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Abstract—With their high mobility, unmanned aerial vehicles
(UAVs) become appealing data collectors in hard-to-reach wide-
area distributed sensor networks. Different from existing works
focusing on the perspective of UAVs for service order optimization
and UAV utility maximization, we consider the utilities of both
sensors and UAVs, and innovatively model the competition among
sensors (buyers) for the service of UAVs (sellers) as an auction
game. A “unity makes strength” strategy is exploited. That is, to
strengthen the bidding competitiveness, a group-buying coalition
auction method that encourages sensors to form coalitions to
bid for UAV service is proposed. Besides, we propose a parallel
variable neighborhood ascent search algorithm, we can quickly
determine the approximately optimal group-buying coalition
structure. Numerical results show that the proposed method
outperforms the joint trajectory design-task scheduling (TDTS)
UAV-to-community method and the single coalition formation
game (CFG) method.

Index Terms—Unmanned aerial vehicles (UAVs), age of infor-
mation (AoI), auction mechanism, coalition formation game.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been applied widely
in many fields, such as disease monitoring, environmental
monitoring and event detection [1]. In WSNs, sensors typically
transmit status messages (e.g., perceived environmental param-
eters) to static ground access points in a multi-hop manner.
However, due to the limited transmission power and small
wireless communication coverage of sensors, the quality and
delay of long-distance communication cannot be guaranteed.
In this case, UAVs have great potential as aerial APs in
wireless sensor networks, owing to their high mobility and
distributed deployment [2]. In addition, most of the existing
UAV-assisted data acquisition schemes focus on optimizing
the energy consumption of data transmission [3]. However,
timely collected status information is crucial for a time-
sensitive sensor network, while stale status information may
yield incorrect decisions, which is ignored in [4]. Therefore,
the notion of the age of information (AoI) has been recently
proposed to quantify the freshness of information [1].

For UAV-enabled large-scale WSNs, sensors can effectively
improve the uploading efficiency by forming coalitions to ag-
gregate transmission data [5]. The UAV-enabled data collection
in WSNs can be regarded as a typical distributed multi-agent
decision process, in which participants make decisions through
information interaction and decide their behaviors rationally
(i.e., by evaluating the potential utility). Coincidentally, the
coalition formation game (CFG) is a classic cooperative game
that encourages independent participants to cooperate as an
entity [6]. However, most existing coalition formation algo-
rithms are not suitable for large-scale sensor networks as they
aim to optimize the service order of UAVs for different sensors
and unilaterally pursue for UAV utility maximization from
the perspective of UAVs [5], which requires a large amount
of information interactions and cannot be implemented in a
timely manner.

Driven by the economic property that marketing transactions
are dominated by demand-and-supply and competition, it is
necessary to take bilateral (namely both buyers and sellers’)
utilities into account, on which basis the most competitive
users have the highest priority of occupying/utilizing the on-
demand market resources. In this way, the best buyer-and-
seller match is expected to be achieved. An individual unilat-
eral auction game was used in [7] to improve the dynamic data
collection of UAVs, but the information asymmetry between
buyers and sellers in the individual unilateral auction was a
hinder to the auction fairness. To deal with the consumer
market preference in an auction, Lu et al proposed an iterative
auction mechanism to coordinate auction transactions, but
group-buying-based bidding strategy was not considered [8].
Applying the auction mechanism in the form of group pur-
chase to resource allocation can ensure the fairness, efficiency,
and utilization of resource allocation when participants are
rational and competitive [7], [8].

Motivated by the above-mentioned challenges and to pro-
mote UAVs to provide timely data collection service in WSNs,
this paper first proposes a group-buying coalition auction
method that encourages sensors to form coalitions to raise
their bids for UAV service. To reflect the time value of status978-1-6654-3540-6/22 © 2022 IEEE



Fig. 1. Multi-UAV system model for WSN data collection

information, the sensor bidding is designed as the weighted
difference of sensor AoI and energy loss [1]. Second, to
strengthen the bidding competitiveness, this paper constructs
a joint auction-coalition formation game for the group-buying
coalition formation. Third, to obtain the optimal group-buying
coalition structure, a parallel variable neighborhood ascent
search coalition formation algorithm is designed. Finally, the
efficiency of the proposed method is demonstrated.

II. SYSTEM MODEL

A. Scenario Description

We consider UAV-enabled status data collection applications
in WSNs, where UAVs assisted data collection status data
packets from sensor cluster head (CH). As shown in Fig.
1, there are N geographically distributed ground sensors,
represented by a set N = {1, ...n..., N}. Suppose there are
M UAVs that can collect status information from sensors, and
the UAV index set is denoted as M = {1, ...m...,M}.

To encourage UAVs to participate in the collection of
sensor status data, an auction mechanism is leveraged for
modeling the transaction process between UAVs and sensors.
The participants in the auction process include UAVs (sellers)
and sensors (buyers). As the bid of a single sensor may not be
attractive enough to UAVs, sensors form multiple coalitions to
buy the data collection service of UAVs in the form of group
buying. For large-scale WSNs, it may not be possible to plan
data collection trajectories of UAVs based on locations and
status of all sensors. As presented in Fig. 1, in the first layer,
the sensor coalition members transmit the status data packets
to the sensor CH; in the second layer, the UAV flies just above
the CH and collects the aggregated status data packets from
it. In the auction process, all information does not need to
be known by the UAVs, but only the group-buying coalition’s
bid to determine the data collection trajectory so as to reduce
unnecessary information interaction.

A continuous dynamic multi-round auction is proposed
that UAVs successively serve different coalitions according

Fig. 2. Auction phase slots.

to the auction results. The coalition structure is defined as
a partitioned area that contains all sensors, i.e.,

Υ(r) =
{
S
(r)
1 , ...S

(r)
k ..., S

(r)
K

}
,

K⋃
k=1

S
(r)
k = N , (1)

where Sk is a sensor coalition, r is the index of auction round,
and k represents the coalition index. Note that one sensor
can only join one coalition, S(r)

k ∩ S
(r)
k′ = ∅,∀k ̸= k′. If the

remaining energy of each UAV is sufficient, it can participate
in the next round of auction after completing the previous
round. Sensors that failed in the previous round of auction can
also adjust their bids according to the changes of their own
status and participate in the next round of auction. Each round
of auction can be divided into three stages: 1) Group-buying
coalition formation stage: ground sensors form multiple group-
buying coalitions to improve the market competitiveness of
their auction bids; 2) Auction stage: coalitions report the bids
and relevant requirements for updating status packets to UAVs,
and the UAVs decide the winning sensor coalition according
to the corresponding benefit and cost; 3) Data collection stage:
after the sensor coalition successfully purchases UAVs’ service
during the auction, the sensors deliver their status data packets
to the CH, and then a UAV flies just above the CH to collect
the status data packets uploaded by the CH.

B. Communication Model

1) Sensor to CH communication: The communication be-
tween sensors is assumed to be non-line-of-sight (NLoS)
connections [9]. Let hn,c represent the channel gain between
sensor n and CH c, that is,

|hn,c|2 = (dn,c)
−α1 , (2)

where α1 is the path loss exponent over the sensor-sensor
link, and dn,c is the distance between n and c. Therefore, the
achievable communication transmission rate from n to c is

Rn,c = Bn log2

(
1 +

|hn,c|2 pn
N0Bn

)
, (3)

where Bn is the channel bandwidth used by sensor n, pn
is the transmitting power, and N0 is the one-sided power



spectral density of white Gaussian noise. Hence, the expected
communication time from sensor n to CH c is

t(r)n→c = E
{
ε(r)n /Rn,c

}
, (4)

where E {·} is the expectation operator and ε
(r)
n is the amount

of status packets (bits) generated by sensor n in the r−th
round of auction.

2) CH to UAV communication: After collecting the status
information packets of all coalition sensor members, CH
c transmits the aggregated data packets to UAV m. The
channel between UAV and sensor is modeled as probabilistic
lineof-sight (LoS) and non-line-of-sight (NLoS) links [9]. The
probability calculation formula of the LoS channel is

Prc,m(LOS) =
1

1 + ϑl exp (−γl [θc,m − ϑl])
, (5)

where γl and ϑl are constant values that depend on environ-
ment (rural areas, compact cities or others), and θc,m is the
elevation. Besides, Prc,m(NLOS) = 1 − Prc,m(LOS). The
channel gain between c and m is denoted by hc,m, that is,

|hc,m|2 =

{
(dc,m)

−α2 ,LoS

η (dc,m)
−α2 ,NLoS

(6)

where η is the additional loss coefficient due to the NLoS
connection, α2 is the path loss exponent over the sensor-UAV
link, and dc,m is the distance between CH c and UAV m. We
assume that if the auction is successful, the UAV will fly to
the position just above the CH to communicate with it. Thus,
dc,m=H , where H is the fixed flight altitude of the UAV. The
achievable communication transmission rate between c and m
is

Rc,m = Bclog2

(
1 +

|hc,m|2pc
N0Bc

)
, (7)

where Bc is the channel bandwidth used by CH c, and pc is
the transmitting power. The expected transmission time from
CH c to UAV m is defined as t

(r)
c→m, of which the expression

is the total amount of information required to be transmitted
divided by the communication capacity, that is,

t(r)c→m =
∑

n∈S
(r)
k

E
{
ε(r)n /Rc,m

}
. (8)

C. Energy consumption model

Since the propulsion power of a UAV is dominant as
compared with its communication power [10], the propulsion
loss of the UAV is mainly considered. Then, E(r)

m,Sk
is defined

as the overall energy loss caused by UAV m completing data
collection service for coalition S

(r)
k , which is the sum of

energy loss in flight and hover states, that is,

E
(r)
m,Sk

= P (vm)t(fly,r)c→m + P (0)t(hover,r)c→m , (9)

where vm is the flight speed of UAV m, P (vm) is the
flight propulsion power, and P (0) the hover propulsion power;
t
(fly,r)
c→m = d̃

(r)
c,m/vm is the time of UAV m flying to sensor c,

d̃c,m is the horizontal distance between c and m, and t
(hover,r)
c→m

is the hover time of UAV m at sensor c. The hover time of the
UAV is equal to the time required for data transmission, i.e.,
t
(hover,r)
c→m = t

(r)
c→m. Thus, the time spent by the UAV in the rth

round of auction is the sum of the flight time and hovering
time, i.e.,

t(cost,r)c→m =t(fly,r)c→m + t(hover,r)c→m . (10)

D. AoI model

Age of information (AoI) is introduced to quantify the
freshness of information, which is defined as the time elapsed
since the latest valid status packet is received at the collection
node. The period of each round of auction is defined as tauc.
For sensor n, its AoI before the r−th round of auction is
defined as a

(r)
n and updated as below.

a(r+1)
n =

{
t
(r)
n→m, update;

a
(r)
n + tauc, otherwise.

(11)

This formula indicates that when UAV m collects data
packets from sensor n, its AoI changes as the period from
the generation of status packets at sensor n to the arrival at
UAV m, i.e., t(r)n→m = t

(r)
n→c + t

(r)
c→m. Assuming that a sensor

coalition successfully purchases a UAV for data collection, we
define f

(
a
(r)
n

)
as the valuation function of updating status

information based on AoI reduction, that is,

f
(
a(r)n

)
=

1

1 + exp
−δn

(
a
(r)
n −t

(r)
n→m−ςn

) , (12)

where δn and ςn are sensitivity and tolerance thresholds of
sensor n to the AoI, respectively. Different types of sensors
may have different requirements for information freshness.
A smaller ςn means a smaller inflection point of valuation
function and a lower tolerance to the AoI; similarly, a smaller
δn implies a lower sensitivity to the change of information
freshness.

III. PROBLEM FORMULATION

A. Auction Design

Under a given coalition structure Υ(r) ={
S
(r)
1 , . . . , S

(r)
k , . . . , S

(r)
K

}
, sensors form a coalition and

bid according to their own AoI status to the UAV data
transmission service. For each coalition S

(r)
k , in the r-th

round of auction, the bid of the coalition as a whole is
defined as the lowest bid among the coalition members being
multiplied by the number of coalition members, i.e.,

Φ
(r)
Sk

= min
n∈S

(r)
k

b(r)n ·
∣∣∣S(r)

k

∣∣∣ , (13)

where symbol |·| means the cardinality of a set, and min
n∈S

(r)
k

b
(r)
n

refers to the lowest bid among the coalition members. The
design idea of (13) is similar to [11], where the coalition bid
is independent of the winning sensors to ensure the truthful
bidding of sensors. For sensor n, the strategy for each round of
bidding is defined as b(r)n . Specially, b̄(r)n is the truthful bidding



strategy, which is the true valuation that the sensor thinks it
can bring to itself, i.e.,

b̄(r)n = f
(
a(r)n

)
. (14)

In truthful auctions, UAVs organize the auction process and
rational sensors can maintain a honest bidding strategy, i.e.,
b
(r)
n = b̄

(r)
n . Costs of different UAVs for serving different

sensor coalitions vary with positions and capabilities. The
attraction of a coalition’s same bid to different UAVs is
distinct. Therefore, the actual bid of a coalition is introduced to
represent the actual bid attraction to UAVs. The actual bid of
coalition S

(r)
k for UAV m is defined as the weighted difference

between the coalition bid and the flight energy consumption,
that is,

Φ
(r)
m,Sk

= Φ
(r)
Sk

− w1 · E(r)
m,Sk

, (15)

where w1 is the parameter for balancing value. To determine
the price to be paid by the final winning coalition, every
winning coalition should have its critical payment. According
to the Vickery auction mechanism, the sensor coalition with
the highest real bid successfully obtains the UAV service,
and its critical payment is the second-highest real bid among
sensor coalitions. In the rth round of auction, I(r)m,Sk

is defined
to indicate whether there is a successful transaction between
coalition S

(r)
k and UAV m, of which the expression is

I
(r)
m,Sk

=

{
1, if coalition S

(r)
k is a winner;

0, otherwise.
(16)

For the sensor coalition S
(r)
k , the payment charged by

the auctioneer is the second-highest real bid among sensor
coalitions and the energy loss of UAV, i.e.,

Q
(r)
m,Sk

=

{
E

(r)
m,Sk

+max
{
Φ

(r)
m,S−k

}
, if I

(r)
m,Sk

= 1;

0, otherwise,
(17)

where S−k represents another sensor coalition other than the
coalition Sk and max

{
Φ

(r)
m,S−k

}
is the second largest real

bid. Each coalition sensor member n should pay equally for
the purchase of UAV service. Therefore, q(r)n is defined as the
payment to be paid by coalition member sensor n, and can be
expressed as

q(r)n = Q
(r)
m,Sk

/
∣∣∣S(r)

k

∣∣∣ , n ∈ S
(r)
k . (18)

The utility of sensor n in the rth round of auction is defined
as the true valuation minus its payment, which is expressed as

u(r)
n =


b̄(r)n︸︷︷︸

true valuation

− q(r)n︸︷︷︸
payment

, if I
(r)
m,Sk

= 1, n ∈ S
(r)
k ;

0, otherwise.
(19)

In this paper, the maximization of social welfare is pursued,
which is defined as the sum of bids of the winning coalitions,
i.e.,

Ψ(r) =
∑

m∈M

∑
S

(r)
k ∈Υ(r)

I
(r)
m,Sk

max
{
Φ

(r)
m,S−k

}
. (20)

B. Social welfare maximization problem formulation

We expect our group-buying coalition auction method to im-
prove not only the utility of data collection, but also economic
indicators. In this paper, the social welfare maximization is
defined as the sum of bids of the winning coalitions. The
system optimization goal is to find an optimal sensor group-
buying coalition structure Υ(r) =

{
S
(r)
1 , . . . , S

(r)
k , . . . , S

(r)
K

}
in each round of auction to maximize the social welfare, i.e.,

(OP1) :Υ(r) = argmaxΨ(r), (21)

s.t. t(cost,r)c→m ≤ tauc, (22)

dn,c ≤ d(th),∀n, c ∈ S
(r)
k . (23)

Constraint (22) indicates that the total cost time of a UAV
needs to be less than the duration of each round of auction
to ensure that the UAV can complete data collection service
within an effective time; constraint (23) indicates that the
distance between the sensor and the CH in the coalition
must be less than the maximum communication distance
d(th) to ensure that the status data information of coalition
members can be transmitted to the CH. Obtaining the optimal
coalition structure by exhaustive search is NP-hard. Thus, we
leverage the CF game to design a scheme with relatively low
computational complexity to approximate the optimal solution.

IV. DESIGN OF ALGORITHMS

This section proposes a group-buying coalition formation-
based auction algorithm (GB-CFA) to solve the Problem 1
(OP1). First, data collection is designed, and coalition structure
change is decided by following the preference criteria of
coalition bid maximization to obtain the coalition structure
that maximizes the whole coalition bid. Then, based on the
bid of the current coalition, an auction algorithm is designed
to maximize the social welfare and determine the successfully-
matched coalition and UAV.

The group-buying sensor coalitions bidding for UAV service
can be regarded as a typical distributed multi-agent deci-
sion process, in which sensors make cooperative coalition
formation decisions based on their status information. In the
coalition formation game, participants continuously optimize
the coalition structure according to the preference criteria to
improve the utility [12]. To avoid falling into a local optimum
coalition structure solution, a parallel variable neighborhood
ascent search coalition formation algorithm is proposed to
find the optimal solution with relatively low computational
complexity. Specifically, sensors first change the coalition
structure to explore possible coalition bids, and then perform
comparisons and updates to continuously improve the coalition
bid based on the collaborative bid preference criteria until a
stable group-buying coalition structure is obtained.

We propose three neighborhood-based coalition operations
and realize the parallel optimization of coalition structure by
designing the cooperative bid preference criteria.



1) Variable neighborhood ascent search: We propose three
neighborhood-based coalition operations to change the coali-
tion structure Υ = {S1, . . . , Sk, . . . , SK}, including:

1) Joining: sensor n joins coalition Sj from coalition Sk.
N1 (n) is denoted as the neighborhood of current coali-
tion structure solution Υ through the joining of sensor
n, that is,

N1 (n) =
{
Υ̃
∣∣∣Υ\ {Sk, Sj} ∪

{
S̃k, S̃j

}}
, (24)

where the original coalitions Sk and Sj are updated as
S̃k = Sk\n, S̃j = Sj ∪ n.

2) Swapping: sensor n in coalition Sk is swapped with
sensor p in coalition Sj . N2 (n) is denoted as the
neighborhood of the current coalition structure solution
Υ through the swapping of sensor n, that is,

N2 (n) =
{
Υ̃
∣∣∣Υ\ {Sk, Sj} ∪

{
S̃k, S̃j

}}
, (25)

where the original coalitions Sk and Sj are updated as
S̃k = Sk\n ∪ p, S̃j = Sj\p ∪ n.

3) Leaving: sensor n leaves coalition Sk to form a separate
coalition. N3 (n) is denoted as the neighborhood of the
current coalition structure solution Υ through the leaving
of sensor n, that is,

N3 (n) =
{
Υ̃
∣∣∣Υ\ {Sk, Sj} ∪

{
S̃k, S̃j

}}
, (26)

where the original coalitions Sk and Sj are updated as
S̃k = Sk\n, Sj = ∅, S̃j = {n}.

Specifically, a sensor selects an operation of coalition struc-
ture change in a neighborhood; if there is no better coalition
structure solution can be found, the algorithm will skip to
the next neighborhood to continue the search; otherwise, the
algorithm will go back to the first neighborhood and start the
search again. The variable neighborhood search strategy can
use the neighborhood structure composed of different actions
to perform alternate search. The area searched by the solution
changes as the neighborhood varies, preventing the search
from falling into a local optimum solution.

2) Parallel mode updating: For the group-buying sensor
coalition game model proposed in this section, we define:

In the coalition formation game, the preference criteria
based on the preference relationship is the basis for game
participants to choose to leave the original coalition or join
a new one. The social group welfare criterion of coalition
auction ensures that the coalition operation can improve the
auction revenue of the whole network [11]. However, it is
not suitable for large-scale communication network scenarios
as the information interaction required to calculate the whole
network auction revenue is very large. In view of the above-
mentioned problems, we formulate the cooperative bid pref-
erence criterion from the perspective of coalition cooperative
bid promotion, i.e.,

Definition 1 (Cooperative bid preference criterion): For
sensor n and the two coalition structures obtained before and
after the coalition operation Υ and Υ̃, there is,

Υ̃≻nΥ ⇔ ΦS̃k
+ΦS̃j

> ΦSk
+ΦSj , (27)

TABLE I
SYSTEM MODEL PARAMETER

Parameters Value Parameters Value
N 20 - 60 M 1 - 5
H 100m pn [1] 100 mW

P (vm) [10] 1 kW P (0) [10] 2 kW
ε
(r)
n 50 - 200 bits η [9] 20 dB

Bn [9] 1 MHz Bc 5 MHz
α1, α2 [9] 3, 2 γl, ϑl [9] 0.136, 11.95

Given any two coalition structures Υ and Υ̃, for sensor n,
Υ̃≻nΥ represents that the coalition structure Υ̃ is preferred
by n as compared with the structure Υ. The advantage of our
design is that each operation only needs to calculate the bid
change of two coalitions and the communication cost only
lies in the currently changing coalition. Besides, during each
coalition structure operation, only the sensors that select the
same coalition in the neighborhood for coalition operation
will affect each other while the rest will not be affected.
Therefore, based on the designed cooperative bid preference
criterion, multiple sensors can perform coalition operations
simultaneously to change multiple coalitions without affecting
each other, and further accelerate the coalition convergence
process to save the convergence time of the algorithm.

The auction process is as follows. First, the real bid of each
coalition is calculated according to equation (15). Second,
the coalition with the highest bid and the matching UAV
are found. On this basis, the second-highest coalition bid is
determined and set as the senor coalition payment for UAV
service according to the Vickrey auction. Third, the winning
sensor coalition and UAV are deleted from the buyer and
seller sets, respectively. The above process is repeated until
one of the sensor or UAV sets is empty, or the remaining
coalition bids are all smaller than 0. Finally, the social welfare
maximization is realized and the current round of auction
process is over.

V. NUMERICAL RESULTS AND ANALYSES

In this section, we evaluate the performance of our proposed
GB-CFA. The sensors are randomly distributed in an area of
2 × 2 km2. All simulation parameters are listed in Table I.
In the following, we compare the proposed GB-CFA method
with the joint trajectory design task scheduling (TDTS) UAV-
to-community [13], coalition formation game (CFG) [5], and
maximum throughput first (MTF) [14] methods to verify the
superiority of our method. All simulation results are obtained
by averaging over 1000 independent trials.

Fig. 3 shows the curve of the average AoI for all sensors
versus the number of sensors. As can be seen, compared
with CFG, TDTS, and MTF methods, the proposed GB-CFA
method decreases the average AoI of all sensors by 16.7%,
44.5%, and 65.3%, respectively. The reason for this improve-
ment is that the proposed joint coalition-auction framework
can achieve ground-air collaborative optimization. On the one
hand, ground sensors can continuously optimize the group-
buying coalition structure based on their own conditions. On



Fig. 3. Average AoI versus the number of sensors.

Fig. 4. Convergence performance of the proposed GB-CFA algorithm with
various sensors.

the other hand, UAVs can determine their service based on the
trade-off between coalition bid and cost.

Moreover, we compare the convergence performance of
the proposed coalition formation algorithm when varying the
number of sensors. Fig. 4 depicts the cumulative distribution
function of the convergence iterations. In distributed and
centralized auction models, the coalition operation changes
with respective coalition bid and the entire auction of social
welfare. In the sequential model, UAVs make decisions in
descending order of the sensor coalition’s AoI. As the number
of sensors increases from 30 to 50, it can be observed that
the average convergence iterations of the proposed parallel
coalition formation algorithm increase from 75 to 125, those
of the distributed and sequential coalition formation algorithm
increase from 200 to 250, and those of the centralized and
sequential coalition formation algorithm increase from 350
to 500. It shows the effectiveness of the proposed parallel
coalition formation algorithm in terms of convergence speed.

VI. CONCLUSION

This paper studies the group-buying coalition formation-
based method for UAV-enabled data collection in WSNs, in
which sensors form multiple group-buying coalitions to bid for
UAV data collection service to improve the competitiveness
of sensors’ bids and the efficiency of data collection by
UAVs. The coalition formation game is leveraged to design

a bid maximization-based problem, which is solved by our
proposed parallel variable neighborhood ascent search algo-
rithm. Numerical results show that the sensors’ average age of
information (AoI) under the proposed method is reduced by
16.7% and 44.5% respectively as compared with the coalition
formation game (CFG) and the joint trajectory design task
scheduling (TDTS) UAV-to-community methods.
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