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Abstract—Unmanned aerial vehicles (UAVs) are the vital com-
ponents of sixth generation (6G) millimeter wave (mmWave)
wireless networks. Fast and reliable beam alignment is essential
for efficient beam-based mmWave communications between UAVs
and the base stations (BSs). Learning-based approaches may
greatly reduce the overhead by leveraging UAV data, such as
position, to identify the optimal beam directions. In this paper, we
propose a deep reinforcement learning (DRL)-based framework
for UAV-BS beam alignment using the hierarchical deep Q-
Network (hDQN) in a mmWave radio setting. We consider uplink
communications where the UAV hovers around 5G new radio
(NR) BS coverage area, with three dimensional (3D) beams under
diverse channel conditions. A BS serves with learnt beam-pairs
in an uplink manner upon every communication request from
UAV inside the multi-location environment. Compared to our
prior DQN-based method, the proposed hDQN framework uses
the location information and the fixed spatial arrangement of
the antenna elements to reduce the beam search complexity
and maximize the data rates efficiently. The results show that
our proposed hDQN-based framework converges faster than the
DQN-based approach with an average overall training reduction
of 43% and, is generic to multi-location environments across
different uniform planar array (UPA) configurations and diverse
channel conditions.

Index Terms—6G, 5G and beyond, mmWave, hierarchical
Beam alignment, Deep Q-Network

I. INTRODUCTION

Position information can be leveraged for fast beam align-
ment in the upcoming sixth generation (6G) millimeter wave
(mmWave) communications. Such information is widely avail-
able in base station (BS)-unmanned aerial vehicle (UAV)
communications, from sensors at lower frequencies mounted
on UAV such as global positioning system (GPS), camera,
lidar etc. Also, the 6G radio wave directionality obtained
through mmWave frequencies and multiple input multiple
output (MIMO) beamforming enable high speed data access
and line-of-sight (LoS) dominant connectivity to unmanned
aerial vehicles (UAVs), envisioned as future cellular net-
works. Especially, the deployment of cellular-enabled UAV-
user equipments (UE) (hereafter addressed as UAVs) adds
unique features pertaining to high mobility and autonomous
operations traffic surveillance, mineral exploration, internet
drone delivery systems, etc. [1].

However, the UAVs bring additional challenges and re-
quirements to the existing terrestrial networks, including
reliability, low-latency communications, interference during
aerial-ground communications, etc. Aerial-ground interference

management of UAVs has been extensively studied in BS-
UAV communications over recent years [2], [3]. For reliability
and low-latency challenges, the UAV position information
with flexible three-dimensional (3D) beamforming can be
effectively used to enhance their data throughput through fast
mmWave beamalignment in forthcoming 6G systems.

Position information has been used for fast mmWave beam
alignment in vehicular communications [4]–[7]. In [4], Va et
al. proposed an inverse fingerprinting approach by exploiting
vehicular position information during beam training in non-
line-of-sight (nLoS) conditions. The authors in [6], [7] pro-
posed a learning-based beam training schemes using multi-
armed bandit (MAB) approach, by building a database of
finite beam-pairs useful for beam training based on vehicular
position information. Their key idea here is that the machine
learning (ML)-based approaches can effectively use the posi-
tion information for fast mmWave beamalignment in an online
manner.

High mobility and autonomous operation of UAVs will
also require frequent beam realignment and can be jointly
optimized effectively using reinforcement learning (RL)-based
beam training [8]. In our previous work [9], we proposed
a context-information aided beam pair alignment problem
for cellular-connected mmWave UAV networks using deep
reinforcement learning (DRL) technique like deep Q-network
(DQN) at the BS using the UAV position information. We
have shown that a generic DQN framework can enhance the
beamforming gains in an online manner under different 3rd
generation partnership project (3GPP) conditions. However,
the proposed DQN-based approach is slightly impractical for
uniform planar array (UPA) antenna configurations due to
their large action spaces. DQN action space increase exponen-
tially with increase of beam pairs for large antenna elements
affecting the convergence due to curse of dimensionality
phenomena. Also, the work assumed independent and fixed
grid element in the BS-UAV environment.

In this paper, we model the BS-UAV beam pair alignment
problem using hierarchical deep Q-network (hDQN) with
the aim to reduce the beam search complexity for UPA
configurations.The fixed spatial arrangement of the antenna
elements can be effectively exploited alongside the UAV
position information by considering mmWave beams with
different beam width resolutions in a hierarchical manner
during beam-training. Our simulations show that the hDQN
approach reduces the beam training overhead by 43% from



our prior DQN method.
The rest of the paper is organized as follows. Section II-A

and II-B presents the problem formulation and communi-
cation modelling, considered in this problem, respectively.
Section II-C and Section III discuss in detail the problem
formulation of the proposed hierarchical deep reinforcement
learning (hDRL) approach, namely hDQN and its algorithmic
implementation for BS-UAV beam pair alignment problem.
Section IV presents the comparison of the proposed hDQN
approach against our previous DQN-based method under dif-
ferent UPA antenna configurations and channel conditions.
Section V summarizes the conclusion and future work.

II. SYSTEM AND COMMUNICATION MODEL

A. System Model

As shown in Figure 1, we consider a cellular mmWave
MIMO uplink communication with BS serving multiple UAVs
in a time domain multiple access (TDMA) manner under its
spherical coverage area. The BS is fixed at O(0, 0, hBS) ∈ R3

and communicates with the moving UAV (hereafter used as
user equipment (UE)) using a multi-path mmWave beamform-
ing. The UE moves randomly around the BS 3D spherical
coverage area composed of multiple grids, the set enclosing
them is denoted as U. Following the 3D spherical coordinate
system, let ξh, θh, ϕh represent the radial distance, elevation
and azimuthal angles of grid index h ∈ {0, 1, ...|U|} with
respect to BS, then UEh(t) in cartesian form at any time
instant t is given by

UEh(t) = (ξh sin θh cosϕh, ξh sin θh sinϕh, ξh cos θh), (1)

The UE transmits (TX) while the BS receives (RX) a radio
signal in multiple beam directions following W and F pre-
defined analog codebook directions, respectively. The BS
usually has more antenna elements compared to UE and
hence, we assume a hierarchical multi-resolution and the
narrowest possible angular resolution codebooks at F and W ,
respectively. The hierarchical codebook at F follows a joint
subarray and deactivation approach proposed in [10].

The communication begins with a TX request from UEh
while the RX radio unit at BS starts with a random beam-pair
at time t = 0 and learns to choose the beam-pair direction
(bp, bq), bp ∈ W, bq ∈ F over time for the grid position
with index h ∈ {0, 1, ...|U|}. The BS receives the initial radio
beam bq at broader angular-resolution level from F and then
switch to narrow radio-beams over time, to reduce the beam
search space and still achieve efficient beamforming gains for
UPA antenna configurations. Here, we assume the moving UE
transmit radio signals in the same narrow beam directions
within each grid position. Thus, the BS selects a sequence
of beam-pair directions for TX and RX, with every change in
grid position as the substantial change in TX location induces
a variance in their radio measurements, following 3GPP fifth
generation (5G) new radio (NR) beam alignment protocol [11].

The 3GPP 5G NR beam alignment protocol for physical
layer consists of initial communication (used as P1 procedure),
beam selection (used as P2 procedure) and an optional beam

refinement (used as P3 procedure) [11]. Herein, we consider
BS and UE following P1 and P2 procedures at every grid
position, along the coverage area set U. During P1 procedure,
the UE is assumed to send a communication request with
respect to its position, while the learning framework at BS
responds with a hierarchical sequence of radio beam-pairs
to be considered for next phase of uplink based beam ac-
cess protocol. P2 generally implies the radio beam selection
procedure at mmWave frequencies later used for the data
transmission [11]. Similar to the works in [7]–[9], the BS
and UE in P2 are assumed to undergo the beam-training
procedure following the sequence of beam-pairs configured by
the BS-side learning framework from initial communication
procedure.
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Figure 1: System model.

The received signal measurement can be observed at the BS
for different TX-RX beam pairs during these procedures and
their timing information can be estimated using 5G protocol
frame structure [11]. We define travel time unit (TTU) as
the orthogonal frequency division multiple access (OFDM)
symbol time during every beam transmission or reception from
the 5G frame structure. In this work, we use this definition to
measure the communication overhead for the learning-based
beam sweeping procedure in TTU units.

B. Communication Model

We consider a multi-path link (LoS or nLoS) radio channel
between UE at time t and BS location O ∈ R3. The
BS and UE are equipped with single radio frequency (RF)
chains of (N rx

x , N
rx
y ) receive and (N tx

x , N
tx
y ) transmit antennas

respectively. As the BS serves multiple UEs in a TDMA
manner, we model the communication between a single UE
and single BS with UPA for the urban macro-cellular (UMa)
environments [11]. We assume each UPA beam at both BS
and UE projected with azimuthal ϕ and elevation θ main lobe
broadside direction. Let M denote the number of multi-paths
or reflection points in the environment, the channel matrix
corresponding to the mth path is given by

Hm ≜ βmaR(θ
rx
m , ϕ

rx
m )aHT (θtxm , ϕ

tx
m ) (2)



where, βm is the antenna channel gain, θtxm , θrxm are the
azimuthal angle of departure (AoD) and angle of arrival
(AoA), ϕtxm , ϕrxm are the elevation AoD and AoA of mth

communication link between BS and UE. aR(θ
rx
m , ϕ

rx
m ) ∈

CN
rx
x Nrx

y , aT (θ
tx
m , ϕ

tx
m ) ∈ CN

tx
x Ntx

y are the antenna array
steering vectors for (θrxm , ϕ

rx
m ) and (θtxm , ϕ

tx
m ), respectively.

Let ωx = 2π
λ dx sin θ cosϕ, ωy = 2π

λ dy sin θ sinϕ, λ is the
wavelength, ⊗ denote the Kronecker product, Nx and Ny are
the antenna elements along x and y-axis, dx and dy are the
antenna element spacing in x and y-direction, respectively.
Then, the array steering vector is given by

a(θ, ϕ) =
1√
NxNy


1

ejωy

...
ej(Ny−1)ωy

⊗


1
ejωx

...
ej(Nx−1)ωx

 (3)

where (θ, ϕ) = (θrxm , ϕ
rx
m ), (Nx, Ny) = (N rx

x , N
rx
y ) and

(θ, ϕ) = (θtxm , ϕ
tx
m ), (Nx, Ny) = (N tx

x , N
tx
y ) for aR(θ

rx
m , ϕ

rx
m )

and aT (θ
tx
m , ϕ

tx
m ), respectively. For a unit-norm transmit and

receive beamforming vectors namely, wk ∈ CN
tx
x Ntx

y and
fk ∈ CN

rx
x Nrx

y , baseband equivalent of the received signal at
discrete symbol time k is given by

yk =

M∑
m=0

√
Ptxf

H
k Hmwkxk︸ ︷︷ ︸
rk

+νk, (4)

where Ptx is transmission power, νk ∼ CN (0,WN0) is the
effective noise with zero mean and two-sided power spectral
density N0

2 , xk represents one OFDM symbol of the time-
domain transmitted signal with bandwidth W and TTU time
period with 1

K

∑K
k=0 ∥xk∥2 = 1. Here, we assume Hm to

follow 3GPP UMa conditions [11] and k = 0, 1, ...K denotes
the number of samples spanned over TTU time. wk and fk
for UPA beams are measured using (3) for selected codebook
directional pairs (θk, ϕk) fromW and F , respectively. Similar
to our previous work on linear codebook direction sets [9] and
following (3), the UPA radio beam directions are determined
by linear array angular resolutions namely, 2

Nx
and 2

Ny
with

their physical angles (−π2 ,
π
2 ) along x and y direction, respec-

tively. Thus, we assume that the UE transmits radio signals
with a narrowest angular resolutions inW codebook directions
while the BS receives the signal through one of its hierarchical
multi-angular resolution codebook directions from F .

The hierarchical directional set F consists of L (for ex-
ample, 0 ≤ l ≤ L,L = log2(N

rx
x ) along x-axis) multiple

angular resolution levels along x and y directions sepa-
rately, with the lth level codebook directional subset Fl =

{f (l)1 , f
(l)
2 , ..., f

(l)
card(Fl)

} designed to uniformly cover all the
spatial frequency range (−1, 1) (physical angles (−π2 ,

π
2 ))

along x and y-directions separately and satisfy the relation
card(F1) < ... < card(FL) as shown in Figure 2. Here,
card(F) denotes the cardinality of F . For this work, we
consider a two level angular-resolution subsets at RX, namely,
FB and FN (card(FB) < card(FN )) with their beam widths

ψ = 2
card(F) , where ψ = ψB and ψ = ψN (ψB > ψN ) for

FB and FN , respectively. We select (ψN
x , ψ

N
y ) = ( 2

Nrx
x
, 2
Nrx

y
)

and (ψB
x , ψ

B
y ) = ( 2

(L−l+1)

Nrx
x

, 2
(L−l+1)

Nrx
y

), l ∈ [0, L). We assume
an elliptical surface for every rectangular grid element in U
and is proportional to ψB given by (ψB

x , ψ
B
y ) = (ηθcosθ0, ηϕ)

where ηθ and ηϕ are the elevation and azimuthal angular
resolution in U, respectively [12]. θ0 is the elevation angle
of a UE grid element g, g ∈ U from the BS. Thus, with ψB

selection, ηθ and ηϕ can be chosen to favour a single broad
beam projection from BS, for every grid element in U. We
define rk =

∑M
m=0

√
Ptxf

H
k Hmwkxk. Then, the signal-to-

noise ratio (SNR) is given as SNR =
1
K

∑K
k=0∥rk∥

2

N0W
and overall

rate measurement R in bits per channel use is given by

R = log(1 + SNR). (5)

Thus, the optimal beam-pair for UE-BS during P1 procedure
is selected based on the data rate measurements.
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Figure 2: Beam coverage of a hierarchical beam structure
codebook.

C. Problem Formulation

We consider an uplink communication between BS and UE
following 3GPP beam access protocol [11]. We formulate the
learning-based beam-pair alignment as a partially observable
Markov decision process (POMDP) during P1 and P2 pro-
cedures, and maximize the beamforming gain for any UE
position around the BS coverage area U. We consider received
signal strength (RSS) of radio signal and radio beam pair
directions (both TX and RX) as the known and unknown
parameters of this multi-location environment, respectively.

In this work, we model an interactive RL-based beam-pair
alignment problem as a POMDP. At any time instant t, we
define the parameters st = {(UEh, br, bs, bu),UEh ∈ U, br ∈
W, bs ∈ FB, bu ∈ FN }, aBt = {(bp, bq), bp ∈ W, bq ∈ FB},
aNt = {(bm, bn), bm ∈ W, bn ∈ FN } where st, aBt , aNt ,
rt are the state, broad beam-pair action, narrow beam-pair
action and reward at time instant t. Data rate measurements
computed for each applied action are considered as the rewards
for the problem. As shown in Figure 2, every broad beam
codebook direction f

(l)
c in FB comprise of a finite subset

of narrow beam codebook directions {f (l)c − ψB

2 ≤ f
(L)
d ≤

f
(l)
c + ψB

2 , f
(L)
d ∈ FN } with cardinality defined as V . Let

π1 and π2 denote the broad beam action and narrow beam
action policies for state transitions (st, a

B
t , rt+V , st+V ) and

(st, a
N
t , rt, st+1), respectively. After UE’s P1 procedure, BS



starts with a random receiving beam direction and then pro-
ceeds towards the maximum beamforming gain by applying
actions and undergoing state transitions, accordingly. The cur-
rent applied action becomes part of the next state, undergoing
state transition. We define an episode eπ1,π2

as the consecutive
set of such broad beam and narrow beam actions until the
terminal state following policies π1 and π2, respectively. The
objective of this problem for broad beam and narrow beam
actions can be formulated as

(P1) : max
{π1(aBt )}

∑
t≤i<∞

γ(i−t)V Eπ[r(aNiV )],

(P2) : max
{π2(aNt )}

∑
t≤i<∞

γi−tEπ[r(aNi )],

s.t.

r(aNt ) =

{
1 if R(aNt ) ≥ Rmax(st)
−1 otherwise

,

γ ∈ (0, 1],

(6)

where Rmax(st) is the optimal data rate measurement ob-
served among the information history ot until its previous
episode eπ1,π2 , r(aNt ) and R(aNt ) are the rewards and data rate
measurement observed on applying action beam-pair aNt , re-
spectively. We maximize the objective formulation by learning
the hierarchical sequence of beam-pair actions starting with
broad beam level selection from FB and switch to narrow-
beam level selection from FN following the same reward
function (6). We consider a hDQN approach to solve this
objective problem.

III. HIERARCHICAL DQN-BASED BEAM ALIGNMENT

DQN is a value-based approach, learning an optimal ap-
proximated policy of states mapping to actions π(s) = a
by parameterizing and estimating state-action value function
Q(s, a; θ) where θ denotes the weight matrix of the primary
deep neural networks (DNN) [13]. The hDQN framework
integrates hierarchical action-value functions operating at dif-
ferent temporal scales using DQN approach and learns optimal
approximated policies π1(s) = a, a ∈ AB and π2(s) = a, a ∈
AN , respectively [14], [15]. Under our hDQN framework, we
consider a broad beam (BB) and narrow beam (NB) DQN
agents over the same state space S but different action spaces
AB and AN , respectively as shown in Figure 3.

For the BB agent, we denote the primary DNN network
weight matrix and target DNN network weight matrix as
θ1 and θ1, respectively [13]. We consider a fully connected
DNN for both the networks where θ1 is updated with primary
network parameters θ1, after every K1 iterations. The input
of DNN is given by the variables in st. The intermediate
layers are fully connected linear units with rectifier linear units
(ReLU) and the output layer is composed of linear units in one-
one correspondence with AB. We consider both DNNs with
zeros initialization bias and Kaiming normalization weights.
A memory buffer of experiences D1 = {e1, e2, e3, ..., et},
ei = (si, a

B
i , ri+V , si+V ) are collected, where a mini batch

of them U(D1) are randomly sampled and sent into BB-
DQN [13]. For the NB agent, we follow the same procedure
with network weight parameters as θ2, θ2, target network
updated every K2 iterations, the output layer mapped to AN
with disjoint (from D1) memory buffer of experiences as
D2 = {e′1, e′2, e′3, ..., e′t} and collected transitions as e′i =
(si, a

N
i , ri+1, si+1) respectively.
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Figure 3: hDQN framework with BB and NB DQN agents

Let Q1(s, a; θ1) and Q2(s, a; θ2) denote the state-action
value functions of BB and NB agents, respectively as shown
in Figure 3. For both the DQN agents, a mean squared error
(MSE) loss function is computed between primary, target
networks during back propagation, and θ is updated using
stocastic gradient descent (SGD) and Adam Optimizer as

θt+1 = θt − ζAdam∇L(θt), (7)

where ζAdam is the learning rate, ∇L(θt) is the gradient
of the DQN loss function. Here, (θ,∇L) = (θ1,∇L1) and
(θ,∇L) = (θ2,∇L2) for BB and NB agents, respectively.
Complete steps followed by hDQN-based beam alignment
problem are shown in Algorithm 1. Thus, we note that hDQN
is practical in applying only narrow beams over the channel
by using BB agent as a meta-controller. Here, we define
episode as the consecutive set of hierarchical actions applied
on the starting state until it reaches the terminal state with
maximum beamforming gain for that location. In order to
prevent episodes with infinite set of actions during training,
we confine maximum episode length to exhaustive set of
beam pairs under the chosen UPA configuration. Hence in the
proposed hDQN, the maximum episode lengths are card(AB)
(say KB) and V for the BB and NB agents, respectively.

We consider the overall hDQN training procedure into
Warmup and Training phases, similar to our prior work in [9].
As the reward formulation in (6) involve computing Rmax(st)
measurements over AN , we consider the warmup phase only
for NB agent of hDQN. During Training phase, the hDQN
perform exploration and exploitation using ϵ-greedy policies
ϵ1 and ϵ2 for BB and NB agents, respectively. The Warmup
phase results in extra training time at the start but favours quick
convergence of hDQN during training phase resulting in faster
beam-alignment training for the multi-location environment.



Algorithm 1: Hierarchical DRL using DQN

1 M → Training Episodes; Algorithm hyper-parameters:
BB learning rate ζ1 ∈ (0, 1], BB ϵ-greedy rate
ϵ1 ∈ (0, 1], BB episode limit KB, NB learning rate
ζ2 ∈ (0, 1], NB ϵ-greedy rate ϵ2 ∈ (0, 1], NB episode
limit V ;

2 Initialization of replay memory D1 to capacity C1, D2

to capacity C2, BB network parameters θ1, θ1 and
NB network parameters θ2, θ2;

3 S : State space of BB, NB agent;
4 AB,AN : Action space of BB and NB agent,

respectively;
5 for episode ← 1 to M // for each episode
6 do
7 Any random UAV transmits the communication

request from the (x,y,z) location;
8 BS responds with a sequence of V KB action

beam-pairs over the channel with π1, π2 policies;
9 Initialization of s0 by executing a random action

aB0 , aN0 and (x,y,z) location information;
10 k = 0
11 while True do
12 if done or (k = KB) then

// End Training episode
13 Reset Env and obtain new s0
14 select aBt from BB network following ϵ1
15 BS selects the NB action subset P (|P| ≤ V )

corresponds to aBt ;
16 p = 0;
17 for p ≤ V do
18 if done or (p = V ) then

// End NB episode
19 Update RN

max(st+p);
20 if warmup then
21 Randomly select aNt ∈ AN
22 else
23 select aNt from NB network following

ϵ2
24 BS applies aNt over the channel, receive

signal for (t+ 1)th episode during uplink
communication;

25 UE observes st+1 and calculate the reward
r(aNt );

26 Store the experience (st, a
N
t , rt, st+1) to

D2;
27 Train and update NB parameters θ2;

28 Store the experience (st, a
B
t , r(a

N
t+p), st+p) to

D1;
29 Train and update BB parameters θ1;

30 k = k + 1 // Increment episode time
31 hDQN updates the sequence of action beam-pairs

for (x,y,z) location;

IV. SIMULATION RESULTS

As described in Section II-C and Section III, we implement
the hDQN-based beam-pair alignment, following (P1) objec-
tive (6) and Algorithm 1. Similarly, we implement the state-
of-the-art DQN-based approach [9] over UPA configuration
and compare our results. We note here that both the RL-based
methods once converged, can significantly reduce the commu-
nication overhead during P2 procedure [11] and maximize the
beamforming gain in O(1) time. In this section, we first inves-
tigate the training performance of our proposed hDQN-based
approach against DQN-based method under diverse channel
conditions. Later, we evaluate the time and rate complexities of
the proposed hDQN, DQN training procedures over different
UPA configurations and UMa-nLoS channel conditions. Here,
we select 4 random reflection points within BS coverage and
fix them throughout the hDQN and DQN nLoS simulations.
For simplicity, we consider UE hovers in U with fixed radial
distance from BS ξ = 20 m. The simulation conditions for all
the numerical results are listed in Table I.

Table I: Simulation Parameters

Parameters Value
mmWave freq 30 GHz
Bandwidth W 120 MHz

antenna element spacing d 0.5
Transmit power Ptx 0 dBm

Transmit antenna elements Ntx {(2× 2), (4× 4)}
Receiving antenna elements Nrx {(4× 4), (8× 8)}

Noise Level N0 -174 dBm
BS location (in m) [0, 0, 25]

UMa-nLoS pathloss coefficients α : 4.6− 0.7 log10(Uzloc),
β : −17.5, γ : 2.0, σ : 6.0,
κ : 20 log 10( 40π

3
) [11]
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Figure 4: hDQN, DQN training convergence for
(NTX, BNRX, NRX) = (2×2, 4×4, 8×8) UPA configuration.

A. hDQN vs DQN Training Performance

As shown in Figure. 4, red plot shows the DQN overall
reward performance under UMa-LoS channel while the green
and blue plots depict the rewards (following (6)) over hDQN
overall training time under UMa-LoS and UMa-nLoS condi-
tions, respectively. We note that all the simulations are carried
out with (NTX, NRX) = (2 × 2, 8 × 8) and (lx, ly) = (2, 2)
i.e. BNRX = 4 × 4 UPA is selected under UMa channel



with thermal noise but no shadow fading and channel variation
conditions. DQN simulations are performed over AN action
space while the hDQN method apply broad (AB) and narrow
beams (AN ) using BB and NB networks, respectively. We
observe that under both UMa-LoS and UMa-nLoS conditions,
the hDQN training procedure attain the maximum reward with
significantly less training time compared to the DQN method,
resulting in faster training convergence.

B. hDQN For Different UPA Configurations

In this subsection, we plot the training times (TTUs) and
maximum achievable data rates (5) of hDQN and DQN-based
approaches under different UPA antenna configurations with
UMa-nLoS conditions. As shown in Figure. 5, blue and red
bars show the training times of hDQN and DQN, respectively
while the black plot depict maximum learnt data rates obtained
in both the methods. We note that same DNN architecture
and hyper-parameters values are used for all the hDQN sim-
ulations. We observe that hDQN converges faster than DQN
and achieves the maximum data rate with average reduction
in training overhead of 43% among all UPA simulations.
Under the same (NTX, NRX) configuration, we observe that
selection of higher BNRX increases the reliability of providing
maximum achievable rate across narrow grid element area in
U. This also impacts the training time due to the increase in
state space S for DQN, both S and AB in hDQN. However,
we notice that hDQN converges faster as the selection of broad
beam actions depends on both ϵ1 policy and the convergence
of NB network. Now, increasing the BNRX, decreases the
cardinality (V ) of narrow beam subset for each broad beam-
pair in AB, resulting in faster overall convergence. Thus, the
observed results show that broad beam level selection is crucial
and has more impact on both training and rate performance
under the hDQN approach. This can be useful to trade-off rate
and training performances over broad beam level selections for
different cellular UAV applications.

(NTX, BNRX, NRX)
= (2 × 2, 2 × 2, 8 × 8)

(NTX, BNRX, NRX)
= (2 × 2, 4 × 4, 8 × 8)

(NTX, BNRX, NRX)
= (2 × 2, 2 × 2, 4 × 4)

(NTX, BNRX, NRX)
= (4 × 4, 2 × 2, 4 × 4)
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Figure 5: hDQN overall training performance under UMa-
nLoS conditions.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed a hDQN-based position-aided
beam alignment framework for cellular-connected mmWave
UAVs and maximize their beamforming gain within the BS

coverage area in an online manner. We also analyzed the
hDQN approach over state-of-the-art DQN-based method un-
der different UPA antenna configurations and diverse channel
conditions. Our results shown that, the proposed hDQN ap-
proach converges faster than the DQN method with an average
overall training reduction of 43% for UPA configurations. Hav-
ing shown some promising results, we will address the hDQN
architecture under different UAV radial distances from BS,
large number of beam-directional pairs, interference mitigation
etc. as future works.
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