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    Abstract- Chronic Obstructive Pulmonary Disease (COPD) 

causes severe dyspnea during physical exercises. In order to 

detect a reduction in the intensity of physical activities of COPD 

subjects, we monitored their physical activity during intensive 

physical exercises as well as during normal daily activities. A 

field experiment was performed on 13 COPD patients over 

periods of 8 hours. Our classifier detects static postures 

(standing, sitting, lying) with sensitivities 77-94 % and 

specificities 86-91 %. 

 
 Index Terms—COPD patients, Actimetry, Body postures, 

Body Sensor Network, Bluetooth.  

I. INTRODUCTION 

he main expression of Chronic Obstructive Pulmonary 

Disease (COPD) is airflow reduction. This is a major 

pathology with a worldwide prevalence of 10% in adults 

over 40 [1]. COPD can cause severe dyspnea, especially 

during physical exercises [2]. It is worse with age. Therefore, 

a reduction in the intensity of physical exercises and the level 

of daily activities (walking time, standing or resting time) is 

well correlated with the severity of the disease and with the 

risk for future acute exacerbation [3][4]. The "six-minute 

walk test" [5] is the reference for evaluating the progression 

of the disease, as well as to evaluate the efficiency of 

treatments like pulmonary rehabilitation and oxygen therapy. 

During the “six-minute walk test”, the patient walks the 

longest distance he can, while his blood saturation is 

monitored with a pulse oximeter. Other similar tests are 

based on the monitoring of Sp02 during a physical exercise, 

for instance the "stand up from a chair". This last exercise 

consists in a 3 minutes series of “standing-sitting down” on a 

chair, the 1st minute at a fixed pace and the next 2 minutes at 

the patient’s maximal pace. 

Thus, there is growing interest in designing activity 

monitors to assess objectively the level of everyday physical 

activity in COPD subjects. Such an “actimeter” should be 

able to provide details on everyday physical activity – e.g. 

postures lying, sitting, standing, but also the distance of 

walking. It must also have additional capability to 

communicate with other external Bluetooth sensors – e.g. 

blood pressure sensor, photo plethysmograph, airflow meter, 
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etc. – to provide a fully comprehensive assessment of the 

patient's condition.  

Monitoring patients in their daily life needs the system to be 

capable of being used autonomously by the patient himself in 

his own environment. Some activity monitors have been 

proposed in the literature [6] for the monitoring of COPD 

patients, but they are not networked. We therefore developed 

our IMU with robust embedded algorithm, which can be 

wirelessly interconnected to medical sensors, for acquiring 

data on both activity and physiologic, for the monitoring in 

daily life or in supervised medical exams [7]. 

II. MATERIAL AND METHODS 

A. The inertial monitoring unit ACOR+ 

The actimeter (ACOR+®, Sleepinnov Technology France) is 

worn on the hip during the day ( Figure 1), and on the 

sternum during the night. 

 
Figure 1. The ACOR+ is an IMU with reduced 

dimensions (77x57x25 mm) and light weight (70 g) to be 

clipped on the belt. 
 

The ACOR+ can be controlled manually, using the push-

buttons placed on the actimeter, or via a Bluetooth 

connection from a master device. The Bluetooth connection 

allows a local master to collect the data and to program 

ACOR+ to perform several exams in a row. The Bluetooth 

protocol was selected as it is already widely-adopted in 

several medical sensors available on the market and it allows 

deploying a local WBAN. 

The ACOR+  combines a tri-axis accelerometer (MMA7455, 

Freescale), for raw data acquisition, a powerful micro-
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controller (STR710, STMicroelectronics) for signal 

processing and a 2 Go SD-card to store the acquired data. 

The maximum resolution of the accelerometer is 10 bits, the 

sensitivity ranges from 2 G to 8 G (4 to 16 mG). We set the 

sampling rate to 50 Hz which corresponds to human 

actimetry frequencies [8]. 

The ARM7TDMI micro-controller is operated at 48 MHz ; it 

has a 256 KB program Flash memory and 64 KB data 

memory. The ACOR+ reaches an autonomy of 30 hours (@ 

50 Hz) ; it is adapted to daily monitoring at home. 

B. Embedded Algorithms 

The ACOR+ has on-board robust autonomous algorithms to 

label the postures [9]. It generates a XML report after each 

exam, which contains the time spent in each postures, the 

number of steps each day, and stores it on the SD-card. 

1) Detection of Active-Inactive states  

The accelerometer signals shows greater variability during 

standing periods than during sitting or lying, because of 

walking and transfers. Therefore, the first stage of our 

algorithm computes the variability on the signal of vertical 

acceleration x, 
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With W the temporal duration of the observation window. 

When the variability (V) exceeds a predefined threshold (Th) 

our algorithm labels a pattern of activity. 

Actually the variability of the signal during real life 

sequences shows a background noise (V = 180). The peaks 

correspond to patterns of activity. We computed the 

probability that a given period belongs to an active or 

inactive episode, with varying variability V (Figure 2). With 

Th = 335 we obtained 95 % of episodes correctly attributed 

to active periods. 
 

2) Discrimination between sitting and lying  

To discriminate the 2 positions of lying and sitting, we 

computed a criterion of verticality on the low-pass filtered - 

the cut-off frequency is 1 Hz- accelerometer signals: 

 

Verticality criterion = X² / (Y²+Z²) 

 

With X, Y and Z, the acceleration signals on the directions 

vertical, antero-posterior and medio-lateral respectively 

(Figure 1).  

 
Figure 2. Probability for a period to be part an 

“activity”. With a variability superior to Th=335, the 

probability is 95% to be correctly classified. This was 

computed on the 8 hours accelerometric signals collected 

from 15 subjects performing normal activities.  

 
Figure 3. Our criterion of verticality shows a monotonic 

decreasing function to the tilt (absolute value). 

 

Our criterion of verticality is maximal in upright position and 

minimal in the lying posture (Figure 3). It is therefore a 

criterion on the tilt, independent of the transversal plane 

orientation. 

 

3) Detection of steps during walking  

The detection of walking steps is obtained by triggering 

impacts on vertical acceleration signals [10]. The number of 

impacts (steps) are simply counted during a given interval of 

time. For instance, a walking speed 0.3-0.4 m/s – average 

with COPD patients – will consist in 40 steps during one 

minute of walking. 



 

 

 

 

 

 

 

 

 

 

III. RESULTS 

A. Experimental Protocol 

The experiment was performed with 13 COPD patients (age 

= 64 ± 7 years, height = 168 ± 10 cm, weight = 75 ± 17kg). 

The data profile (Figure 4) shows a homogeneous group of 

patients, mostly exhibiting a low level of activity.  

 
Figure 4. Data profile of the second experiment 

(involving 13 elderly COPD patients. The patients 

reported manually their activities. 
 

The subjects had the IMU ACOR+ on their hip for 8 hours 

(from 9 am to 5 pm). They recorded manually - in a diary - 

their real activities (i.e. walking, sitting for lunch, resting, 

etc.). As the self report is not precise enough and usually 

poorly estimates the duration of an activity [11], an expert 

performed a manual indexation of the recorded signals of 

acceleration with the help of the log file, to produce a 

reference. 

B. Comparison of episodes detections 

The outputs of our algorithm are further compared to the 

reference, episode by episode. We thus compute sensitivity 

and specificity. Sensitivity is the ratio between true positive 

(time correctly classified) against true positive plus false 

negative for the activity (the total time spent in this activity) 

found in the reference. Specificity is the ratio between true 

negative (time correctly classified as not doing the activity) 

against true negative plus false positive (the total time 

outside of this activity) according to the reference. 
 

Table 1. Sensitivity and Specificity in detection of 

activities. 

 Standing Sitting Lying 

Sensitivity 94% 87% 77% 

Specificity 86% 91% 90% 

A. Comparison of episodes durations 

To assess the accuracy of our classification process we 

investigated the similarity between the durations of activities 

(lying, sitting and standing) outputs of our algorithm with the 

reference durations of activity reported manually. 

  

The correlations between the reported and computed 

activities are high (Table 2) for all static postures (standing, 

sitting and lying), even though the results include strong 

inter-patient variability. The standing posture is over 

evaluated because of the ”tree classification algorithm” we 

used. The lower correlation for the time spent sitting is due 

to small lying time during daily activities. 
 

Table 2. Correlation between temporal outputs 
 R P  

Standing 0.89 <0.001 Pearson 

Sitting 0.79 0.0012 Pearson 

Lying 0.92 <0.001 Spearman 

 

For standing, we obtained a mean over-estimation of 23min 

(Table 3). This is significant - p-value <0.001 - but this it is 

not correlated to the duration value - p-value > 0.05. The 

sitting durations shows a mean (negative) difference of 16 

min - p-value=0.06. The difference of duration value 

between our algorithm and the reference are not correlated - 

p-value = 0.95. Concerning the lying posture, the median of 

the difference concluded with a null bias. The p-value from 

the Wilcoxon test is 0.14, thus there is no significant mean 

bias for duration of lying. We observed one outlier, with a 

lying period largely under-estimated - 60 minutes instead of 

145 minutes. Actually, it is due to a lying period incorrectly 

classified as sitting. The sensor was probably in 

inappropriate position or the subject was resting in a semi-

reclining position. 
We also analyzed the intra-class correlation coefficient (the 

ICC, Table 4). For standing and sitting, the ICC were over 

0.71, with no conclusion on the reproducibility. The 

reproducibility is good for the lying posture. 

 

Table 3. Bland-Altman parameters for temporal outputs 
 Mean 

Difference 

Correlation P 

Standing 23 min 0.23 Pearson/student 

Sitting -16 min 0.019 Pearson/student 

Lying 0 min -0.33 Spearman/Wilcoxon 



 

 

 

 

 

 

 

 

 

 

 

Table 4. IntraClass correlation of temporal outputs. 
 ICC Confidence Interval P 

Standing 0.76 -0.02:0.94 0.19 

Sitting 0.75 0.35:0.92 0.07 

Lying 0.92 0.77:0.97 <0.001 

IV. CONCLUSION 

We present our built-in algorithms embedded in our 

wearable IMU for for the automatic real time detection of 

postures. It extracts detailed characteristics of everyday 

physical activities – e.g. lying, sitting, standing and walking- 

together with corresponding energy expenditure. 

We evaluated our algorithms with 13 volunteer COPD 

patients over 8 hours periods in everyday real-life situations. 

Our classification performances are good for detection of 

static postures with sensitivities 77-94 % and specificities 

from 86-91 %. 

We demonstrate that activities can be classified in real time 

with embedded algorithms which are simple and robust. It 

potentially allows real time indexation of energy expenditure 

throughout the day; this is an important parameter for the 

monitoring of activities of COPD patients. 

Our IMU has a built-in Bluetooth connectivity, which opens 

the way for real time data fusion with cardio-respiratory 

parameters obtained from other Bluetooth enabled sensors. 

For monitoring a patient in his daily life, the system must be 

used autonomously by the patient in his private environment. 

This implies to reduce the users’ interactions which is 

obtained with the embedded intelligence. We must also 

minimise the impact of the device, with reduced form factors 

and enhanced autonomy. 

V. ACKNOWLEDGEMENTS 

The authors thank Anne Georges and Marion Lovato Henri 

Bazire pulmonary rehabilitation center (Saint Julien de Ratz, 

France), for supervision of data collection. We also wish to 

thank Sonia Dias-Domingos for statistical expertise of the 

temporal output parameters. This project was supported by 

the French Research Ministry under the grant number 

1039/2010. 

REFERENCES 

[1] M. Decramer, W. Janssens, and M. Miravitlles, “Chronic obstructive 

pulmonary disease,” The Lancet, 2012; 379 (9823): 1341–1351. 

[2] F. Pitta, T. Troosters, M. A. Spruit, V. S. Probst, M. Decramer, and R. 

Gosselink, “Characteristics of physical activities in daily life in 

chronic obstructive pulmonary disease,” Am J. Respir Crit Care Med, 

2005; 171: 972–977. 

[3] J. Garcia-Aymerich, E. Farrero, M. F´elez, J. Izquierdo, R. Marrades, 

and J. Anto, “Risk factors of readmission to hospital for a COPD 

exacerbation: a prospective study,” Thorax, Feb. 2003; 58: 100–5. 

[4] T. Troosters, F. Sciurba, S. Battaglia, D. Langer, S. R. Valluri, L. 

Martino, R. Benzo, D. Andre, I. Weisman, and M. Decramer, 

“Physical inactivity in patients with COPD, a controlled multi-center 

pilot-study,” Respiratory Medicine, 2010; 104: 1005–1011. 

[5] F. Sciurba, G. J. Criner, S. M. Lee, Z. Mohsenifar, D. Shade, W. 

Slivka, and R. A. Wise, “Six-minute walk distance in chronic 

obstructive pulmonary disease,” American Journal of Respiratory and 

Critical Care Medicine, 2003; 167(11): 1522–1527. 

[6] H. van Remoortel, Y. Raste, Z. Louvaris, S. Giavedoni, C. Burtin, D. 

Langer, F. Wilson, R. Rabinovich, I. Vogiatzis, N. S. Hopkinson, and 

T. Troosters, “Validity of six activity monitors in chronic obstructive 

pulmonary disease: a comparison with indirect calorimetry,” PLoS 

ONE, Jun. 2012; 7(6): e39198. 

[7] B. Perriot , J. Argod , J-L. Pepin and N. Noury, “A Network of 

Collaborative Sensors for the Monitoring of COPD Patients in their 

Daily Life”, in proc 15th int. IEEE-Healthcom2013, pp.288-291. 

[8] P. H. Veltink, H. B. Bussmann, W. de Vries, W. L. Martens, and R. 

C. V. Lummel, “Detection of static and dynamic activities using 

uniaxial accelerometers,” IEEE TRNE, 1996; 4: 375–385. 

[9] B. Perriot, J. Argod,  J-L. Pepin and N. Noury, “Characterization of 

physical activity in COPD patients: validation of a robust algorithm 

for actigraphic measurements in ecological situation”, IEEE-JBHI, 

2014, Vol 18(4): 1225-1231. 

[10] Najafi B, Aminian K, Paraschiv-Ionescu A, Loew F, Bula CJ, Robert 

P. Ambulatory system for human motion analysis using a kinematic 

sensor: monitoring of daily physical activity in the elderly. IEEE-

TBME.2003;50(6): 711-723. 

[11] F. Pitta, T. Troosters, V. S. Probst, M. A. Spruit, M. Decramer, and R. 

Gosselink, “Quantifying physical activity in daily life with 

questionnaires and motion sensors in COPD,” European respiratory 

journal, 2006; 27(5): 1040–1055. 


