Towards Tool Support for the Configuration of
Non-Functional Properties in SPLs

Julio Sincero, Wolfgang Schréder-Preikschat Olaf Spinczyk
Friedrich-Alexander University Erlangen-Nuremberg Dortmund University of Technology
{sincero,wosch}@cs.fau.de olaf.spinczyk@tu-dortmund.de

Abstract—The configuration of NFPs (non-functional proper- but how, or in which circumstancest achieves its main
ties) is a crucial problem in the development of software-intensive goals (functional properties). Examples are: code sizeyong
systems. Most of the approaches currently available tackle this footprint, performance, security, reliability, scaldtyil etc. Our

problem during software design. However, at this stage, NFPs . d lobina famili f i ¢ ¢
cannot be properly predicted. As a solution for this problem we SXPErence aeveloping families ot operating systems sheay

present the new extensions of th€eedback approach which aims these propertieesmergefrom the complex interactions among
at improving the configuration of NFPs in SPLs. We introduce the different modules that comprise the entire system [26],
our set of tools that are used to support the approach and show [25],

how to use them by applying it to the well-known SPL The Graph

Product Line) that was suggested as a platform for evaluating SPL C. NFPs and SPLs

technologies.
The idea to address the configuration of NFPs in the

|. INTRODUCTION context of SPLs is, mainly, due to two reasons (1) NFPs
A. Software Product Lines are very much dependent on the components that comprise

The development of software product lines (SPLs) af@€ product (2) SPLs are, normally, responsible for gemmegat
considered [31] to be a new paradigm, as the result of #f3€ components (choosing and configuring) that are required
implementation, different members of a family of system@hrough a product specification) to be present in the final
(product portfolio) can be generated. A SPL is, normallyneo product. We aim at taklng. ad\{antage of the infrastructuag th
prised of a set of assets (software components, documamtatPUPPOrs product generation in SPLs to improve the process
etc.) that can be assembled together to deliver products tRhProduct configuration, specially, the configuration offté
satisfy the needs of a particular domain. ' D. Objective

Several methodologies have been proposed in order to o)))
support the development of SPIBomain engineeringl1] is The objective of this work is to_ pres_ent the_extens_lons
the act of studying and documenting a specific domain in ord@r the Feedbackapproach [36] which aims at improving
to support the subsequent development phases (e.g.a'pumicathe configuration of NFPs in SPLs. We introduce the new
engineering)Feature modelings the approach used to capturé®t Of tools that are used to support the approach, and we
the common, the variable and the interdependency’s preséfW how to use them by applying it to a well-known [28]
in a specific domain, the results are captured in a mod@PL that was suggested as a platform for evaluating SPL
(normally a represented in the form ofeature diagraithat t€chnologies. Finally, we evaluate the approach and discus
determines whiclsets of featuresre valid product specifica- 2P0ut applicability.
tions. Hence, feature modeling is specially important miyiri =~ +jine
domain engineering and also during product configuration. _ _ _)

Several feature implementatiortechniques have also been T1h€ remainder of this document is organized as follows. In
proposed in order to facilitate the actual implementatibthe the next section we start with the motivation by describing
software assets of a SPL [27], [20], [15]. Moreover, techeig advantages of addressing the configuration of NFPs in SPLs.
for scoping [19], testing [30], managing variability [1%re Subseq_uently, we present the related work. Secho_n IV ptese
also available, business aspects likgk managemenf31], the basic concepts of tHéeedbackapproach anpl introduces
management and financial contro29] are also addressed.tn€ néw set of tools that are used to implement it. A case study
The use of these, and, of course, other methodologies, in {presented in Section VI. The final section summarizes and
context of SPL development, aim at reduced time to mark&@ncludes the work.
reduced costs, higher productivity, better product qud#i], I
etc.

. MOTIVATION

)) Researchers have proposed many [9], [37], [2] approaches
B. Non-Functional Properties that integrate information regarding NFPs into the sofevar
We see non-functional properties (NFPs) as those that development process. These techniques range from extsnsio
not expresswhat a piece of software is able to computepf UML [9] diagrams with non-functional information up to

the design of software architectures that take into conai® B. Tool Support

the desired non-functional behavior. Pure::variants [7] is a tool (Eclipse plugin) that supports
However, these teChniques take into account Only inform@ariant management of SPLs. It is independent of program-
tion gathered during requirements engineering. Although Whing languages and it enables the definition of pieblem
believe these approaches improve considerably the coitfornyomainby means of feature models, and tmution domain
of the resulting software with the non-functional requirepy family models. It also automates the process of product
ments, we think that a significant amount information thajeneration. Regarding the configuration of NFPs, the ctirren
can improve the configuration of NFPs is simply disregardegersion is able to assign bugs (from a bug-tracking system) t
Additionally, as mentioned above, we believe that NFPs agecific features, therefore, during product configurattbe
heavily influenced by the composition and implementatiogpplication engineer is informed about tkeown bugs that
of the different software components that make up the fingd|| be present on the final product.
software product, and tannotbe precisely predicted during GEARS [23] is a tool and framework that enables the
software design. development and evolution of SPLs, it applies the 3-tiered
Therefore, our idea is to use the information captured bo8PL methodology [22]. In GEARS, SPLs are comprised of
at product generation (e.g. compile-time, etc.) and atimet three elementsSoftware assetéource code, documentation,
to use it in the configuration process to enable éxglicit etc.), product feature profile(to model each product in the
configuration of NFPs. portfolio), and thegears configuratorwhich automatically
Our vision is that during product configuratiofiedture assembles products based on its specification.
selection the application engineer should be informed about FeaturePlugin [1] is an open-source Eclipse plugin for
the impact of each feature on the NFPs of the final productiesigning and configuring feature models. It supports the
concepts oktaged configuratiofil3] andfeature cardinalities
I1l. RELATED WORK [12]. The tool focus on providing advanced techniques of
feature modeling and not in supporting the whole process of
Our work is comprised of pieces from three major fieldsPL development.
First, the configuration of NFP in SPLs. Second, tool support FAMA (FeAture Model Analyser) [5] is an extensible
for the SPL development. Thirdeasoningin feature models. framework for the automated analysis of feature modelss It i
The following sections present prominent work in these sireable to denote feature models in several logic representati
therefore, different solvers can used in the analysis @@ce
A. NFPs and SPLs Currently, it supports CSP, SAT (boolean satisfiability kpro
lem) and BDD (binary decision diagrams), but it is flexible
enough to have other solvers added to it. Cardinality-based
eature models are allowed and the following operation are
Gpported: finding out if a feature model is valid (it exists a

Norbert et. al. [34], [32] proposes the use ofsami-
automated derivation(SAD) to assist developers selectin
product features in SPLs with a large number of features. T

basic idea is to hide variation points that are irrelevare thu valid selection that satisfies all constraints), finding tol

non-functional requirements that should be met. They claiy e of valig products, list all valid configurations and

that trgdmonal approac_:hes do not cons_lder non'funCt'On(‘:“]alculating the commonality of features (the number ofdsali
properties, nor alternatives for a feature implementatitm products it appears)

solve this problem, they presenirdegrated software product * pere are commercial, free and open-source alternatives fo

line modeI(ISPLM) wh|ch integratesode unitsand their non- the design of feature models, only pure-variants is ablede p

funcUongI properties into the feature moqel' vide non-functional information during product configuoat
Benavides et. al. [4] propose an extension to feaFure modg[sthe moment very basic, though.

(as proposed by Czarnecki [10]) to accommodate information

about extra-functionalfeatures (NFPs, in our view). In thisC. Reasoning in Feature Models

approach, attributes likg@rice or development timean be Important to our work is also the process &asoning

assigned to features. The features and their attributes arefeature models. A seminal work of Benavides et. al. [6],

transformed to @onstraint satisfaction problefCSP) so that presents the mapping from feature model components (e.g.

an automated reasoning can be applied to it. HeB@gtimum optional features, mandatory feature, and group featuces)

productscan be generated according to a determined criteridiverse logical representations, namely, SAT, BDD and CSP.

(the extra-functionalfeatures). Transforming feature models in these representationslenab
These methods take advantage of information about NFfhe use of off-the-shelf solvers that can perform several

to improve product configuration. However, we think thattbotanalysis very relevant for feature models (e.g. validityniber

are more related to the field efriability managemenf33], of solutions, etc.).

[24]. They ease the configuration process in large SPLs but ddrhe relation of feature models and grammars have also

not offer the ability to explicit configure NFPs or to informbeen studied [3]. Batory, also motivated by the ability te us

the user about theeal influence of a feature on the requiredff-the-shelf satisfiability solvers, presented the maggdrom

NFP. feature models, firstly, to iterative tree grammars, and the

to propositional formulas. However, his main goal was t8. Turning the LKC into a Feature Modeling Tool
simplify the laborious task of debugging feature models. Our approach is centered on feature modeling. However, our

Recently, the relation of feature models and logic reprsitia| goal was not to develop a feature modeling tool from
sentation have been further explored. Czarnecki et. al [14:atch, but to integrate tieedbackapproach into an existing
proposes a method for the inverse transformation, from@ropgo|. The only feature modeling tool that, to the best of our
sitional formulas to feature mpdel representation. J_am_).ta knowledge, provides freely its source code is the Featuggl
al. [18] stgd|es the representation of fegture models ihdrig [1]. Nevertheless, it requires the whole Eclipse projestye
order logic, a formalized meta-model is presented, howevgfy not want to force the use of Eclipse to deploy our apprpach
no tool support is provided. we had to turn this option down. Later, our work analyzing the
Linux Kernel [35] as a SPL has shown that its configuration
tool could be turned into a feature modeling tool.

The Feedbackapproach extends the traditional SPL devel- The Linux Kernel Configurator (LKC) is a tool that is
opment techniques in order to provide information regardelivered within the Linux Kernel in order to enable its con-
ing NFPs during product configuration. We introduced nefiguration (feature selection) . Its first prototype was g
structures and mechanisms so that the SPL infrastructure 422002, the current version is 1.3, and as the Linux Kernel,
be used to generate products that will be tested against this released under the GNU General Public License (GPL).
desired NFP. This information is saved, organized, and re-Table | presents the mappings that we propose for the the
inserted in the SPL, it enables the user to benefit from it ¢lesign of feature models using the LKC language constructs.
the configuration of further products. Most of the mappings were relatively easy to perform. For

This process is organized in three layers: the mandatoryrelation, the parent feature forces the selection
SPL Repository is comprised of the software component§f the child by the use of a reverse dependersgl fct).

that can be assembled together to generate produdt@e optional relation is described by using a dependency
Additionally, components that are used merely to captukgtween the child and the parent featutkeggends on).
non-functional information from generated products arEhe or group is designed by creating reverse dependencies
also available. We have shown [16] thesipectsare very between the children and the parent, this was done inside a
adequate for this task. menu definition in order to group the children together. The
User Configuration is responsible for providing the mech-alternative groupcan be described by including configuration
anisms for product configuration. Besides the tradition@ptions (the children) inside @hoi ce definition, which has
configuration process by selecting features from a featufte same semantic as afternative groupin feature models.
model, we provide the user with non-functional informaExtra constrains likamplies and excludesare defined using
tion. As NFPs are very specific to each product, or evéiprmal and negated dependenciesqui r es).
features, this information can be displayed in different Using these mappings we were able to design several feature
ways, for example, sliders, graphs, charts, etc. Moreové&todels. So far we did not find any feature model construction
during configuration the user can select the aforemetfiat could not be modeled with the LKC language. Hence, it
tioned components that are responsible for checking th&s chosen as the feature configuration tool for the implemen
NFPs of the product. tation of theFeedbackapproach.
Concrete Solution Domain encompasses the generated
product and the compile/runtime environment used ®. Partial Configuration

generatg an_d test the produ_ct.))) . As mentioned earlier, th&eedbackapproach enables the
The organization of the SPL in this fashion aims at iMiser to generate products, run tests on it and sme

proving theconfiguration experiencén the following ways: jnfrmation about NFPs to improve the configuration of ferth
(i) providing exact information about products that haverbe products.

previously configured. (ii) using heuristics and regressezh- In our view, the collection of non-functional informatioarc

hiques to provide apprqximated.informaqpr? about producﬁ% performed in two ways. First, generating single products
that have been only partially configured. (iii) if more theameo and performing tests on it (left side of Figure 1). Second,

software component implement the same functional behavi Eneratingsetsof products to be tested on the same scenario
the user should be able to select the most appropriate bysne R;ht side of Figure 1)

of its non-functional characteristics.

IV. THE FeedbackAPPROACH

To generateetsof product specifications we use the concept
of partial configuration which is afeature selectionwhere
features can beselected(the feature must be present) or

This paper introduces our new set of tools that suppdstocked(must not be present). Using tpartial configuration
the implementation of thd-eedbackapproach. Basically, it we generate the set of valid product specifications thaectsp
consists of a feature modeling tool, a logic solver and a gbe selectedand blockedfeatures. This process is shown on
of scripts. Figure 1 depicts the whole process and the todlee right side of Figure 1. Using the feature modeling tdud, t
involved, details are explained in the following sections. user performs a partial configuration, which is the inputwf o

V. TOOL-CHAIN ARCHITECTURE

Legend

ATA A

prod. conf. Software Components prod. conf.
m m m generator
FM partial

selection
NFPs
g
e W< W Multiple
pmd.spec.
spec

>

4

Single
prod. spec.

Tool /
Process

Figure 1. Overview of the Feedback Approach

‘Geont (on fauiasa)

generator (the feature model is translated to a binary &cis | s oen uer
diagram, using the translation as proposed by Benavides [{-— =& | Il £]
and implemented using the BuDDy library [8]). The generato|- 2=

output is a set of specifications that are used to generate {
corresponding set of products.

option

C. Running Tests

In our tool set,product specificationsrre simple text files
with pre-processor directivesiéf i nes) to control the fea-
tures that should be enabled or not. Using the specificatic
generated as explained in the previous section, we are @ble

generate sets of products and run them for the evaluation TR
the required NFP. O @ //

As shown on the bottom part of Figure 1, the result o
the product analysis can be associated teature (specific
feature present in the model), tospec(complete product
configuration), or to aunit (implementation unit, like classes
or aspects).

ROOT (GPL)

e
single Shortest Path

Figure 2. The extended LKC Tool as a Feature Modeling Tool

VI. CASE STUDY or undirected), thesearch algorithm (DFS or BFS)!, and

edgetype (weighted and unweighted). Additionally, a set of
In order to evaluate our approach we conducted one C&J§orithms to handle graphs are also available:

study. We have chosen ti&raph Product LindGPL) [28] for nymber (Numbej: assigns a unique number to each vertex
several reasons, it was proposed as a platform for evauatin - 5 the result of a traversal.

SPLs, the domain of graphs is well understood and th& nected Components ConComp): computes the con-
algorithms are well known, and finally, recent work [21] nected componentsf an undirected graph.

has used it for evaluating new techniques for implementi@(ronwy Connected Components $CQ: computes the
products lines. strongly connected componenita directed graph.

A. The GPL Product Line Cycle Ch_ecking CycleCheck checks the existence of cy-
cles in a graph.

The GPL implements a family of classical graph applicq\-/”nimum Spanning Tree (MSTP and MSTK): computes
tions. Its feature model is depicted in Figure 3, as it can be

seen, basically, its variation points are tir@ph type(directed 'DFS=depth-first search, BFS=breadth-first search

Table |

MAPPING: FEATURE RELATIONS TOLKC LANGUAGE

MANDATORY

7]

config P
boolean
select C

config C
boolean

npn

ok

OPTIONAL

[olo—{]

config P
boolean

config C
depends
boolean

np

on
ol

wpn

OR

menu "P"

config P
boolean

config C1

boolean "C1"

select P
config C2

boolean "C2"

select P
config C3

boolean "C3"

select P
endmenu

ALTERNATIVE

choice
prompt
config C1
boolean
config C2
boolean
config C3
boolean
endchoice

npn

no1"

ngon

"c3"

IMPLIES

2]

config A
boolean
requires

config B
boolean

A
B

ng"

EXCLUDES

.,H

[@]<

config A
boolean
requires

config B
boolean

"
'B

ngn

the mininum spanning tree, which is a spanning tree
with weight less then or equal to the weight of every
other spanning tree. Two implementations of this feature
are available.

Single-Source Shortest Patt§SPH: computes the shortest
path from a source to all other vertices.

Table Il shows the extra constraints that cannot be shown
on the feature model, and, therefore, are implemented as an
i mpl i es relation (shown on Table I). Each line shows which
features can be associated to each algorithm.

It may seem to be a very simple feature model, however,
even with only 19 features and a couple of extra constraints
the idea to provide non-functional information about evefy
its possible valid feature combinations, is a very chaliegg
task.

B. Targeted NFPs

So far in this document we have discussed about NFP in a
very general way. This was due to the following reason: NFPs
aretotally dependent omscenariosand standpoints For some
stakeholders, the definition gferformanceor security may
have completely different means than for other stakehslder
Therefore, we think that NFPs should bpecifically defined
For example, the questionwhat is the performance of pro-
ductX?, is way too generic, and, in our opinion, cannot be
satisfactorily answered. Nevertheless, a question likbat
is the time required to perform the number algorithm in a
graph with 300 vertices and 45k edgé&si® a very appropriate
guestion, which shows a relevant way to represent one of the
several ways that the NFBerformancecould be seen in this
scenario. Theeeedbackaims at providing the visualization/-
configuration of NFPs defined in this manner during product
configuration.

In order to test this concept, and tiveedbackapproach
itself, we have defined the follow NFP to be testdbe
performance of thenunber algorithm for three different
workloads That is, the time required to perform the algorithm
in randomly generated graphs of the sizes: 300 vertices and
125k edges, 500 vertices and 45k edges, and, 1000 vertides an
500k edges. To be able to provide the information resulting
from these tests during product configuration, we generated
a set of variants of the GPL using the process described in
Section V-B. We have set the featuneinber as selected
and all other features undexl gorit hm as blocked Our
generator output 8 different product configurations thatewe
tested using the three different workloads. The results are
shown on Table Il (time in milliseconds). Our feature moxigli
tool shown in Figure 2 displays this information during feat
selection. As it can be seen on the bottom of Figure 2, we
are using rounded range control components (one for each
workload) to display thegerformance(as defined above) of
the current selection.

This process enables us to display exact information about
NFPs that were specifically defined and tested. We believe
that this information helps the user on the process of degidi
which features should be included or not, or, at least, mfog

Table Il

NUMBER TESTS
Conf. Workloadl | Worload2 | Workload3
1 110 378 2868
2 111 380 2876
3 153 501 3298
4 161 493 3361
5 109 385 2848
6 111 377 2856
7 157 496 3340
8 153 513 3358

(5]

(6]

(7]

(8]
El

about the non-functional behavior that should be expected[io]

the final product.

VII. CONCLUSIONS ANDFUTURE WORK

(11]

There are many ways to address the configuration of NFBZJ

of a system. Most of the approaches annotates models during
software design with non-functional information/requments

(13]

that are of interest. However, the real behavior of a piece of
software can be verified only at runtime and when deployed

in real scenarios.

To tackle this problem we devised titeedbackapproach.
We developed mechanisms to generate sets of products so Rt¥tCristina Gacek and Michalis Anastasopoules. Implemerpiroduct line
desired NFPs can be tested in a real scenario. Additiorhity,
information can be saved for further reuse. The applicatigy
engineer using our configuration tool is able to see what is

the impact of feature selection on NFPs that were previou
tested.

(14]

W

In our case study we have shown the feasibility of the ide@g]
and also, that with appropriate tool support it is relagivehsy

to implement.

(19]

In order to extend and further evaluate out work, we plan

to improve the integration of our tools and to carry out
case study in a large scale SPL with thousands of featur

The analysis of other types of NFPseCurity latency etc.) in
operating systems are also under work. Moreover, we are aié8
investigating the inverse way to configure a product, engbli[oo;
the user to set constraints regarding the tested NFPs, and th

configuration tool will generate the sets of products that
able to fulfill the requirements. Regarding selections therte

not tested, we are applying regression techniques to prigslic
behavior.

(1]

(2]

(3]
(4]

o

s

(24]

REFERENCES

(25]

Michal Antkiewicz and Krzysztof Czarnecki. Feature@iu feature
modeling plug-in for Eclipse. 12004 OOPSLA workshop on Eclipse
technology eXchange (Eclipse '04 at OOPPSLA ,0dages 67-72,
Vancouver, Canada, July 2004.

Len Bass.
quality attribute requirements. ISERA '06: Proceedings of the
Fourth International Conference on Software Engineeringséarch,
Management and Applicationpage 2, Washington, DC, USA, 2006.
IEEE Computer Society.

Don S. Batory. Feature models, grammars, and propositimnaiulas.
In 9th Software Product Line Conf. (SPLC '0®ages 7—-20, 2005.

D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automatedsoning
on feature modelsLNCS, Advanced Information Systems Engineering:
17th International Conference, CAISE 20(520:491-503, 2005.

Principles for designing software architeetto achieve [26]

[27]

D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-CortésAMA:
Tooling a framework for the automated analysis of feature nsoded
Proceeding of the First International Workshop on VariétgiModeling
of Software-Intensive Systems (VAMOZ)07.

D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-CortA@s first
step towards a framework for the automated analysis of featoeels.
In Managing Variability for Software Product Lines: WorkingitkV
Variability Mechanisms2006.

Danilo Beuche. Variant management with pure::variantechhical
report, pure-systems GmbH, 2003. http://www.pure-systemsg.c
BuDDy Project. http://sourceforge.net/projects/dud

Luiz Marcio Cysneiros and Julio Cesar Sampaio do PradteLélon-
functional requirements: From elicitation to conceptual eisdIEEE
Transactions on Software Engineerjrg0(5):328-350, 2004.

Krysztof Czarnecki and Ulrich W. Eiseneck&enerative Programming.
Methods, Tools and Application&Ww, May 2000.

Krzysztof Czarnecki.Generative Programming: Principles and Tech-
niques of Software Engineering Based on Automated Configarand
Fragment-Based Component Modd®hD thesis, Technische Universitat
limenau, lImenau, Germany, 1998.

Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisgtex. Formal-
izing cardinality-based feature models and their speetibn. Software
Process: Improvement and PractjcE0(1):7-29, 2005.

Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eiseker. Staged
configuration through specialization and multilevel confidion of fea-
ture models.Software Process: Improvement and Practit(2):143—
169, 2005.

Krzysztof Czarnecki and Andrzej Wasowski. Featuregtdans and
logics: There and back again. Ihlth Software Product Line Conf.
(SPLC '07) pages 23-34, 2007.

variabilities. In2001 Symp. on Software Reusability (SSR, @Rges
109-117. ACM, 2001.

Wasif Gilani, Julio Sincero, and Olaf Spinczyk. Asgeittg a web
server for adaptation. Iiwelfth IEEE Symposium on Computers and
Communications (ISCC'07Aveiro, Portugal, 2007. IEEE.

Jilles Van Gurp, Jan Bosch, and Mikael Svahnberg. Onnibigon of
variability in software product lineswicsg 0:45, 2001.

Mikolas Janota and Joseph Kiniry. Reasoning abouufeamodels in
higher-order logic. Inl1lth Software Product Line Conf. (SPLC 'Q7)
pages 13-22, 2007.

I. John, J. Knodel, T. Lehner, and D. Muthig. A practigalide to
product line scoping. I10th Software Product Line Conf. (SPLC '06)
pages 3-12, Aug. 2006.

Christian Kastner, Sven Apel, and Don Batory. A caseltimple-
menting features using Aspect]. lith Software Product Line Conf.
(SPLC '07) pages 223-232. IEEE, 2007.

Christian Késtner, Sven Apel, and Martin Kuhlemann. r@tarity in
software product lines. IICSE pages 311-320, 2008.

Charles W. Krueger. The 3-tiered methodology: Pragmiasights from
new generation software product lines. 1fith Software Product Line
Conf. (SPLC '07) pages 97-106, 2007.

Charles W. Krueger. BigLever software Gears and thée@d SPL
methodology. INODOPSLA '07: Companion to the 22nd ACM SIGPLAN
conference on object-oriented programming systems andicappns,
pages 844-845, New York, NY, USA, 2007. ACM.

Felix Loesch and Erhard Ploedereder. Optimization afamlity in
software product lines. Idlth Software Product Line Conf. (SPLC
'07), pages 151-162, 2007.

Daniel Lohmann, Wolfgang Schroder-Preikschat, andf Gpinczyk.
Functional and non-functional properties in a family of ernrdwesil
operating systems. 1h0th IEEE Int. W’shop. on Object-oriented Real-
time Dependable Systems (WORDS ,(@#ges 413—-420, Sedona, AZ,
USA, February 2005.

Daniel Lohmann, Olaf Spinczyk, and Wolfgang Schrodeziischat.
On the configuration of non-functional properties in op@tsystem
product lines. In4th AOSD W'shop on Aspects, Components, and
Patterns for Infrastructure Software (AOSD-ACP4IS '0pages 19-25,
Chicago, IL, USA, March 2005. Northeastern University, ®os(NU-
CCIS-05-03).

Daniel Lohmann, Olaf Spinczyk, and Wolfgang Schrodesiischat.
Lean and efficient system software product lines: Where aspszat
objects. In Awais Rashid and Mehmet Aksit, editofsansactions on
AOSD I, number 4242 in LNCS, pages 227-255. Springer, 2006.

Graph Type

[Directed| [Undirected| /' [Weighted —[Unweighted [DFS FFS None]

Algorithm

[MSTK]

Numbeﬂ

ConComp scc| [CycleCheck [MSTP]

Figure 3. Graph Product Line Feature Model

Table Il
GRAPH PRODUCTLINE CONSTRAINTS
Search Graph Type Edge Type
Algorithm | None | BFS | DFS | Directed | Undirected | Weighted | Unweighted
NUMBER X X X X X X
CC X X X X X
SCC X X X X
CYCLE X X X X X
MST X X X
SSP X X X
[28] Roberto E. Lopez-Herrejon and Don Batory. A standarobfam for Configuration of Non-Functional Properties in Softwaredc Lines.
evaluating product-line methodologiesLecture Notes in Computer In 11th Software Product Line Conf., Doctoral Symp. (SPLC,'@0p7.
Science 2186:10-??, 2001. [37] L. Xu, H. Ziv, D. Richardson, and Z. Liu. Towards modelimpn-
[29] Yoshihiro Matsumoto. A guide for management and financimitols functional requirements in software architecture.

of product lines. In1th Software Product Line Conf. (SPLC '0ppges
163-170, 2007.

[30] John D. McGregor. Building reusable testing assets dosoftware
product line. In10th Software Product Line Conf. (SPLC '06)age
220, 2006.

[31] Linda Northrop and Paul ClementSoftware Product Lines: Practices
and Patterns AW, 2001.

[32] M. Rosenmiuiller, N. Siegmund, H. Schirmeier, Julio Singc&wen Apel,
Thomas Leich, Olaf Spinczyk, and Gunter Saake. FAME-DBMS:
Tailor-Made Data Management Solutions for Embedded Systems. |
Workshop on Software Engineering for Tailor-Made Data Mgeraent
(SETMDM) 2008.

[33] Horst Schirmeier and Olaf Spinczyk. Tailoring Infrastture Software
Product Lines by Static Application Analysis. Irith Software Product
Line Conf. (SPLC '07)pages 255-260. IEEE, 2007.

[34] N. Siegmund, M. Kuhlemann, M. Rosenmiller, C. Késtner, and
G. Saake. Integrated product line model for semi-automatedupto
derivation using non-functional properties. Imternational Workshop
on Variability Modelling of Software-Intensive SystemaNMDS) pages
25-23, January 2008.

[35] Julio Sincero, Horst Schirmeier, Wolfgang Schrodegilschat, and Olaf
Spinczyk. Is The Linux Kernel a Software Product Line? Inrfka
van der Linden and Bjorn Lundell, editorsternational Workshop on
Open Source Software and Product Lines (SPLC-OSSPL 28§djo,
Japan, 2007.

[36] Julio Sincero, Olaf Spinczyk, and Wolfgang Schrodegilschat. On the

