina Gacek and Michalis Anastasopoules. Implementing product line
variabilities. In 2001 Symp. on Software Reusability (SSR ’01), pages
109–117. ACM, 2001.

[16] Wasif Gilani, Julio Sincero, and Olaf Spinczyk. Aspectizing a web
server for adaptation. InTwelfth IEEE Symposium on Computers and
Communications (ISCC’07), Aveiro, Portugal, 2007. IEEE.

[17] Jilles Van Gurp, Jan Bosch, and Mikael Svahnberg. On thenotion of
variability in software product lines.wicsa, 0:45, 2001.

[18] Mikolás Janota and Joseph Kiniry. Reasoning about feature models in
higher-order logic. In11th Software Product Line Conf. (SPLC ’07),
pages 13–22, 2007.

[19] I. John, J. Knodel, T. Lehner, and D. Muthig. A practicalguide to
product line scoping. In10th Software Product Line Conf. (SPLC ’06),
pages 3–12, Aug. 2006.

[20] Christian Kästner, Sven Apel, and Don Batory. A case study imple-
menting features using AspectJ. In11th Software Product Line Conf.
(SPLC ’07), pages 223–232. IEEE, 2007.

[21] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in
software product lines. InICSE, pages 311–320, 2008.

[22] Charles W. Krueger. The 3-tiered methodology: Pragmaticinsights from
new generation software product lines. In11th Software Product Line
Conf. (SPLC ’07), pages 97–106, 2007.

[23] Charles W. Krueger. BigLever software Gears and the 3-tiered SPL
methodology. InOOPSLA ’07: Companion to the 22nd ACM SIGPLAN
conference on object-oriented programming systems and applications,
pages 844–845, New York, NY, USA, 2007. ACM.

[24] Felix Loesch and Erhard Ploedereder. Optimization of variability in
software product lines. In11th Software Product Line Conf. (SPLC
’07), pages 151–162, 2007.

[25] Daniel Lohmann, Wolfgang Schröder-Preikschat, and Olaf Spinczyk.
Functional and non-functional properties in a family of embedded
operating systems. In10th IEEE Int. W’shop. on Object-oriented Real-
time Dependable Systems (WORDS ’05), pages 413–420, Sedona, AZ,
USA, February 2005.

[26] Daniel Lohmann, Olaf Spinczyk, and Wolfgang Schröder-Preikschat.
On the configuration of non-functional properties in operating system
product lines. In4th AOSD W’shop on Aspects, Components, and
Patterns for Infrastructure Software (AOSD-ACP4IS ’05), pages 19–25,
Chicago, IL, USA, March 2005. Northeastern University, Boston (NU-
CCIS-05-03).

[27] Daniel Lohmann, Olaf Spinczyk, and Wolfgang Schröder-Preikschat.
Lean and efficient system software product lines: Where aspects beat
objects. In Awais Rashid and Mehmet Aksit, editors,Transactions on
AOSD II, number 4242 in LNCS, pages 227–255. Springer, 2006.



GPL

Graph Type

Directed Undirected

Algorithm

Number Con.Comp. SCC CycleCheck MSTP. MSTK. SSP

Edge

Weighted Unweighted

Search

DFS BFS None

Figure 3. Graph Product Line Feature Model

Table III
GRAPH PRODUCT L INE CONSTRAINTS

Search Graph Type Edge Type
Algorithm None BFS DFS Directed Undirected Weighted Unweighted
NUMBER × × × × × ×

CC × × × × ×

SCC × × × ×

CYCLE × × × × ×

MST × × ×

SSP × × ×

[28] Roberto E. Lopez-Herrejon and Don Batory. A standard problem for
evaluating product-line methodologies.Lecture Notes in Computer
Science, 2186:10–??, 2001.

[29] Yoshihiro Matsumoto. A guide for management and financial controls
of product lines. In11th Software Product Line Conf. (SPLC ’07), pages
163–170, 2007.

[30] John D. McGregor. Building reusable testing assets fora software
product line. In10th Software Product Line Conf. (SPLC ’06), page
220, 2006.

[31] Linda Northrop and Paul Clements.Software Product Lines: Practices
and Patterns. AW, 2001.

[32] M. Rosenmüller, N. Siegmund, H. Schirmeier, Julio Sincero, Sven Apel,
Thomas Leich, Olaf Spinczyk, and Gunter Saake. FAME-DBMS:
Tailor-Made Data Management Solutions for Embedded Systems. In
Workshop on Software Engineering for Tailor-Made Data Management
(SETMDM), 2008.

[33] Horst Schirmeier and Olaf Spinczyk. Tailoring Infrastructure Software
Product Lines by Static Application Analysis. In11th Software Product
Line Conf. (SPLC ’07), pages 255–260. IEEE, 2007.

[34] N. Siegmund, M. Kuhlemann, M. Rosenmüller, C. Kästner, and
G. Saake. Integrated product line model for semi-automated product
derivation using non-functional properties. InInternational Workshop
on Variability Modelling of Software-Intensive Systems (VAMOS), pages
25–23, January 2008.

[35] Julio Sincero, Horst Schirmeier, Wolfgang Schröder-Preikschat, and Olaf
Spinczyk. Is The Linux Kernel a Software Product Line? In Frank
van der Linden and Björn Lundell, editors,International Workshop on
Open Source Software and Product Lines (SPLC-OSSPL 2007), Kyoto,
Japan, 2007.

[36] Julio Sincero, Olaf Spinczyk, and Wolfgang Schröder-Preikschat. On the

Configuration of Non-Functional Properties in Software Product Lines.
In 11th Software Product Line Conf., Doctoral Symp. (SPLC ’07), 2007.

[37] L. Xu, H. Ziv, D. Richardson, and Z. Liu. Towards modelingnon-
functional requirements in software architecture.


